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Abstract 9 

Evolutionary models of quantitative traits often assume trade-offs between beneficial and 10 
detrimental traits, requiring modelers to specify a function linking costs to benefits. The choice of 11 
trade-off function is often consequential; functions that assume diminishing returns (accelerating 12 
costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to 13 
evolutionary branching. Despite their importance, we still lack a strong theoretical foundation to 14 
base the choice of trade-off function. To address this gap, we explore how trade-off functions 15 
can emerge from the genetic architecture of a quantitative trait. We developed a multi-locus 16 
model of disease resistance, assuming each locus had random antagonistic pleiotropic effects 17 
on resistance and fecundity. We used this model to generate genotype landscapes and 18 
explored how additive versus epistatic genetic architectures influenced the shape of the trade-19 
off function. Regardless of epistasis, our model consistently led to accelerating costs. We then 20 
used our genotype landscapes to build an evolutionary model of disease resistance. Unlike 21 
other models with accelerating costs, our approach often led to genetic polymorphisms at 22 
equilibrium. Our results suggest that accelerating costs are a strong null model for evolutionary 23 
trade-offs and that the eco-evolutionary conditions required for polymorphism may be more 24 
nuanced than previously believed. 25 

 26 

1. Introduction 27 

From life-history to foraging to disease resistance, genetic trade-offs are at the heart of many 28 
questions in evolutionary biology. In mathematical models, trade-offs between beneficial and 29 
deleterious traits are often necessary to maintain balancing selection [1]. Without an intrinsic 30 
downside, there is nothing preventing quantitative traits from evolving towards their maximum. 31 
For example, models of disease resistance typically assume the evolution of increased 32 
resistance carries a cost to either host mortality or fecundity [2,3]. Such trade-offs could emerge 33 
from either physiological constraints, or pleiotropic effects of the mutations affecting the focal 34 
trait. 35 

Theoretical models of evolutionary processes have shown that particular assumptions 36 
about the shape of trade-off function, or how one quantitative trait scales with another can have 37 
major implications for evolutionary outcomes [3–7]. Disease resistance is particularly 38 
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emblematic of trade-off function dependent evolution: Boots and Haraguchi [3] found when 39 
fecundity costs scale faster than resistance benefits (referred to as accelerating, or convex cost 40 
functions), evolution favours a single intermediate host genotype, whereas decelerating (also 41 
referred to as concave) costs lead to the coexistence of resistant and susceptible hosts. 42 
Accelerating costs leading to a single optimal genotype while decelerating costs lead to genetic 43 
polymorphisms is common outcome of models of quantitative traits with ecological feedbacks 44 
[5]. Similar patterns have been shown in predator behaviour models [8,9], life-history evolution 45 
models [10] and disease resistance evolution models [3,4]. The shape of trade-off functions has 46 
also been shown to determine evolutionary outcomes in vivo. By manipulating fecundity-survival 47 
trade-offs in Escherichia coli, Maharjan et al. were able to experimentally validate the results of 48 
theoretical models showing that changes in the shape of trade-off functions can indeed 49 
determine evolutionary outcomes [7].  50 

Despite the abundance of evidence demonstrating the importance of trade-off functions, 51 
we understand their consequences far more than the biological processes that shape trade-off 52 
functions. While trade-off functions depict genotypic variation as a one-to-one relationship 53 
between quantitative traits, natural variation is two-dimensional. To address this, the concept of 54 
the Pareto front is a useful bridge [11]. The Pareto front is defined as the set of all phenotypes, 55 
such that improving performance in one trait can only be accomplished through a decrease in 56 
performance in another trait. For example, if we consider a trade-off between disease resistance 57 
and fecundity, the Pareto front represents the most fecund phenotypes for each level of 58 
resistance (Fig 1). Theory predicts that evolution should select for genotypes close to the Pareto 59 
front, with genetic polymorphism oriented along the front [12]. Mapping the curvature of the 60 
Pareto front can be used as a strategy to identify trade-off functions [13–16], thus understanding 61 
how genetic factors shape the Pareto front could be valuable for understanding genetic trade-62 
offs. 63 

