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Abstract

Backpropagation (BP), a foundational algorithm for training artificial neural net-
works, predominates in contemporary deep learning. Although highly successful,
it is often considered biologically implausible. A significant limitation arises from
the need for precise symmetry between connections in the backward and forward
pathways to backpropagate gradient signals accurately, which is not observed in
biological brains. Researchers have proposed several algorithms to alleviate this
symmetry constraint, such as feedback alignment and direct feedback alignment.
However, their divergence from backpropagation dynamics presents challenges,
particularly in deeper networks and convolutional layers. Here we introduce the
Product Feedback Alignment (PFA) algorithm. Our findings demonstrate that PFA
closely approximates BP and achieves comparable performance in deep convo-
lutional networks while avoiding explicit weight symmetry. Our results offer a
novel solution to the longstanding weight symmetry problem, leading to more
biologically plausible learning in deep convolutional networks compared to earlier
methods.

1 Introduction

Both artificial and biological neural networks must orchestrate complex synaptic weight updates in
order to improve task performance. The correct organization of these weight updates becomes even
more challenging in deeper multilayer neural networks, often referred to as the credit assignment
problem. Over the past decades, the error backpropagation (BP) algorithm has revolutionized
contemporary deep learning [1], serving as a fundamental algorithm for training artificial neural
networks.

Despite its success, BP is frequently considered biologically implausible. Although recent proposals
have (partially) addressed many biological implausibilities, such as nonlocal plasticity, multiple
separate learning phases, and non-biological error representations [2, 3, 4, 5], a significant limitation
known as the weight symmetry (or weight transport) problem persists [1, 6, 7, 8]. In BP, following the
chain rule, the feedback weights WT in the backward pass are precisely symmetric to the feedforward
weights W in the forward pass in order to accurately transmit error signals that match the gradients
of the cost function. To implement BP in the brain, the error signals should be locally available
for the feedforward weights, which implies that if wa→b is the feedforward weight from neuron a
to neuron b, there should exist a symmetric feedback weight from neuron b to neuron a (such that
wb→a = wa→b). Why is this symmetric weight pattern not observed in the biological brain? Indeed,
in local cortical circuits, two connected neurons a and b are either unidirectionally linked, with a
probability of 69% (a → b or b → a), or bidirectional connected, with a probability of 31% (a → b
and b → a) [9]. Even for bidirectionally connected neurons, wa→b and wb→a are only modestly
correlated (R ≈ 0.36) [9]. These observations are in striking contrast to the perfect correlation
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(R = 1) for symmetric weight connectivity assumed by BP. This discrepancy thus calls for alternative
explanations involving algorithms that biological mechanisms can implement.

In an effort to eliminate the symmetry assumption, it was demonstrated that random fixed feedback
weights B can transmit useful error signals to upstream layers, leading to a learning process whereby
the feedforward weights W approximately align with the feedback weights, i.e., W ∝ BT (feedback
alignment, FA) [10]. However, FA struggles to match BP’s performance in more advanced network
architectures and in more challenging tasks, including deeper networks, convolutional layers, and
large-scale image datasets (e.g., CIFAR10, ImageNet) [11]. A variant of FA, direct feedback
alignment (DFA) [12], transmits error signals directly from the output layer to each upstream (hidden)
layer, but also suffers from severe performance loss compared to BP [11]. Another FA variant
was proposed by meta-learning the plasticity rule of feedforward weights to improve FA for online
learning and low-data regimes [13], but it still significantly underperforms relative to BP.

