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To quantify how well theoretical predictions of structural ensembles agree with experimental measurements, we depend
on the accuracy of forward models. These models are computational frameworks that generate observable quantities from
molecular configurations based on empirical relationships linking specific molecular properties to experimental measure-
ments. Bayesian Inference of Conformational Populations (BICePs) is a reweighting algorithm that reconciles simulated
ensembles with ensemble-averaged experimental observations, even when such observations are sparse and/or noisy. This is
achieved by sampling the posterior distribution of conformational populations under experimental restraints as well as sam-
pling the posterior distribution of uncertainties due to random and systematic error. In this study, we enhance the algorithm
for the refinement of empirical forward model (FM) parameters. We introduce and evaluate two novel methods for optimiz-
ing FM parameters. The first method treats FM parameters as nuisance parameters, integrating over them in the full posterior
distribution. The second method employs variational minimization of a quantity called the BICePs score that reports the
free energy of “turning on” the experimental restraints. This technique, coupled with improved likelihood functions for
handling experimental outliers, facilitates force field validation and optimization, as illustrated in recent studies (Raddi et al.
2023, 2024). Using this approach, we refine parameters that modulate the Karplus relation, crucial for accurate predictions
of J-coupling constants based on dihedral angles (φ ) between interacting nuclei. We validate this approach first with a toy
model system, and then for human ubiquitin, predicting six sets of Karplus parameters for 3JHN Hα , 3JHαC′ , 3JHNCβ , 3JHNC′ ,
3JC′Cβ , 3JC′C′ . This approach, which does not rely on any predetermined parameterization, enhances predictive accuracy and
can be used for many applications.

I. INTRODUCTION

In the field of molecular modeling and dynamics, the accu-
racy of theoretical predictions that reflect real-world observa-
tions is crucial. Quantifying the agreement between theory and
experiment is highly dependent on the accuracy of forward mod-
els—computational frameworks that predict observable quanti-
ties from molecular configurations. These models often depend
on empirical relationships that link specific molecular properties
to experimental measurements.

Model validation and refinement of structural ensembles
against NMR observables critically depends on reliable forward
models (FMs) that have been robustly parameterized, so that FM
error is minimal in the validation/refinement process. An impor-
tant challenge in the parameterization of FMs is presented by
random and systematic errors inherent to the experimental data.
These errors need to be considered in the comparison and inte-
gration of experimental data with computational models for ob-
jective model selection and accurate uncertainty representation.

A further challenge is presented by missing or insufficient ex-
amples of known structures than can be used to train forward
models. For NMR observables that depend on backbone φ -
angles, such as J-coupling constants, the reference data from
X-ray crystallography may be missing or dynamically averaged,
creating large uncertainties in the correct φ -angles. Numerous
approaches1–4 have been developed to address some of these
challenges. Some algorithms rely heavily on X-ray crystal struc-
ture data; others have many hyperparameters that need to be de-
termined.

To address these challenges, we extend the Bayesian In-
ference of Conformational Populations (BICePs) algorithm5,6

to refine FM parameters. BICePs, a reweighting algorithm,

refines structural ensembles against sparse and/or noisy ex-
perimental observables, and has been used in many previous
applications.7–10 BICePs infers all possible sources of error by
sampling the posterior distribution of these parameters directly
from the data through MCMC sampling BICePs also computes
a free energy-like quantity called the BICePs score that can be
used for model selection and model parameterization.6,11,12

Recently, BICePs was enhanced with a replica-averaging for-
ward model, making it a maximum-entropy (MaxEnt) reweight-
ing method, and unique in that no adjustable regularization pa-
rameters are required to balance experimental information with
the prior.6 With this new approach, the BICePs score becomes
a powerful objective function to parameterize optimal models.
Here, we show that the BICePs score, which reflects the total
evidence for a model, can be used for variational optimization
of FM parameters. The BICePs score contains a form of in-
herent regularization, and has specialized likelihood functions
that allow for the automatic detection and down-weighting of
the importance of experimental observables subject to system-
atic error.6

To effectively refine FM parameters, we sample over the full
posterior distribution of FM parameters. Through this approach,
BICePs performs ensemble reweighting and FM parameter re-
finement simultaneously. Additionally, we show that by varia-
tional minimization of the BICePs score, we obtain the same re-
sult and show that the two approaches are equivalent, with each
method requiring particular considerations. We first demonstrate
our method’s effectiveness on a toy model system, and then
optimize six distinct sets of Karplus parameters for the human
protein ubiquitin, and compare our findings with previously es-
tablished results. Through this, we aim to showcase a system-
atic and robust approach to enhancing the accuracy of theoreti-
cal predictions, thereby bridging the gap between computational
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models and experimental observations.

II. THEORY

Posterior sampling of forward model parameters gives reli-
able parameter uncertainties. BICePs uses a Bayesian statis-
tical framework, inspired by Inferential Structure Determination
(ISD)13, to model the posterior distribution p(X ,σ), for confor-
mational states X , and nuisance parameters σ , which character-
ize the extent of uncertainty in the experimental observables D:

p(X ,σ |D) ∝ p(D|X ,σ)p(X)p(σ). (1)

Here, p(D|X ,σ) is a likelihood function that uses a forward
model to enforce the experimental restraints, p(X) is a prior dis-
tribution of conformational populations from some theoretical
model, and p(σ)∼ σ−1 is a non-informative Jeffrey’s prior.