 If we assume a set of pleiotropic alleles have independent, additive contributions to a 64 
beneficial and detrimental trait, then low levels of the beneficial trait should be achievable using 65 
only the most cost-effective alleles. However, this might not be possible for higher levels of the 66 
beneficial trait, meaning evolution must have to rely on costlier alleles. This is one mechanism 67 
that could produce accelerating costs, although this prediction relies on strongly simplifying 68 
genetic assumptions, principally the absence of epistatic interactions between loci. If beneficial 69 
epistatic interactions between multiple alleles are only realized once multiple pleiotropic alleles 70 
are fixed, the benefits of subsequent mutations could be magnified, leading to decelerating 71 
costs. 72 

 To test the prediction that strictly additive genetics produces accelerating costs, while 73 
epistasis could produce decelerating costs, we developed an allelic model of the evolution of 74 
quantitative disease resistance. We assumed that disease resistance was determined by a 75 
series of discrete haploid loci, where each locus can have two possible alleles: one with 76 
antagonistic pleiotropic effects on fecundity and host resistance and one with no effects on 77 
either. With this framework, we generated genotype distributions and investigated the degree to 78 
which epistasis can influence the shape of the Pareto front. Next, we incorporated our genotype 79 
distribution model into an evolutionary model of disease resistance, where mutation allows 80 
hosts to move between genotypes. With this model, we asked whether epistatically induced 81 
changes in trade-off functions can result in a shift from a single dominant genotype to the 82 
maintenance of genetic polymorphism, mirroring patterns seen in previous models of 83 
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quantitative disease resistance [3]. Unlike previous models [3,5], our approach requires no initial 84 
assumptions about trade-off functions. 85 

 86 

2. Simulating Pareto Fronts 87 

To simulate Pareto fronts, we developed a model of quantitative pathogen resistance 88 
(henceforth referred to as the discrete random loci model) which assumes that host resistance 89 
is determined by a fixed number, 𝑛𝑛, of haploid loci. Each locus has two possible alleles: a 90 
neutral allele which has no effect on the host phenotype, and an active allele which 91 
pleiotropically increases host resistance (benefits) and reduces host fecundity (costs). Given a 92 
sample of allelic effects, we can then define the set 𝐺𝐺 of all possible genotypes as 𝐺𝐺 = {0,1}𝑛𝑛, 93 
with each genotype 𝒈𝒈𝒊𝒊 ∈ 𝑮𝑮 being a vector of length 𝑛𝑛. For each locus, a 0 represents the neutral 94 
allele while a 1 represents the active allele. This process can be thought of as flipping switches 95 
on a panel with 𝑛𝑛 different switches, where each combination of switch positions produces a 96 
unique genotype. For each locus, we assumed that the active allele has costs and benefits 97 
sampled from a random exponential distribution. We define the resistance effect vector, 𝒓𝒓 by 98 
𝑟𝑟𝑖𝑖~ Exp(𝜆𝜆𝑏𝑏) and the fecundity cost vector 𝒄𝒄 by 𝑐𝑐𝑖𝑖~ Exp(𝜆𝜆𝑐𝑐), where 𝑖𝑖 ≤ 𝑛𝑛, λ𝑐𝑐 represents the cost 99 
variance and λ𝑏𝑏 represents the benefit variance. We initially assumed active alleles at multiple 100 
loci had additive effects for both resistance and fecundity. With this assumption, we define 101 
disease transmission, 𝛽𝛽𝒈𝒈𝒊𝒊 for a given genotype 𝒈𝒈𝒊𝒊 as the normalized sum of all the active alleles 102 
for that genotype (Eqn. 1, subtracted from 1 to convert resistance to transmission). This value is 103 
then multiplied by 𝛽𝛽0, the baseline level of transmission.  104 