Other proposals have explored various methods for updating feedback weights. In sign-concordant
feedback (SF) algorithms, the sign of feedforward weights is transported (i.e., copied) to the feedback
weights, both at initialization and during training [14]. This approach has shown considerable
improvement over FA, approaching BP’s performance in simple tasks (though still with a significant
performance gap in more complex tasks like ImageNet) [15, 16, 17]. Nonetheless, it remains unclear
whether a biologically plausible plasticity rule can effectively transport the sign of the synaptic weight
from the forward path to the corresponding synaptic weight in the backward path. In the weight
mirror (WM) algorithm [18], the feedback weights are updated to track the feedforward weights, by
injecting random noise into neurons during multiple learning phases (one phase for each layer). WM
can reach a performance similar to BP; however, the biological feasibility of layer-specific learning
phases and “bias blocking” (setting bias to zero) during the mirror mode remains to be established.
The phaseless alignment learning (PAL) algorithm eliminates the need for the additional mirror mode,
but again deviates from BP’s dynamics, showing a significant performance gap compared to BP [19].
The Kollen-Pollack (KP) algorithm [18], which uses a feedback weight update symmetric to the
feedforward weight update and includes weight decay, has been shown to closely approximate BP,
achieving similar performance. However, even starting from asymmetric initializations, both WM
and KP ultimately lead to a scenario in which feedforward and feedback weights are symmetric, a
connectivity pattern not observed in the brain. In short, KP and WM can achieve a BP-level task
performance, but converge to a configuration with almost exact weight symmetry. FA, SF, and PAL
alleviate the weight symmetry issue (although their weight configurations are still more aligned
than and arguably incompatible with the biological observations), but significantly sacrifice task
performance. None of these algorithms manages to achieve a BP-level performance while completely
avoiding explicit weight symmetry.

In this study, we propose the Product Feedback Alignment (PFA) algorithm, which closely ap-
proximates BP. It completely avoids explicit weight symmetry by relying on alignment between
forward and indirect backward pathways, using an additional population of neurons. Specifically,
the feedforward weights W align with the product of a pair of feedback weights R and B (such that
W ∝ (RB)T ). We show that PFA can achieve BP-level performance in deeper networks, convo-
lutional layers, and more challenging datasets such as CIFAR10 and ImageNet. Further, PFA can
outperform other algorithms with sparse feedback connections, an important biological constraint of
the brain. Our results offer a novel solution to the longstanding weight symmetry problem, providing
supportive evidence for the feasibility of implementing BP-like algorithms in the brain.

2 Product feedback alignment

Consider a fully-connected multilayer neural network with depth L, mapping the input x0 to the
output xL. In the forward pass, the activation of layer l+ 1 (with Nl+1 neurons), denoted as xl+1, is
determined by

xl+1 = σ(Wl+1,lxl + bl+1) , (1)

where σ is the activation function, Wl+1,l is the Nl+1 ×Nl feedforward weight, and bl+1 is the bias.
For a training dataset consisting of data points (x0,y), the set of parameters Wl+1,l and bl are trained
to minimize the loss function L that measures the difference between layer L’s output xL and the
target output y (e.g., the cross-entropy).
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BP FA DFA SF KP WM PAL PFA
No need to transport weight sign ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

No need to transport weight magnitude ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
No separate feedback weight learning phase ✓ ✓ ✓ ✛ ✓ ✗ ✓ ✓
No explicit weight symmetry after training ✗ ✽ ✽ ✽ ✗ ✗ ✽ ✓

Accurate approximation to BP (path alignment) ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓
BP-level task performance ✓ ✗ ✗ ✦ ✓ ✓ ✦ ✓

Table 1: Detailed comparison of algorithms. BP: backpropagation. FA: feedback alignment. DFA:
direct feedback alignment. SF: sign-concordant feedback. KP: Kollen-Pollack algorithm. WM:
weight mirror. PAL: phaseless alignment learning. PFA: product feedback alignment. ✛: It is unclear
how the feedback weights in SF can be learned in a biologically plausible way. ✽: these algorithms
reduce, but do not fully eliminate explicit weight symmetry. ✦: These algorithms significantly
outperform FA and DFA, but still underperform compared to BP in more challenging tasks (CIFAR10
for PAL and ImageNet for SF).