We now consider a specific forward model g(X ,θ) with a set
of FM parameters θ that we wish to additionally include in the
posterior,

p(X ,σ ,θ |D) ∝ p(D|X ,σ ,θ)p(X)p(σ)p(θ) (2)

Replica-averaging. When BICePs is equipped with a
replica-averaged forward model, it becomes a MaxEnt reweight-
ing method in the limit of large numbers of replicas14–19.
Consider a set of N replicas, X = {Xr}, where Xr is the
conformational state being sampled by replica r. To com-
pare the sampled replicas with ensemble-averaged experimen-
tal observables, we define a replica-averaged forward model
g(X,θ) = 1

N ∑
N
r g(Xr,θ). This quantity is an estimator of the

true ensemble-average, with an error due to finite sampling
for observable j estimated using standard error of the mean

(SEM):14,19 σSEM
j =

√
1
N ∑

N
r (g j(Xr,θ)−⟨g j(X,θ)⟩)2. Thus,

σSEM
j decreases as the square root of the number of replicas.
In the scenario that observables can be collected into different

types, e.g., a particular type of vicinal J-coupling, then each col-
lection can be described with its own set of parameters and error
distribution. For K distinct sets of FM parameters θ = {θk}, the
joint posterior distribution for all parameters is

p(X ,σ ,θ |D) ∝

N

∏
r=1

p(Xr)
K

∏
k=1

p(Dk|g(X,θk),σk)p(σk)p(θk)

(3)
where X is a set of N conformation replicas, and θk is the kth

set of FM parameters. The kth set has an uncertainty parameter

σk =
√

(σSEM
k )2 +(σB

k )
2, that describes the total error, arising

from both finite sampling (σSEM
k )2, and uncertainty in the exper-

imental measurements, known as a Bayesian uncertainty param-
eter σB

k . The prior distribution of uncertainties p(σk) is treated
as a non-informative Jeffrey’s prior (σ−1

k ) for each collection
of observables, and the posterior of FM parameters p(θ |D) is
recovered by marginalization over all X and σ :

p(θ |D) = ∑
X

∫
p(X ,σ ,θ |D)dσ (4)

Gradients speed up convergence. In our methodology,
Markov chain Monte Carlo (MCMC) is used to sample the pos-
terior with acceptances following the Metropolis-Hastings (M-
H) criterion. Our algorithm can be used with or without gra-
dients. However, significantly faster convergence, especially
in higher dimensions, is achieved through an integration of
stochastic gradient descent approach. Our gradient descent ap-
proach allows for informed updates to the FM parameters, in-
corporating stochastic noise to facilitate the escape from local
minima and enhance exploration of the parameter space.

The update mechanism is succinctly encapsulated in the equa-
tion:

θtrial = θold − lrate ·∇u+η ·N (0,1) (5)

where θtrial and θold denote the trial parameters and previous pa-
rameters, respectively. The learning rate is denoted by lrate, ∇u
signifies the computed gradient of BICePs energy function with
respect to the parameters θ , and η scales the noise drawn from
a standard normal distribution N (0,1).

This strategic parameter update protocol is designed to satisfy
the M-H criterion, ensuring that each step in the parameter space
not only moves towards minimizing the energy of the forward
model but also adheres to the probabilistic acceptance of poten-
tially non-optimal moves to avoid local optima traps. Ergodic
sampling is ensured by "turning off" the gradient after burn-in.
The sampling procedure involves: (1) acquiring derivatives of
the FM parameters, (2) perturbing these parameters based on
the derived information, (3) predict observables using perturbed
FM parameters and compute the total energy, and (4) assess-
ing the new energy against the previous to determine acceptance
based on the M-H criterion. This ensures a thorough and effec-
tive search of the parameter space, leveraging both the landscape
topology and stochastic elements to guide the exploration.

The Good-Bad model accounts for systematic error due to
outlier measurements BICePs now is equipped with sophisti-
cated likelihood models that are extremely robust in the pres-
ence of systematic error6. Recently, we demonstrated the ability
of the Student’s model to account for systematic error for force
field optimization12. In this work, we use a likelihood function
called the Good-Bad model to demonstrate the validity of for-
ward model refinement. The derivatives of the Good-Bad model
are far less complicated than the Student’s model.

The Good-Bad likelihood model6 assumes that the level of
noise is mostly uniform, except for a few erratic measurements.
This limits the number of uncertainty parameters that need to be
sampled, while still capturing outliers. Consider a model where
uncertainties σ j for particular observables j are distributed about
some typical uncertainty σB according to a conditional proba-
bility p(σ j|σB). We derive a posterior for the kth parameter set
having a single uncertainty parameter σB by marginalizing over
all σ j

p(X,σ0,θk|D)∝

N

∏
r=1

p(Xr)
Nd

∏
j=1

∞∫
σSEM

p(d j|g j(X,θk),σ j)p(σ j|σ0)dσ j

(6)
where σ0 =

√
(σB)2 +(σSEM)2. Under the Good-Bad model,

we say that the "good" data consists of observables normally
distributed about their true values with effective variance σ2

0 ,
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while the "bad" data is subject to systematic error, leading to a larger effective variance ϕ2σ2
0 , where ϕ ≥ 1.

By this assignment, p(σ j|σ0) from equation 6 becomes

p(σ j|σ0,ω,ϕ) = ωδ (σ j −ϕσ0)+(1−ω)δ (σ j −σ0) (7)

where 0 ≤ ω < 1 describes the fraction of "bad" observables. Since the value of ω is unknown, it is treated as a nuisance parameter,
and marginalized over its range. The resulting posterior is

p(X,σ0,ϕ,θk|D) ∝

N

∏
r=1

p(Xr)
Nd

∏
j=1

1∫
0

dω

∞∫
σSEM

exp

(
−
(d j −g j(X,θk))

2

2σ2
j

)
ωδ (σ j −ϕσ0)+(1−ω)δ (σ j −σ0)√

2πσ j
dσ j


=

N

∏
r=1

{
p(Xr)

Nd

∏
j=1

((
1−H

(
σSEM −σ0

))
2
√

2πσ0
exp
(
−
(d j −g j(X,θk))

2

2σ2
0

)
+

(
1−H

(
σSEM −ϕσ0

))
2ϕ

√
2πσ0

exp
(
−
(d j −g j(X,θk))

2

2ϕ2σ2
0

))}
,

(8)

where H is the Heaviside step function. After marginalization, we are left with the Bayesian uncertainty parameter σB
0 , and an

additional parameter ϕ . Both parameters are sampled in the posterior. When ϕ = 1, the model reverts to a Gaussian likelihood
model. When considering the full posterior, this extra nuisance parameter is given a non-informative Jeffrey’s prior, p(ϕ)∼ ϕ−1.