𝛽𝛽𝒈𝒈𝒊𝒊 = �1 −
⟨𝒈𝒈𝒊𝒊,𝒓𝒓⟩
∑ 𝑟𝑟𝑖𝑖𝑛𝑛

�𝛽𝛽0 (1) 105 

With this normalization, 𝛽𝛽𝒈𝒈𝒊𝒊 ranges from 0 to 𝛽𝛽0. The total fecundity cost of each genotype, 𝛿𝛿𝒈𝒈𝒊𝒊 106 
are defined similarly, where fecundity is normalized to range from 0.2 (the baseline deathrate, 107 
see Section 3 below) to 1. 108 

Beyond purely additive allele interactions, we also explored how non-additive epistasis 109 
can influence the shape of the Pareto front. Here, a random subset of all active allele pairs is 110 
considered to have an epistatic interaction. For every interacting pair of alleles, epistasis either 111 
increases or decreases the combined effect of both alleles on the host resistance. We 112 
considered two forms of epistasis: first-order, where pairs of alleles have an epistatic interaction 113 
and second-order, where triplets of alleles have an epistatic interaction. There are �𝑛𝑛𝑘𝑘� unique 114 
loci pairs, which could possibly have an epistatic interaction, where 𝑛𝑛 is the number of loci and 115 
𝑘𝑘 = 2 for first-order epistasis or 𝑘𝑘 = 3 for second-order epistasis. We randomly assigned a fixed 116 
proportion of these pairs and triples. We then assigned each pair an epistatic interaction with 117 
probability 𝑝𝑝1 for first-order epistasis and 𝑝𝑝2 for second-order epistasis. Next, we modified the 118 
cumulative effect of each loci pair (𝑖𝑖, 𝑗𝑗) on resistance to 𝜃𝜃1�𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑗𝑗� where 𝜃𝜃1~𝑁𝑁(1,𝜎𝜎12). We 119 
implemented second-order epistasis similarly, by setting the cumulative effect of three given 120 
alleles to 𝜃𝜃2�𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑗𝑗 + 𝑟𝑟𝑘𝑘� where 𝜃𝜃2~𝑁𝑁(1,𝜎𝜎22). For all simulations with epistasis, the normalization 121 
step occurs after the epistatic effects are introduced. 122 
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We ran three series of simulations: one with no epistasis (Fig. 2A), one with only first-123 
order epistasis (Fig. 2B), and one with both first and second order epistasis (Fig. 2C). For all 124 
simulations, we set the number of loci, 𝑛𝑛, to 9. Based on GWAS studies, this is a small but 125 
plausible number of loci [17–19]. Alternative models with either 5 or 13 loci did not have a 126 
qualitatively different effect on the Parent front (Fig. S1). For each epistasis treatment, we ran 127 
100 random instantiations, and computed the Pareto front as the average optimal fecundity for 128 
every level of resistance (see the orange line, Fig 2A-C for an example of a single instantiation, 129 
Fig 2D-E for the average). Regardless of epistasis, the resulting Pareto had clear accelerating 130 
costs (Fig 2). However, with second-order epistasis, the trade-off function had a reduced 131 
curvature relative to other scenarios (Fig. 2C).  132 

 133 

3. Evolutionary Dynamics 134 

To determine whether randomly generated genotype distributions drive similar evolutionary 135 
outcomes to standard models with trade-off functions, we built an evolutionary model on top of 136 
our randomly generated genotypes distributions. Given that we found accelerating costs when 137 
generating Pareto fronts, we predicted that this model would produce a single equilibrium 138 
genotype. Our model uses time-separated mutation and selection steps, similar to adaptive 139 
dynamics [20]. In classic adaptive dynamics models, mutations are introduced into populations 140 
at equilibrium, and this process is iterated until a final evolutionary equilibrium is reached. While 141 
adaptive dynamics models assume that new mutants differ from their parental generation by a 142 
small phenotypic value given by a trade-off function, our implementation assumes that new 143 
mutants differ from their progenitors by a single allele at a given locus. We used the discrete 144 
random loci model as the basis for the phenotype of each genotype, where a single mutation 145 
does not necessarily correspond to a small phenotypic change. Furthermore, instead of 146 
assuming a smooth trade-off function, trade-offs are generated by a random process and are 147 
inherently non-smooth. 148 