The loss at the output layer directly provides the teaching signal (error) eL that is locally available
at xL, defined as the gradient eL = −∂L/∂xL. In the backward pass of BP (Fig. 1), the error (i.e.,
gradient) at layer xl is iteratively backpropagated as

eBP
l = σ′(xl)⊙WT

l+1,le
BP
l+1 , (2)

where ⊙ is the Hadamard product. Subsequently, the feedforward weight Wl+1,l is updated by

∆Wl+1,l = ηeBP
l+1x

T
l , (3)

where η is the learning rate. If we assume that eil+1 (i-th component of el+1) is locally available at
the neuron with activation xi

l+1, then the update of W i,j
l+1,l (forward synaptic weight between xi

l+1

and xj
l ) relies only on locally available information (the product of eil+1 and xj

l ), which is biologically
plausible. The aspect that lacks biological plausibility is the backpropagation of errors via WT

l+1,l,
since the same synaptic weight W i,j

l+1,l is used twice in both the forward and backward passes.

Because chemical synapses in the brain transmit information (carried by presynaptic spikes) only in
one direction (from axon to dendrite), one must introduce an additional set of feedback weights Bl,l+1

to backpropagate the error signals from the output layer to upstream layers. FA employs fixed random
feedback weights BFA

l,l+1 (Nl×Nl+1) that are independent of the feedforward weights, alleviating the
weight symmetry problem. Then the error at the layer xl is computed as eFAl = σ′(xl)⊙BFA

l,l+1e
FA
l+1.

DFA similarly calculates the error at the layer xl using eDFA
l = σ′(xl)⊙BDFA

l,L eL via a fixed random
feedback weight BDFA

l,L (Nl ×NL). As shown in previous works, the feedforward weights Wl+1,l in
FA learn to gradually align with feedback weights BT

l,l+1, leading to an approximate weight symmetry
(to an extent that may still contradict biological observations). However, both FA and DFA failed
to reach good performance for deeper networks, convolutional layers, and more challenging tasks.
SF transports the sign of feedforward weights into backward weights, i.e., BSF

l,l+1 = Sign(WT
l+1,l),

and the error el is computed as eSFl = σ′(xl)⊙ BSF
l,l+1e

SF
l+1. SF significantly outperforms FA and

DFA, but still underperforms compared to BP in deep convolutional layers for challenging tasks (e.g.,
ImageNet), and again exhibits approximate weight symmetry [17].

In PFA (Fig. 1), we introduce an intermediate population ēl (with N̄l neurons) for each layer l,
denoted as

ēl = BPFA
l,l+1e

PFA
l+1 , (4)

using a fixed random feedback weights BPFA
l,l+1 (N̄l ×Nl+1). Subsequently, the PFA error for layer l

(with activations xl) is calculated as

ePFA
l = σ′(xl)⊙Rl,lēl , (5)

where Rl,l represents a plastic feedback weight matrix (Nl × N̄l). In addition to the feedforward
weights Wl+1,l updated by ∆Wl+1,l = ηel+1x

T
l , we also update Rl,l as

∆Rl,l = ηxlē
T
l . (6)
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Note that the update of the synaptic weight Rj,i
l,l only relies on locally available information xj

l and ēil .
The backward path between layers l+ 1 and l consists of a pair of feedback weights Bl,l+1 (omitting
superscripts from here on for simplicity) and Rl,l. Weight decay is applied for both Wl+1,l and Rl,l,
such that the influence of initializations gradually diminishes. We will provide an explanation for the
PFA’s implicit alignment mechanism in Section 4. We note that when the weight decay and learning
rate for Rl,l are set to zero, PFA effectively implements FA. When Bl,l+1 is set to an identity matrix
(with N̄l = Nl+1), PFA reduces to the standard KP algorithm.
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Figure 1: Comparison of learning algorithms for multilayer networks transmitting errors in the
backward pass. BP: backpropagation. FA: feedback alignment. DFA: direct feedback alignment.
SF: sign-concordant feedback. KP: Kollen-Pollack algorithm. WM: weight mirror. PAL: phaseless
alignment learning. PFA: product feedback alignment.

3 PFA approximates BP in MNIST handwritten digit classification

We used the above learning algorithms to train a two-hidden-layer feedforward network (with layer
sizes 784-512-512-10) with ReLU activation on the MNIST dataset (using the BioTorch framework
1 [17]). The expansion ratio (1/λ = N̄l/Nl+1) in PFA is set to 10. See Appendix A for training
details. We found that PFA, PFA-o (a variant of the algorithm in which Bl,l+1 is chosen to be a
semi-orthogonal matrix), and SF reach a test performance similar to BP, slightly outperforming FA
and DFA (Fig. 2a).