For a single set of FM parameters (for simplicity), the BICePs energy function, u =− log p(X,σ0,ϕ,θ |D), the negative logarithm
of the posterior in its full form is given by

u =
N

∑
r=1

− log(p(Xr))−N
Nd

∑
j=1

log

[(
1−H

(
σSEM −σ0

))
2
√

2πσ0
exp
(
−
(d j −g j(X,θ))2

2σ2
0

)
+

(
1−H

(
σSEM −ϕσ0

))
2ϕ

√
2πσ0

exp
(
−
(d j −g j(X,θ))2

2ϕ2σ2
0

)]
,

(9)

and when ϕ = 1 our energy function becomes

u =
N

∑
r=1

− log(p(Xr))+N

[
Nd

∑
j=1

− log

(
1√

2πσ j

)
+

(d j −g j(X,θ))2

2σ2
j

− log(p(σ j))

]
. (10)

The first derivative of equation 9 with respect to the ith FM parameter θi is

∂u
∂θi

=N
Nd

∑
j=1

∂g j(X ,θ)

∂θi

(d j −g j(X ,θ))

ϕ2σ2
0

{
ϕ3
(
1−H

(
σSEM −σ0

))
exp
(
(d j−g j(X ,θ))

2

2ϕ2σ2
0

)
+
(
1−H

(
−ϕσ0 +σSEM

))
exp
(
(d j−g j(X ,θ))

2

2σ2
0

)}
{

ϕ (H (σSEM −σ0)−1)exp
(
(d j−g j(X ,θ))

2

2ϕ2σ2
0

)
+(H (−ϕσ0 +σSEM)−1)exp

(
(d j−g j(X ,θ))

2

2σ2
0

)} ,

(11)

and in the case of ϕ = 1 the gradient becomes

∂u
∂θi

=−N

[
Nd

∑
j=1

∂g j(X ,θ)

∂θi

(d j −g j(X,θ))

σ2
j

]
. (12)

Second derivatives of the BICePs energy function and the BI-
CePS score are useful for descent and uncertainty quantification
using other forward models. We refrain from writing out the
second derivative here, since the specific class of forward mod-
els we consider below all have second derivatives that go to zero.
For more general cases, see Appendix A for more details. The
energy of the Good-Bad likelihood model and its first and sec-
ond derivatives are shown in Figure S1.

III. RESULTS/DISCUSSION

Testing algorithm performance on a toy model

To investigate the efficacy of BICePs for this optimization
problem, we introduce a simplified, yet comprehensive toy
model. This model is designed to mimic the complexity of
protein structure elements by generating φ -angles from a multi-
modal distribution, thereby emulating configurations character-
istic of different secondary structure elements (Figure 1). This
distribution encompasses three distinct modes, each character-
ized by a mean (µ), standard deviation (σ ), and weight (w): beta
sheets (µ = −110◦, σ = 20◦, w = 0.35), right-handed helices
(µ =−60◦, σ = 10◦, w= 0.5), and left-handed helices (µ = 60◦,
σ = 5◦, w = 0.15). These parameters were chosen to accurately
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reflect the structural variability found in proteins. Angles φi were
sampled from the multi-modal distribution,

p(ϕ|µ,σ) = ∑
l

wl
1√

2πσl
2

exp
(
− (φ −µl)

2

2σl
2

)
. (13)

The sampled φi were then used to calculate experimental J-
coupling constants J(φ) using the Karplus relation with the true
Karplus coefficients (A∗, B∗, C∗).

3J(φ) = Acos2(φ)+Bcos(φ)+C (14)

Synthetic experimental J-coupling data is generated to represent
a mixture of all conformational states, dExp

j =∑X
3J(φX , j) · p(X),

with FM parameters θ = {A,B,C} set to their true values ({A =
6.51,B = −1.76,C = 1.6}). The initial forward model data is
generated using reference Karplus parameters (A0,B0,C0) and
refined through the optimization process to showcase the algo-
rithm’s adaptability and precision in parameter estimation.

H

H

𝛼

N

𝜙 Cα

Figure 1. A versatile toy model for measuring the performance of
forward model optimization. The φ -angles for each conformational
state is pulled from a multi-modal distribution and corresponding ener-
gies. (a) This multi-modal distribution of φ -angles was intended to rep-
resent configurations with different secondary structure elements hav-
ing three distinct modes described by the mean (µ), standard deviation
(σ ) and weight (w): beta sheets (µ =−110◦, σ = 20◦, w = 0.35), right-
handed helices (µ =−60◦, σ = 10◦, w = 0.5), and left-handed helices
(µ = 60◦, σ = 5◦, w = 0.15). (b) Cartoon representation of the back-
bone torsion angle, φ .

BICePs robustly finds optimal Karplus parameters in the
presence of experimental errors.

To evaluate the resilience of our algorithm against experimen-
tal inaccuracies, we introduced random and systematic errors of
varying magnitudes (σdata) into the synthetic experimental scalar
couplings. The performance of our Good-Bad likelihood model,
a Gaussian likelihood model, and singular value decomposition
(SVD) was compared under these conditions.

SVD calculations. Using methods similar to previous efforts
by others,20 we derived the Karplus parameters θ = {A,B,C} us-
ing a weighted singular value decomposition (SVD) fitting ap-
proach to optimally fit the J-coupling values as a function of di-
hedral angles. For each observation j across Nd measurements,
the matrix M was constructed with rows for each φ angle:

M =


∑X p(X)cos2(φ1,X +φ0) ∑X p(X)cos(φ1,X +φ0) 1
∑X p(X)cos2(φ2,X +φ0) ∑X p(X)cos(φ2,X +φ0) 1

...
...

...
∑X p(X)cos2(φNd ,X +φ0) ∑X p(X)cos(φNd ,X +φ0) 1


(15)

where p(X) represents the true populations for state X , and φ0 is
the phase shift of −60◦.