For a given instantiation of random of allelic effects, each simulation begins with 100 149 
uninfected hosts from the completely susceptible genotype, (𝒈𝒈𝟎𝟎 = (0, … ,0)) and 10 infected 150 
hosts. We assumed that hosts reproduce asexually. Furthermore, we assume a sterilizing, 151 
density-dependent disease without recovery, such that infection results in a total loss of 152 
fecundity without induced mortality. We then computed numerical solutions, from 𝑡𝑡 = 0 to 𝑡𝑡 =153 
1000, so that the hosts can reach the ecological equilibrium. At this point, we introduced 154 
mutation by taking 5% of all extant hosts and reassigning them to genotypes which differ from 155 
their progenitors by one allele. Analogous to adaptive dynamics, we then ran the simulation to 156 
ecological equilibrium again, and iteratively introduced new mutations. We ran the simulations 157 
for a total of 15 mutational iterations to reach evolutionary equilibrium, using the same genotype 158 
distribution parameters in Fig. 2. Since any two genotypes can differ by at most 𝑛𝑛 loci, 𝑛𝑛 159 
mutational steps are sufficient for all possible genotypes to be reached. Since the shortest path 160 
to a particular genotype might not be evolutionary feasible, we include extra mutational 161 
iterations to allow for evolutionary equilibrium. The equations governing these dynamics are 162 
given below (Eqns. 2-3). 163 

𝑆𝑆𝚤̇𝚤 = 𝑆𝑆𝑖𝑖(𝑏𝑏 − 𝛿𝛿𝑖𝑖 − 𝜇𝜇 − 𝛾𝛾𝛾𝛾 − 𝛽𝛽𝑖𝑖𝐼𝐼) (2) 164 
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𝐼𝐼̇ = 𝐼𝐼 ��𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖
𝑖𝑖

− 𝜇𝜇� (3) 165 

Here, 𝑆𝑆𝑖𝑖 denotes the abundance of uninfected host genotype 𝑖𝑖, and 𝐼𝐼 denotes the number of 166 
infected hosts and 𝑁𝑁 represents the total number of hosts, both susceptible and infected. The 167 
host resistance and costs of resistance are given by 𝛽𝛽𝑖𝑖 and δ𝑖𝑖 respectively. Demographics are 168 
controlled by the birthrate, 𝑏𝑏 the deathrate, 𝜇𝜇, and the coefficient of density-dependent growth, 169 
𝛾𝛾. We considered three cases: no epistasis, first-order epistasis, and first and second-order 170 
epistasis (Fig 3). 171 

 To test whether epistasis affected equilibrium host genetic diversity, we ran 100 172 
simulations for each epistasis treatment. We then calculated the host genetic diversity at 173 
equilibrium using the Shannon index, 𝐻𝐻, where 𝐻𝐻 = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖), with 𝑝𝑝𝑖𝑖 being the proportion of 174 
each genotype. Here, 𝐻𝐻 =  0 indicates a monomorphic population, and 𝐻𝐻 >  0 indicates a 175 
polymorphic population. As most simulations resulted in either one or two host genotypes, we 176 
used a non-parametric Kruskal-Wallis test to test whether the epistasis treatment produced 177 
significant differences in host diversity.  178 

We expected diversity would be lowest in the purely additive model, since the Pareto 179 
front in the model was strongly accelerating, and in classic adaptive dynamics models only 180 
decelerating cost functions lead to stable polymorphisms. However, we found that certain model 181 
instantiations were able to maintain polymorphisms, even for purely additive models (Fig 3A-B). 182 
For simulations without epistasis, 30% had a polymorphism with at least 2 genotypes having 183 
equilibrium abundance greater than 5 (to ensure polymorphisms were not solely maintained by 184 
new mutants), while 37% were polymorphic for first-order epistasis and 43% for second-order 185 
epistasis. Epistasis did not significantly affect the host’s equilibrium genetic diversity (p = 0.54). 186 
We did not observe these polymorphisms when we ran adaptive dynamics simulations with 187 
equivalent parameters (Fig. S2).  188 