We recorded several metrics throughout the training process. The first metric, backward-forward
weight alignment [17], quantifies the angle between the feedforward weights and the corresponding
feedback weights for FA, derived from the normalized inner products (Vec(WT

l+1,l),Vec(Bl,l+1)).
We similarly define the backward-forward path alignment (Vec(WT

l+1,l),Vec(Rl,lBl,l+1)) for PFA.
Our PFA achieved an angle around 18◦ (Fig. 2b) for all layers in the network after the initial epochs
(because we set a large initial weight decay for R and W ). Due to the orthogonal initialization
for B (Fig. 2c), PFA-o gradually achieved an angle close to 0◦. These are substantially lower than
the weight alignment angles for FA (between 60◦ and 90◦; Fig. 2d) and SF (around 30◦; Fig. 2e),
indicating a superior alignment in PFA (but crucially without weight symmetry).

The second metric, backward-forward weight norm ratio, is designed to capture the risk
of experiencing gradient exploding/vanishing problems observed in FA [16, 17], and is de-
fined as ||Bl,l+1||2/||WT

l+1,l||2. We similarly defined the backward-forward path norm ratio
||Rl,lBl,l+1||2/||WT

l+1,l||2 for PFA. Our PFA and PFA-o attained a weight ratio near 1 for all layers
in the network – the ideal ratio akin to BP – after the initial epochs, suggesting better stability in error
propagation over FA (between 0.3 and 1.1) and SF (between 0.5 and 1.2) (Fig. 2b-e). Collectively,
these findings imply that PFA achieves a close approximation to BP.

1https://github.com/jsalbert/biotorch (Apache-2.0 license)
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Figure 2: Characterization of learning algorithms for two-hidden-layer feedforward networks
trained to classify MNIST digit images. (a) Task performance. Shaded regions show standard
deviations across 5 seeds. PFA and PFA-o curves are almost overlapping with the BP curve, suggesting
a close approximation. (b-e) Backward-forward weight alignment for FA/SF, and path alignment
for PFA/PFA-o (top). Backward-forward weight norm ratio for FA/SF, and path norm ratio for
PFA/PFA-o (bottom).

4 Alignment mechanism between forward and backward paths in PFA

We now elucidate the alignment mechanism between the forward and backward pathways. During
training, the feedforward weights Wl+1,l align with the feedback weight matrix product (Rl,lBl,l+1)

T

when the following two requirements are satisfied.

(1) BT
l,l+1Bl,l+1 approximates an identity matrix. Then the weight updates for Wl+1,l and

(Rl,lBl,l+1)
T are aligned:

∆(Rl,lBl,l+1)
T = BT

l,l+1∆RT
l,l = ηBT

l,l+1ēlx
T
l = η(BT

l,l+1Bl,l+1)el+1x
T
l

≈ ηel+1x
T
l = ∆Wl+1,l .

(7)

(2) The influence of the initial values of Wl+1,l and Rl,l, which causes misalignment between Wl+1,l

and (Rl,lBl,l+1)
T , further diminishes over successive learning epochs (due to weight decay).

Different approaches can ensure that BT
l,l+1Bl,l+1 approximates an identity matrix. One approach is

to initialize Bl,l+1 as a semi-orthogonal (N̄l ×Nl+1) matrix (with N̄l ≥ Nl+1), as used in PFA-o.

Alternatively, elements in Bl,l+1 can be sampled independently from a distribution with a mean of 0
and a variance of 1/N̄l, as used in PFA. This initialization for PFA is easier to implement in the brain
than PFA-o, as it is not obvious what biological plasticity rule can learn a precisely semi-orthogonal
matrix. Following the Marchenko–Pastur law [20] and assuming the limit Nl+1 → ∞ and N̄l → ∞
with the ratio Nl+1/N̄l = λ < 1, the eigenvalue density µ(v) of BT

l,l+1Bl,l+1 satisfies

µ(v) =
1

2π

√
(λ+ − v)(v − λ−)

λv
1v∈[λ−,λ+] (8)
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with λ± = (1 ±
√
λ)2. In the limit λ → 0, BT

l,l+1Bl,l+1 converges to the identity matrix with
probability 1. See Fig. 3a for a numerical verification.