SVD was applied to decompose the matrix as M =UΣV T , and
Karplus coefficients were derived using:

θ =V T (Σ+ εI)−1UT Jexp, (16)

where ε = 1e−6 a small regularization term added to the diago-
nal of Σ to ensure stability of the pseudo-inverse, and Jexp repre-
sents the vector of experimental J-coupling values. This method
ensures robust estimation of θ under ideal experimental condi-
tions, given the true conformational populations. In practice, the
true populations are not known a priori. The uncertainty in SVD
coefficients was determined through 1k iterations of fitting, each
omitting 10% of the data points chosen at random.

Typical uncertainties in NMR frequency measurements range
from 0.1 to 1.0 Hz, primarily influenced by magnetic field
strength, instrument quality, sample conditions, and the specifics
of the pulse sequence used. In these experiments, 100 conforma-
tional states and 60 synthetic experimental scalar couplings were
used. We introduced systematic error by shifting the experimen-
tal 3J values by +2.0 Hz to +4.0 Hz for up to 20% of the data
points. BICePs calculations were performed by averaging FM
parameters over three chains of MCMC stating from different
initial parameters ({A = 9,B = −1,C = 1},{A = 4,B = 0,C =
3},{A = 0,B = 0,C = 0}). Regardless of different starting pa-
rameters, posterior sampling universally converges to "true" op-
timal FM parameters. In these calculations, we used 32 BICePs
replicas, and burned 10k steps followed by 50k steps of MCMC
sampling.

We evaluated model performance by the root-mean-square er-
ror (RMSE) between the true J-coupling values with parameters
{A∗ = 6.51,B∗ = −1.76,C∗ = 1.6} and the J-coupling values
using predicted Karplus coefficients for all 60 synthetic mea-
surements, performed over 1k independent trials of random gen-
erations of toy model data. Average RMSE results, computed
over 100 BICePs calculations, highlight the algorithm’s robust-
ness and its ability to accurately predict FM parameters even
in the presence of data perturbations. Error bars in our results
represent the standard deviation across these calculations, pro-
viding a comprehensive measure of the algorithm’s reliability
under various experimental accuracy.

Our findings indicate that the Good-Bad likelihood model
(red) exhibits superior resilience to experimental errors com-
pared to a traditional Gaussian likelihood model (blue) and
SVD (green) approaches (Figure 2). Predictions from SVD and
the Gaussian likelihood model become notably less dependable
when data incorporates errors, especially when σdata exceeds 0.5
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Hz. On average, error in predictions (RMSE) from the Good-
Bad model does not exceed 0.1 Hz over the full range of σdata.

Figure 2. Comparative analysis in performance of the Good-Bad like-
lihood model (red), a Gaussian likelihood model (blue), and singular
value decomposition (SVD) using the "true" φ angles with synthetic ex-
perimental data. Here, we induced random and systematic error of vary-
ing magnitude (σdata) to the experimental scalar couplings. Model per-
formance was measured by computing RMSE (Hz) between the "true"
scalar couplings and the couplings generated from the Karplus relations
with predicted Karplus coefficients over 1,500 random perturbations to
the experimental data, and represent the average of 100 BICePs calcu-
lations. Error bars represent the standard deviation. Predictions from
SVD and the Gaussian likelihood model become notably less depend-
able when data incorporates errors, especially when σdata exceeds 0.5
Hz.

An example of a single trial of forward model parameter re-
finement using the toy model is shown in Figure S2, where BI-
CePs predicts Karplus coefficients by posterior sampling over
FM parameters. Both BICePs and Singular Value Decomposi-
tion (SVD) methods successfully reproduce the "true" Karplus
curve. However, BICePs excels by accurately identifying the
error present in the data (σdata = 0.471), as indicated in the
marginal posterior of uncertainty p(σJ). The BICePs predicted
maximum a posteriori uncertainty was found to be σJ = 0.272
with a variance scaling parameter of ϕJ = 1.98. The marginal
posterior distributions of FM parameters for the Good-Bad
model were {A = 6.6±0.04,B =−1.8±0.02,C = 1.5±0.03},
and for SVD, {A = 6.11± 0.06,B = −1.63± 0.04,C = 1.80±
0.04}.

In addition to the Good-bad model, we refined parameters us-
ing the Student’s model ({A = 6.8±0.03,B =−1.9±0.03,C =
1.4±0.03}) to demonstrate that the Student’s model yields sim-
ilar performance (Figure S3). The computed Gelman-Rubin (R̂)
statistic for these calculations was found to be R̂ = 1.01 for each
of the marginal posterior distributions of Karplus coefficients,
which demonstrates that our chains converge to the same pa-
rameter location with similar variance.

Furthermore, we assessed model performance across varying
qualities of prior structural ensembles as illustrated in Figure S4.
By introducing varying levels of prior error σprior (measured
in degrees) through perturbations to the "true" φ angles, even
in the presence of random and systematic error, we observed
strong correlation between the BICePs score and the quality of
the structural ensemble, with a coefficient of determination R2 of
0.99. For these calculations, we employed the Good-Bad model,
utilizing 32 replicas, and conducted 1,000 random perturbations

to the φ angles with errors up to σprior = 4◦, and perturbations to
the experimental data σdata = 0.68± 0.24 Hz. Karplus’s warn-
ing about the perils of precise angle estimation21 underscores
our approach’s necessity and performance in error aware model-
ing in structural biology.

The comprehensive evaluation of our algorithm with this toy
model underscores its efficacy in accurately determining FM pa-
rameters, reflecting scenarios commonly encountered in real-
world applications. The robust performance of the algorithm,
even in the face of random and systematic errors, can be at-
tributed to BICePs’ sophisticated error-handling within its likeli-
hood models. This approach also ensures that predicted FM pa-
rameters derived from sub-optimal structural ensembles remain
reliable. Additionally, our findings reveal a strong correlation
between the BICePs score and the quality of the structural en-
semble, demonstrating an immense utility in this context.