 189 

4. Discussion 190 

The discrete random loci model demonstrates how selection acting on a random assortment of 191 
mutations can generate non-linear cost functions. Our approach bridges fitness landscape 192 
models, such as the 𝑁𝑁 − 𝑘𝑘 model [21], and adaptive dynamics models [20] to test how genetic 193 
processes can define trade-off functions and enable polymorphism via ecological feedbacks. 194 
Our first key result is that accelerating cost function can emerge naturally from a process of 195 
random pleiotropic mutations followed by selection. We found that cost curves were most 196 
strongly accelerating when loci were purely additive. Epistasis could only blunt this trend but 197 
could not produce linear or decelerating costs. Our second key result is that allowing for a multi-198 
locus mutational process instead of a fixed trade-off function changes evolutionary predictions, 199 
resulting in more polymorphic outcomes. In single locus adaptive dynamics models, 200 
accelerating cost functions generally lead to stable, monomorphic populations [5]. However, we 201 
found that even though our mutation model generated Pareto fronts with an accelerating cost 202 
curve, the evolution and maintenance of stable polymorphism was common. This result 203 
contradicts the findings of classical adaptive dynamics models [3,5], suggesting that other eco-204 
ecological factors beyond the shape of trade-off functions can drive genetic polymorphisms. 205 
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While some studies have demonstrated accelerating costs in experimental evolution 206 
studies [35–37], quantifying the relationship between traits and their costs is difficult. Costs can 207 
manifest in many different ways, potentially via specific ecological contexts [38], meaning that 208 
recreating the context in which costs manifest can be impractical if not impossible. For disease 209 
resistance, detecting any costs can be difficult, yet alone mapping costs to resistance levels with 210 
sufficient resolution to define a cost curve [39]. Despite this uncertainty, accelerating costs are a 211 
common assumption in adaptive dynamics models [5]. Our results suggest that this is a 212 
reasonable null model for trade-offs between quantitative traits, while decelerating costs might 213 
require more justification. 214 

 Contrary to our initial predictions, our model resulted in accelerating costs even with 215 
second-order epistasis. While decelerating costs might be more likely with third or even fourth 216 
order epistasis, such interactions are plausible but likely less frequent [22]. Decelerating costs 217 
might also emerge from evolvability constraints. In this case, even when the Pareto depicts 218 
accelerating costs, evolution may be unable able to track the front, instead following a path of 219 
decelerating costs. For example, the initial cost of evolutionary innovations may be reduced by 220 
compensatory mutations which can only emerge later [23]. Evolutionary trajectories may also 221 
depend on stepwise mutations at a single locus [24], as well as recombination, which are not 222 
included in our model. These simplifying assumptions in our model make it easier for evolution 223 
to reach all genotypes, potentially removing mechanisms that lead to a broader range of trade-224 
off functions. Decelerating costs could also result from physiological constraints, such as 225 
allometric scaling laws. However, for a trait like quantitative resistance, it is not clear that such 226 
physiological constraints would have a greater role in defining trade-offs than additive genetic 227 
variance. 228 

 Our evolutionary model of disease resistance differs from traditional adaptive dynamics 229 
approaches in several important ways. First, individual mutations do not necessarily result in 230 
small phenotypic changes. First, similar polymorphisms can emerge from models with only two 231 
alleles at a single locus [2]. Antonovics and Thrall found that when one host genotype is highly 232 
resistant, it allows for the coexistence of more susceptible genotypes by reducing the 233 
prevalence of infection. Since our model has the potential for single alleles with large effects, 234 
the same mechanism as in single locus models could produce polymorphisms. Secondly, as the 235 
Pareto fronts generated from my model are non-smooth, small perturbations from a purely 236 
accelerating cost function may result in small regions where costs grow at a decelerating rate 237 
relative to resistance. Such deviations can be seen in Fig. 2, where each curve has areas where 238 
it does not reflect the overall accelerating cost pattern. Since trade-offs in vivo are unlikely to be 239 
perfectly smooth [29], locally decelerating costs could be a plausible mechanism for maintaining 240 
genetic diversity in natural systems. This influence of both the smoothness of the trade-off curve 241 
could be tested by introducing perturbations into trade-off functions in adaptive dynamics 242 
models known to produce a single continuously stable strategy to see if that strategy remains 243 
stable with perturbation. If small regions of decelerating costs are responsible for polymorphism 244 
in our model, then this should be reflected through adaptive dynamics as well. 245 