In short, although Wl+1,l does not align with Rl,l or Bl,l+1 individually, we still have WT
l+1,l ≈

Rl,lBl,l+1 (see Fig. 3b) and thus WT
l+1,lel+1 ≈ Rl,lBl,l+1el+1, signifying a good approximation

to BP (in the limit of N̄i → ∞ for PFA). Like FA and DFA, PFA obviates the need to transport
the feedforward weight (or its sign, as in SF) at initialization or during training, but significantly
outperforms FA and DFA. Like KP, PFA employs aligned weight updates for both forward and
backward pathways. However, unlike KP and WM, PFA does not lead to explicit weight symmetry,
i.e., forward and backward synapses between any pair of neurons do not share identical weights
for PFA (in fact we can avoid bidirectionally connected pairs of neurons altogether). For a detailed
comparison of algorithms, see Table 1.
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Figure 3: (a) Eigenvalues of BTB as a function of the expansion ratio (1/λ). The shaded region
shows the standard deviation of the eigenvalues. (b) Backward-forward path alignment between
W and (RB)T as a function of the expansion ratio (1/λ), where we randomly sampled W and set
RT = BW (expected to hold after the effect of the weight initialization has fully decayed). This
simplification is consistent with the path alignment after training observed in simulations.

5 PFA for convolutional layers

Similar to FA and DFA for deep convolutional networks [16], PFA extends seamlessly to convolutional
layers. Consider a forward convolutional kernel Wl+1,l ∈ Rh×w×Nl+1×Nl , where h is the kernel
height, w is the kernel width, and Nl is the number of channels in the l-th layer. The feature-map
activation xi

l+1 for the i-th channel at layer l + 1 is calculated as

xi
l+1 = σ(

Nl∑
j=1

W i,j
l+1,l ∗ x

j
l + bil+1) , (9)

where W i,j
l+1,l is the h × w kernel and ∗ denotes convolution. The BP error (i.e., gradient) in the

backward pass for j-th channel at the l-th layer is iteratively calculated as

eBP,j
l = σ′(xl)⊙

Nl+1∑
i=1

W̃ i,j
l+1,l ∗ e

BP,i
l+1 , (10)

where ⊙ is the Hadamard product, and W̃ is the a rotation of W by 180◦ (flipped kernel) [21].
The FA error for j-th channel at layer l is calculated as eFA,j

l = σ′(xl) ⊙
∑Nl+1

i=1 BFA,j,i
l,l+1 ∗ eFA,i

l+1 ,
where BFA

l,l+1 ∈ Rh×w×Nl×Nl+1 is the backward kernel. For PFA, the intermediate error for the k-th
intermediate channel at the l-th layer is

ēkl =

Nl+1∑
i=1

Bk,i
l,l+1 ∗ e

PFA,i
l+1 , (11)
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where Bl,l+1 ∈ R1×1×N̄l×Nl . The PFA error for the j-th channel at layer l is calculated as

ePFA,j
l = σ′(xl)⊙

N̄l∑
k=1

R̃j,k
l,l ∗ ēkl , (12)

where Rl,l ∈ Rh×w×Nl×N̄l . The pair of tensors Bl,l+1 and Rl,l accommodate different convolutional
hyperparameters for Wl+1,l (e.g., stride, padding, dilation, groups). The weight updates are calculated
similarly as ∆W i,j

l+1,l = ηeil+1 ∗ x
j
l (in BP and PFA) and ∆Rj,k

l,l = ηxj
l ∗ ēkl (in PFA).

6 PFA closely approximates BP in deep convolutional networks

We trained ResNet-20 on the CIFAR-10 dataset for these learning algorithms [22, 17]. See Appendix
A for training details. Our results (Fig. 4a) show that networks trained with PFA and PFA-o attain a
test accuracy comparable to that of BP and SF, significantly surpassing that of FA and DFA. PFA and
PFA-o again achieve a close approximation to BP (Fig. 4b-e), indicated by the small angle of path
alignment and the close-to-one backward-forward path norm ratio.