Variational minimization of the BICePs score to find optimal
parameters.

Treating the forward model parameters as nuisance parame-
ters, and sampling over them with the full posterior is an effi-
cient strategy that grants the ability to include all sources of er-
ror while refining the structural ensemble with FM parameters.
However, in the limit of large number of FM parameters, the di-
mensionality of the posterior may ultimately become unwieldy
and present the curse of dimensionality. Here, we introduce an
alternative strategy for refining FM parameters that has previ-
ously demonstrated to be a viable approach to automated force
field optimization12.

In this approach, the FM parameters are no longer part of the
joint posterior density. Instead, the posterior is conditioned on
the set of FM parameters θ , that is, equation 2 becomes

p(X ,σ |D,θ) ∝ p(D,θ |X ,σ)p(X)p(σ) (17)

In this view, ensemble refinement is performed with a static set
of FM parameters for each BICePs calculation.

BICePs evaluates model quality by calculating a free energy-
like quantity called the BICePs score. For a forward model with
parameters θ , the BICePs score f (θ) is computed as the neg-
ative logarithm of a Bayes factor comparing the total evidence
of a given model against a well-defined reference, marginalizing
over all uncertainty,

f (θ) =− ln
(
Z(θ)

/
Z0
)
, (18)

where

Z(θ) =
∫∫

exp(−u(X,σ | D,θ))dXdσ (19)

is the evidence for FM parameters θ , Z0 is the evidence for
a suitable reference state, and u is the unchanged BICePs en-
ergy function (equation 9). To construct the reference state, we
consider a series of likelihoods pξ (D,θ |X,σ) ∼ [p(D|X,σ)]ξ

parameterized by ξ ∈ [0,1], and set the reference state as the
thermodynamic ensemble corresponding to ξ = 0. The BICePs
score is then calculated as the change in free energy of "turning
on" experimental restraints (ξ = 0 → 1).
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It should be noted that in other applications of BICePs,6,12

the reference state for the BICePs score is defined using the
λ = 0 state for a series of a priors pλ (X) ∼ [p(X)]λ , and the
BICePs score is computed as the free energy of (λ = 0 → 1) and
(ξ = 0 → 1) transformations. Here, since we are only interested
in evaluating and/or parameterizing the likelihood functions, we
set p(X) to be uniform. Constructing p(X) is thus very straight-
forward: it’s a collection of conformations all having equal sta-
tistical weight.

The derivative of the BICePs score with respect to the FM
parameters θ reduces to the difference of Boltzmann averaged
values of ∂u/∂θ shown as

∂ f (θ)
∂θi

=
∫∫ 1

Z(θ)

[
∂u
∂θi

]
exp(−u)dXdσ =

〈
∂u
∂θi

〉
(20)

In this study, we demonstrate our methodology using first-order
optimization methods, such as L-BFGS-B. For more complex
forward models, the employment of second derivatives might
become necessary. Interested readers are directed to the Sup-
porting Information for second derivatives of the BICePs score
with respect to FM parameters.

Calculation of the BICePs score (a free energy difference) and
its derivatives (expectation values of energy derivative observ-
ables) is performed using the MBAR free energy estimator,22

by sampling at several intermediates ξ = 0 → 1, which enables
accurate estimates of all quantities.

Optimizing ξ -values. The accuracy of the BICePs score-
depends on converged sampling and sufficient thermodynamic
overlap of intermediates (ξ = 0 → 1) in the BICePs compu-
tation. To ensure strong overlap, we optimize the ξ -values
by spacing ensembles equidistantly in thermodynamic length,
employing a strategy akin to the "thermodynamic trailblazing"
method proposed by Rizzi et al.23 Our approach is facilitated by
a custom optimization algorithm called pylambdaopt (Zhang et
al., in preparation).

The optimization process is a two-step process: First, a
preliminary BICePs calculation is performed using provisional
ξ -values, yielding estimates of the thermodynamic length
|ℓ(ξn+1)− ℓ(ξn)| for each pair of intermediates24,25, derived
from the variance in distributions p(∆un,n+1), where ∆un,n+1 =
un+1 −un represents the change in the (reduced) BICePs energy
incurred by bringing a sample from thermodynamic ensemble n
to thermodynamic ensemble n+1.

Second, cubic spline fitting is employed to derive a smooth
and differentiable function ℓ(ξ ) that accurately interpolates the
computed ℓ(ξi). Optimization through steepest-descent mini-
mization is then applied to determine new ξ ∗

i values that mini-
mize the loss function L =∑n |ℓ(ξn+1)−ℓ(ξn)|2. This results in
ξ ∗

i values uniformly spaced in terms of thermodynamic length,
thus maximizing the thermodynamic overlap between adjacent
ensembles and enhancing the precision of free energy calcu-
lations. These optimized ξ ∗

i values are subsequently used in
production runs. An illustration of the ξ -values pre- and post-
optimization is depicted in Figure S5. Refer to figures S6&S7
for overlap matrices pre- and post- optimization.

Comparison of variational minimization of the BICePs score vs.
sampling the full joint posterior

In the comparison of the two approaches for parameter
estimation and optimization in our model, we utilized a toy
model (Figure S2) to evaluate the efficacy of each method under
the same data conditions. Prior to FM parameter refinement,
11 ξ -values were optimized from {1.0,0.9,0.8, ...,0.0} to
{1.0,0.7,0.56,0.45,0.36,0.28,0.2,0.14,0.08,0.04,0.0} (Fig-
ures S5-S7). Variational minimization using the Good-Bad
model with 4 replicas (for reduced computational cost), where
each evaluation of the objective function consisted of running
10k MCMC steps. Optimal parameters were determined to be
{A = 6.31±0.02,B =−1.69±0.03,C = 1.69±0.01}, averaged
over 3 independent runs with very low variance between runs,
shown in Figure S8. Regardless of different starting parameters
({A = 9,B = −1,C = 1},{A = 4,B = 0,C = 3},{A = 0,B =
0,C = 0}), variational minimization converges to “true” optimal
FM parameters. This analysis demonstrated that both the joint
posterior sampling approach and variational minimization yield
near equivalent performance when applied to this model.