 With the advent of modern genomics, many assumptions of our model are increasingly 246 
testable [25]. Our assumption that allelic effects are exponentially distributed is supported by 247 
population genetics theory and GWAS studies [26–28]. While quantifying the frequency and 248 
magnitude of epistatic interactions between many loci is difficult, combinatorial approaches to 249 
mapping out fitness landscapes can be illuminating [29–31]. Depending on the trait and model 250 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.29.595890doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.29.595890
http://creativecommons.org/licenses/by-nc-nd/4.0/


system, the frequency of epistasis is highly variable [25,32]. Furthermore, studies in yeasts and 251 
bacteria have found that higher-order epistasis is nearly as prevalent as pairwise epistasis, and 252 
that epistatic interactions occur between roughly 10% of mutation triplets [22,33,34]. While the 253 
prevalence of epistatic interactions is highly species and phenotype dependent, what we do 254 
know suggests that our implementation is a reasonable first approach. 255 

In natural populations, traits like quantitative pathogen resistance often have a high 256 
degree of genetic variability, thus theoretical models must reflect how this variation is 257 
maintained. Our model demonstrates that without very strong epistasis, or a clear physiological 258 
mechanism, accelerating costs might be the most realistic cost function for most evolutionary 259 
trade-offs. However, unlike models with smooth trade-off functions, our model shows that even 260 
these accelerating cost functions can lead to polymorphic outcomes. Stochastic, jagged trade-261 
off functions may therefore be an important driver of genetic variation. 262 
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 387 

Figure 1: Schematic of how Pareto Fronts can define cost functions for (A): linear costs, (B): 388 
decelerating costs and (C): accelerating costs. Each dot represents a host genotype. The lighter 389 
red dots represent possible genotypes that would be removed by selection. The dashed blue 390 
line represents the Pareto front, where the phenotype space beyond is inaccessible to evolution. 391 
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 393 

Figure 2: Distributions of genotype resistances and costs. A-C: Genotype distributions showing 394 
the fecundity and resistance level for all host genotypes for an instantiation with no epistasis (A), 395 
first-order epistasis (B), and first and second order epistasis (C). The clustering observed here 396 
is a byproduct of the additive loci: each additional locus effectively copies and shifts the 397 
distribution without it, leading to the observed patchiness when individual loci have large effects.  398 
For each, the orange line represents the Pareto front. D-F: Simulated Pareto front averaged 399 
over 100 instantiations for no epistasis (D), first-order epistasis (E), and first and second order 400 
epistasis (F). The light blue region represents values within one standard deviation of the 401 
average fecundity for a particular level of resistance. Parameters: λ𝑏𝑏 = 0.1, λ𝑐𝑐 = 0.1,𝑝𝑝1 =402 
0.3,𝑝𝑝2 = 0.3,𝜎𝜎12 = 0.2,𝜎𝜎22 = 0.2. 403 
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 405 

Figure 3: Evolutionary dynamics of disease resistance, using the discrete random loci model A: 406 
Phenotypic changes in resistance over the course of a simulation with no epistasis. B: 407 
Distribution of host genotypes with genotypes that had large populations at some point in 408 
evolutionary time in orange. Blue dots represent genotypes present at the end of the simulation, 409 
while orange dots are genotypes that were present at previous ecological equilibrium but not the 410 
final equilibrium. Panels A and B correspond to the same simulation. C: Equilibrium genetic 411 
diversity across simulations with 100 different allelic instantiations for each epistasis treatment. 412 
There was no significant difference in the Shannon diversity across treatments. Parameters: 413 
𝛽𝛽0 = 0.005,𝜇𝜇 =  0.2,𝛾𝛾 = 0.001, the parameters for the trait distributions are the same as in Fig. 414 
2. 415 
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