We additionally trained ResNet-18 on ImageNet for these algorithms (except FA and DFA, which
were previously shown to perform poorly [18, 17]). See Appendix A for training details. Our results
(Fig. 5a) again show that networks trained with PFA (68.46%) and PFA-o (69.30%) achieve a test
accuracy comparable to that of BP (69.69%), in a situation where even SF (64.63%) significantly
underperforms. PFA and PFA-o again achieve a close approximation to BP (Fig. 5b-d), as shown by
their path alignment and path norm ratio.
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Figure 4: Characterization of learning algorithms for ResNet-20 on CIFAR-10. (a) Task perfor-
mance. Shaded regions show standard deviations across 5 seeds. PFA and PFA-o curves are almost
overlapping with the BP curve, suggesting a close approximation. (b-e) Backward-forward weight
alignment for FA/SF, and path alignment for PFA/PFA-o (top). Backward-forward weight norm ratio
for FA/SF, and path norm ratio for PFA/PFA-o (bottom).
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Figure 5: Characterization of learning algorithms for ResNet-18 on ImageNet. (a) Task per-
formance. PFA and PFA-o curves are almost overlapping with the BP curve, suggesting a close
approximation. (b-d) Backward-forward weight alignment for SF, and path alignment for PFA/PFA-o
(top). Backward-forward weight norm ratio for SF, and path norm ratio for PFA/PFA-o (bottom).

7 PFA for sparsely connected populations

In the biological brain, connections between neurons are sparse: in local cortical circuits, a large
proportion of pairs of neurons are not connected [9], and the connection density decreases quickly
over distance (between two neurons) [23]. The sparse connectivity is even more prominent in long-
range projections. Therefore, biologically plausible rules should be able to overcome challenges
caused by sparsity (or even take advantage of it). We thus examined the effects of different sparsity
levels in the backward path on task performance, by fixing a proportion of feedback weights to zero
during training (i.e., B in FA, DFA, SF, PFA, and also R in PFA). We found that the performance of
FA, DFA, and SF gradually degrades with sparser connectivity (Fig. 6). In contrast, the performance
of PFA degrades more slowly, suggesting a potential advantage of our PFA algorithm.

Discussion

In conclusion, our PFA algorithm can approximate BP by fostering implicit alignment between
forward and backward pathways, rather than relying on explicit weight symmetry. This algorithm
provides a potential explanation for why we do not observe symmetric weights in the brain even
though it presumably implements credit assignment across multilayer network architectures, serving
as a demonstration of feasibility. We showed that PFA achieves a performance comparable to BP
in both fully-connected feedforward networks and deeper convolutional networks, even on rather
challenging datasets/tasks. In addition, our PFA outperforms other biology-inspired algorithms in a
sparse-connectivity scenario.
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Figure 6: Effects of sparse connections in the feedback pathway, showing task performance on
MNIST. A proportion of the feedback weights in FA, DFA, SF, and PFA (but not in BP) are fixed to
zero during training. Shaded regions show standard deviations across 5 seeds.

Our PFA algorithm utilizes an additional neuronal population to transmit errors ēl to the population
with activation xl within the same layer. This is broadly consistent with the brain’s diverse neuronal
population structure, with predominantly local connections. We have demonstrated that introducing
this population allows us to fully remove all bidirectional connections between neurons, leading
to a weight alignment angle of 90◦ (i.e., zero weight correlation). To accurately match the weight
correlation patterns in the brain, the observed values of weight alignment/correlation (an alignment
angle of 78◦ and a correlation of R ≈ 0.2, estimated in Appendix B) can be directly achieved by
combining different groups of synapses separately learned by PFA (no correlation), FA (partial
correlation), and KP (full correlation). Further, additional populations like the one introduced here
provide extra flexibility and offer the possibility to deal with other biological constraints (such as
sparse connections), a direction yet to be fully explored.