As a method for forward model optimization, variational min-
imization of the BICePs score has advantages and disadvan-
tages. This method is particularly advantageous for handling
many FM parameters, offering a potential solution to the curse of
dimensionality faced by Monte Carlo Markov Chain (MCMC)
methods. Additionally, it is easier for users to adapt different for-
ward models, and performs exceptionally well in convex land-
scapes. When landscapes are non-convex, however, the inverse
Hessian may not provide a comprehensive view of the param-
eter space’s uncertainty; instead, uncertainty estimation could
be computed using the variance across multiple BICePs runs
starting from different initial parameters. The variational min-
imization approach also requires careful consideration of dis-
perse starting parameters to ensure global minimization.

The joint posterior sampling method, which involves sam-
pling the joint posterior distribution of forward model (FM) pa-
rameters, has several advantages. One significant benefit is that
the posterior distribution provides a direct estimate of the un-
certainties in forward model parameters and their covariance.
Compared to variational minimization, this method generally
has a faster runtime and is particularly effective in handling
non-convex landscapes, allowing for robust parameter estima-
tion even in complex scenarios. However, it is not without draw-
backs. As the number of FM parameters increases, the poste-
rior sampling method may encounter the curse of dimensional-
ity, which makes it computationally challenging to explore the
parameter space efficiently.

In summary, while both approaches are valuable tools for pa-
rameter estimation in parameter and ensemble refinement, each
has its strengths and weaknesses. The choice between these
methods should be guided by the specific characteristics of the
problem at hand, such as the landscape’s convexity and the num-
ber of parameters involved.
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Determination of optimal Karplus coefficients for ubiquitin

To evaluate the performance of our algorithm, we applied
BICePs to human ubiquitin to predict Karplus coefficients for
six sets of scalar coupling constants: 3JHN Hα , 3JHαC′ , 3JHNCβ ,
3JHNC′ , 3JC′Cβ , and 3JC′C′ . To test our algorithm’s robustness,
we conducted a comprehensive evaluation for predicting optimal
Karplus coefficients using three different structural ensembles as
priors, each derived from distinct computational approaches: (1)
10 conformations from the NMR-refined structural ensemble,
1D3Z26, (2) 144 conformations from NMR-restrained simula-
tions, 2NR227, and (3) 25 conformations from the RosettaFold2
(RF2) algorithm.28

We then validated the forward model parameters derived
from each prior using the BICePs score, R2 and mean abso-
lute errors (MAE) for forward model predictions. As priors for
these calculations, we used three independent structural ensem-
bles: 1D3Z, 2NR2, and a 500-state conformational ensemble
derived from a millisecond-long simulation of ubiquitin using
CHARMM22*.29 For further details on these ensembles, refer
to the SI methods section.

To refine the forward model (FM) parameters, we employed
full joint posterior distribution sampling. This method was cho-
sen to navigate the non-convex parameter space efficiently, given
its relatively low dimensionality (18 FM parameters). BICePs
calculations were executed by averaging the FM parameters over
four Markov Chain Monte Carlo (MCMC) chains, each start-
ing from distinct initial parameters: {A = 9,B = −1,C = 1},
{A = 4,B = 0,C = 3}, {A = 0,B = 0,C = 0}, and {A = 6,B =
−1,C = 0}. Flexible residues were excluded from the calcula-
tions, consistent with previous studies2,3. As a result, a total of
346 J-couplings were used in these refinements. We used the
Good-Bad model with 32 BICePs replicas, discarding the first
50k steps as burn-in, followed by 50k steps for MCMC sam-
pling. Unlike the parameters derived from 1D3Z and RF2, the
Karplus coefficients obtained by using the 2NR2 ensemble re-
quired a burn-in of 100k steps to appropriately converge due to
a larger number of conformational states. The six sets of refined
Karplus coefficients resulting from the 1D3Z, 2NR2 and RF2
ensembles are presented in Table I.

Figure 3 compares the Karplus curves derived from BICePs
using the 1D3Z ensemble with previously published parameters
obtained from NMR refinements, showing subtle differences.
Both the marginal posterior distributions of the FM parame-
ters and the Karplus curves for each scalar coupling demon-
strate significant congruence with the historical NMR refine-
ment results3,26. For all six types of J-coupling, see Figure S9.

The predicted parameters, better represented by the marginal
posterior distributions of the FM parameters, have large similar-
ities across structural ensembles. BICePs-predicted coefficients
using the 1D3Z ensemble (Figure S10) and predicted coeffi-
cients using the RF2 ensemble (Figure S11) are found to have
very strong overlap. Furthermore, the traces of the FM parame-
ters ober time (Figure S12) confirm convergence.

One advantage of BICePs is that as FM parameters are be-
ing sampled, the posterior densities of FM uncertainties, p(σ),
are also revealed (Figure S13). For certain sets of J-coupling
constants (e.g., 3JHN Hα and 3JHNC′ ) the marginal posterior dis-
tribution of the variance scaling parameter p(ϕ) has a sampled

Table I. Coefficients for the Karplus relation 3J(φ) = Acos2(φ +φ0)+
Bcos(φ +φ0)+C, determined by BICePs sampling the joint posterior
of FM parameters.

φ0 A (Hz) B (Hz) C (Hz)
3JC′C 1 0◦ 1.71±0.02 −0.85±0.01 0.54±0.00

2 0◦ 1.30±0.03 −0.91±0.01 0.62±0.01
3 0◦ 1.62±0.03 −0.87±0.01 0.63±0.01

3JC′Cβ 1 60◦ 1.83±0.04 0.34±0.05 0.41±0.02
2 60◦ 2.20±0.04 0.34±0.04 0.04±0.02
3 60◦ 1.81±0.04 0.38±0.04 0.31±0.02

3JHαC′ 1 120◦ 3.64±0.02 −2.14±0.02 1.27±0.02
2 120◦ 4.10±0.03 −2.00±0.02 0.95±0.02
3 120◦ 3.78±0.02 −2.12±0.02 1.21±0.02

3JHNC′ 1 180◦ 4.33±0.04 −1.17±0.01 0.14±0.01
2 180◦ 4.60±0.12 −0.57±0.03 −0.10±0.01
3 180◦ 4.57±0.09 −1.20±0.03 0.13±0.01

3JHNCβ 1 60◦ 2.72±0.03 −0.35±0.03 0.12±0.01
2 60◦ 3.00±0.04 −0.26±0.03 −0.28±0.02
3 60◦ 2.52±0.03 −0.03±0.02 −0.09±0.02

3JHNHα 1 −60◦ 7.11±0.05 −1.38±0.03 1.43±0.04
2 −60◦ 7.50±0.07 −1.50±0.02 1.50±0.06
3 −60◦ 6.97±0.07 −1.49±0.04 1.63±0.05

1 1D3Z as the structural ensemble
2 2NR2 as the structural ensemble
3 RosettaFold2 (RF2) as the structural ensemble

mean slightly larger than 1.0, indicating that the functional form
of the likelihood opted for long tails to account for a few outlier
data points deviating from the mean.

The BICePs free energy landscape for 3JHNC′ Karplus param-
eters. In Figure 4, we show the free energy landscape, which
is also equivalent to the BICePs score landscape fξ=0→1. The
Karplus curve for 3JHNC′ was found to overlap strongly with the
results obtained by SVD when using φ angles from the X-ray
crystal structure (Figure S9). Red data points are shown using
the experimental J-couplings with φ angles derived from X-ray
crystal pose 1UBQ30. The joint BICePs score landscape for the
six sets of parameters is too complex to visualize. In an attempt
to do our best, we constructed a smooth 2-D landscape for each
pair of parameters within a set of scalar couplings by training a
Gaussian process on the BICePs energy trace using a radial ba-
sis function (RBF) kernel. The landscape matches the computed
BICePs scores, and shows minima in the correct locations. All
BICePs score landscapes for each of the six sets of Karplus co-
efficients are illustrated in Figure S14.

To demonstrate the transferability across different generative
models and validate our parameters, we evaluated the accuracy
of the back-calculated scalar couplings using the different sets
of Karplus coefficients. In Figure 5, we illustrate how the var-
ious sets of parameters derived from different techniques and
different structural ensembles exhibit similar performance met-
rics. Interestingly, applying BICePs-refined Karplus parameters
to an ensemble generated by a molecular dynamics simulation
(CHARMM22*),29 some parameter sets are revealed to be more
transferable than others. The mean absolute error (MAE) and
coefficient of determination (R2) for all six types of scalar cou-
plings across different structural ensembles are shown in Figures
S15-S17. On average, the BICePs-refined parameters derived
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Figure 3. Karplus curves with BICePs-refined Karplus coefficients using the 1d3z ensemble for (a-c) 3JC′C′ , 3JC′Cβ , and 3JHαC′ . For comparison,
SVD on 1ubq using experimental scalar coupling constants with φ -angles derived from the X-ray structure (black dashed line), and red dots
correspond to the fitted data points. Additionally, parameterizations from Bax et al. 1997 (green) and parameterization from Habeck et al. 2005
(yellow) were overlaid for comparison. The thickness of the line corresponds to the uncertainty.

Figure 4. Landscapes of the BICePs score with respect to the predicted
Karplus coefficients for 3JHNC′ . Panels a, c and d illustrate the en-
ergy landscape f for pairs of Karplus coefficients when using the 1D3Z
structural ensemble during refinement.

from the 2NR2 ensemble (BICePs(2NR2)) give the lowest MAE
between experiment and predictions for the CHARMM22* sim-
ulated ensemble, closely followed by BICePs(RF2) parameters,
whereas Habeck 2005 has the highest due to known difficulties
with 3JC′Cβ .

To objectively quantify which parameters produce the best
predictions for ubiquitin, we compute BICePs scores, fξ=0→1
for each of the structural ensembles. This score directly re-
lates to the quality of FM parameters and their predictive ac-
curacy at reproducing experimental scalar couplings, while tak-
ing into consideration all sources of potential error. Lower BI-
CePs scores indicate better agreement with experiment. Each
row in Table II corresponds to BICePs scores using all six sets
of Karplus coefficients used on different structural ensembles.
The lowest score is shown in bold.

BICePs scores, fξ=0→1 were computed to objectively rank
the quality of FM parameters and their predictive accuracy at
reproducing experimental scalar couplings (Table II). The left-
most column in Table II corresponds to the parameters, where
BICePs(1D3Z) are the parameters in Table I (set 1), which used
1D3Z ensemble to obtain Karplus coefficients. BICePs score
columns, e.g., f 1d3z

ξ=0→1 corresponds to BICePs scores evaluated
for the 1D3Z ensemble. That is, the superscript corresponds
to the structural ensemble used as a validation step. BICePs
scores, f for each structural ensemble over all sets of parame-
ters, averaged over five independent rounds of validation each.
BICePs calculations burned for 1k steps, followed by 50k steps
of MCMC sampling.

Note that the BICePs score is an extensive quantity that grows
linearly with the number of replicas. For this reason, our re-
sults report the reduced BICePs score, f (θ)/Nr. We can con-
firm that the BICePs score, f 1d3z

ξ=0→1 = 38.14±0.08 (Table II) is
equivalent (within error) with the most probable landscape basin
f = 38.15±0.19 from sampling the energy landscape, computed
as an averarge across four chains; an example for one chain is
shown in Figure 4. This is additional evidence of the algorithm’s
reliability and quality of the BICePs score, corroborating that the
results from variational minimization of the BICePs score and
full joint posterior sampling are equivalent.