In our simulations, we fixed the feedback weights B, and since in PFA (but not PFA-o) each synaptic
weight in B was independently sampled, a fairly large expansion ratio was necessary to ensure a
close approximation to BP. Exploring biologically plausible plasticity rules for B that could reduce
the expansion ratio requirement, potentially leading to a BTB closer to the identity matrix, is one
of our future research directions. We only considered an expansion ratio larger than one (λ < 1) in
this study because an expansion ratio smaller than one will reduce the rank of the transmitted errors,
similar to the scenario of low-rank gradient approximation [24]. Further investigation is required to
understand the effects of low-rank weight updates.

The plasticity rules for updating the feedforward weights W , which are based on presynaptic
activations and postsynaptic errors, are only biologically plausible when the error signal eil is locally
available at the corresponding neuron with activation xi

l . Several proposals have been put forward
regarding how a single neuron can represent and transmit both forward activations and backward
errors without interference. The dendritic cortical microcircuit framework posits that the errors are
represented in the apical dendrites while the forward activations are represented in the basal dendrites
[3]. An additional self-prediction pathway is introduced to facilitate error transmission. Another
study, based on burst-dependent plasticity, proposes that the forward activations are represented by
the event firing rates, while errors are encoded by burst probabilities [4], enabling the multiplexing of
signals within the same neuron. Our PFA algorithm can be directly integrated with these proposals,
providing solutions to the explicit weight symmetry problem in these frameworks.

Our study is subject to several limitations. First, while we solved the weight symmetry problem in
feedforward networks, the convolutional kernels re-introduce weight sharing across spatial locations,
potentially conflicting with biological observations again. Second, introducing the additional neuronal
population increases the training time and memory cost compared to BP. Third, we only studied
the effects of sparse feedback connections in MNIST, while more tasks/datasets are required to
systematically examine them. Addressing these limitations is one of our future directions.
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A Training details

The expansion ratio (1/λ = N̄l/Nl+1) in PFA is set to 10. All weights in the networks are initialized
with the Glorot initialization with unit gain factor [25], except for the B weights in PFA, which
are determined using the Glorot initialization with gain factor

√
(1 + λ)/2, ensuring that BTB

approximates an identity matrix (or B is directly set equal to a semi-orthogonal matrix for the “PFA-o”
variant). For optimization, we employed stochastic gradient descent with a momentum of 0.9.

A.1 MNIST

The learning rate is 10−2 for BP, SF, PFA, FA and DFA, multiplied by a factor of 0.5 at the 20th
and 30th epoch. The weight decay coefficient is 10−4 for W in BP, FA, DFA and SF. It is initially
0.03 for W and R in PFA, but reduced to 10−4 after the first epoch. The networks are trained for 40
epochs with a batch size of 64 and 5 seeds. Training each network takes ∼ 10 minutes on a GeForce
RTX 3090.

A.2 CIFAR10

The learning rate is 0.1 for BP, FA, SF and PFA, and 10−3 for DFA, multiplied by a factor of 0.1 at
the 100th, 150th and 200th epochs. The weight decay is 10−4 for W in BP, FA, DFA and SF, and
0.005 for W and R in PFA (reduced to 10−4 after the first epoch). We trained the networks for 200
epochs with a batch size of 128 and 5 seeds. Training each network takes ∼ 2 hours on a GeForce
RTX 3090.

A.3 ImageNet

The learning rate is 0.1 for BP, SF and PFA, multiplied by a factor of 0.1 at the 20th, 40th and 60th
epochs. The weight decay is 10−4 for W in BP and SF, and 0.0005 for W and R in PFA (reduced to
10−4 after the first epoch). We trained the networks for 75 epochs with a batch size of 256. Training
each network takes ∼ 1 week on a GeForce RTX 3090.

B Weight correlation/alignment in the brain

We ran simulations based on experimental observations [9]. We first sampled feedforward weights
from a normal distribution. For 69% of feedforward weights (unidirectionally connected neurons),
we set the corresponding feedback weights to 0. For the remaining 31% (bidirectionally connected
neurons), we randomly sampled feedback weights that correlate with feedforward weights (correlation
coefficient R = 0.36). The weight correlation for all pairs of connected neurons is then R ≈ 0.2,
corresponding to a backward-forward weight alignment angle of 78◦. This result is an approximate
estimate and might change under different assumptions.
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