Table II. BICePs scores (32 replicas), f for each structural ensemble
over all sets of parameters, averaged over five independent rounds of
validation each.
Parameters f 1d3z

ξ=0→1 f 2nr2
ξ=0→1 f CHARMM22*

ξ=0→1
Bax 19972,26 61.12±0.08 132.49±0.09 99.27±1.91
Habeck 20053 135.66±0.08 199.32±0.24 165.64±0.47
BICePs(1D3Z) 38.14±0.08 141.69±0.16 105.00±0.74
BICePs(2NR2) 118.42±0.14 113.15±1.34 76.27±0.66
BICePs(RF2) 68.07±0.60 129.42±0.15 88.04±0.21

For both the 2NR2 and CHARMM22* structural ensem-
bles, Bax 1997, BICePs(RF2) and BICePs(1D3Z) parameters
give very similar BICePs scores, which suggests robust accu-
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Figure 5. Validation of BICePs-predicted Karplus coefficients perform similarly to Bax1997 and achieve minor improvements over Habeck2005
for scalar coupling predictions for the simulated ensemble of CHARMM22*. Each panel for (a) 3JHαC′ , (b) 3JC′Cβ , and (c) 3JC′C′ shows strong
correlations between predictions and experiment. Karplus coefficients derived from BICePs using the 2NR2 ensemble gives the best performance
for CHARMM22*. For the remaining sets of J-coupling, please see Figure S17.

racy of FM parameters in reproducing experimental scalar cou-
plings and the transferability of FM parameters across different
prior structural ensembles. Furthermore, when it comes to the
CHARMM22* simulated ensemble, the BICePs(2NR2) param-
eters give the lowest BICePs score. However, it is important
to note that the structural ensemble 2NR2 was generated using
CHARMM22 force field with additional experimental restraints
during simulation.

It is difficult to say which of the model parameters are
the best for ubiquitin, so we compare the top four: BI-
CePs(RF2), Bax 1997, BICePs(1D3Z), and BICePs(2NR2). The
BICePs(2NR2) parameters are objectively better at predicting
J-couplings from structures of ubiquitin generated from simu-
lations using CHARMM22* force field. Futhermore, our BI-
CePs(RF2) parameters have slightly better transferability across
structural ensembles and have a better BICePs score over Bax
1997 parameters. In general, when looking across structural en-
sembles, the lowest BICePs scores come from the 1D3Z struc-
tural ensemble ( f 1d3z

ξ=0→1) except for BICePs parameters derived
from the 2NR2 ensemble (BICePs(2NR2)). This confirms that
the 1D3Z structural ensemble gives the strongest agreement with
experimental NMR observations.

Ensembles from generative models like RosettaFold2 can be
used for parameter refinement. The booming field of ma-
chine learning and artificial intelligence is swiftly transform-
ing the field of modeling structure and dynamics in biological
systems. Recent advancements in generative models, such as
AlphaFold31, RosettaFold28 and others, have heralded a new era
in the accurate prediction of structural ensembles. Leveraging
the predictive power of these models as structural priors is ex-
pected to help refine ensemble predictions when integrated with
similar algorithms to BICePs32. Here, we have demonstrated
that structural ensembles generated from RosettaFold2 (RF2)
can be reweighted to better align with experimental measure-
ments, while simultaneously refining Karplus parameters. Vali-
dation of these parameters by the BICePs score and other statis-
tics demonstrates improved accuracy across a varity of structural
ensembles of ubiquitin.

Automatic determination of unknown errors. Our method
provides a notable advantage by automatically estimating all po-
tential error sources throughout the ensemble refinement pro-

cess. This estimation is facilitated through the analysis of pos-
terior distributions, which are instrumental in deriving accurate
error assessments for the Karplus coefficients. Consequently,
this negates the need for cross-validation techniques commonly
used in other approaches1,33.

In the context of model validation, the BICePs score emerges
as a superior metric over the traditional χ2 test. Unlike χ2,
which presupposes a fixed and known error, BICePs dynam-
ically ascertains the level of uncertainty, thereby providing a
more nuanced and accurate measure of model quality.

Bayesian ranking of Karplus-type relations The Karplus
equation, a cornerstone for interpreting NMR spectroscopy data,
comes in multiple forms to accommodate the diverse character-
istics of molecular structures, from rigid to flexible34. The BI-
CePs algorithm can determine coefficients and their uncertain-
ties for any functional form, including those with additional pa-
rameters. Although we do pursue this aim in our current work, it
is straightforward to use Bayesian model selection to objectively
rank empirical models based on their BICePs scores, while au-
tomatically accounting for model complexity, thus providing a
balance of model accuracy and parsimony.

Adaptive variance as simulated annealing. As an alterna-
tive approach to determine optimal FM parameters, we propose
that future work might utilize an annealing approach, in which
the variance parameter σ2 is akin to the temperature. Initially,
a high σ2 would enable extensive exploration of the parame-
ter space to circumvent local optima. This exploration phase
mimics the high-temperature regime in annealing, allowing for
a broad search. Subsequently, we suggest a schedule of step-
wise reduction in σ2, similar to cooling in simulated annealing,
to gradually narrow the search area and determine the optimum
solution. This method balances between wide-ranging search
and focused refinement, potentially enhancing search efficiency
and robustness in FM parameter optimization.

IV. CONCLUSION

In the quest for accurate forward model predictions, specif-
ically for J-coupling, researchers often navigate the vast liter-
ature seeking Karplus parameters that align with their specific
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systems, occasionally settling for less-than-ideal solutions. Our
work demonstrates BICePs as a robust tool for determining for-
ward model (FM) parameters by sampling over their full poste-
rior distribution. We used a toy model to demonstrate that varia-
tional minimization of the BICePs score is also a valid approach
for FM parameter refinement.

We have shown how the BICePs score–the free energy of
“turning on” the restraints tethering the forward model predic-
tions to the experimental values–serves as an effective validation
metric for FM parameters. Using structural ensembles and ex-
perimental data for ubiquitin, BICePs determined six different
sets of Karplus coefficients using different types of J-coupling
measurements, while effectively addressing both random and
systematic errors. From these results, one can see how this al-
gorithm can be applied more generally to find other optimal for-
ward model parameters. These advances not only contribute to
the refinement of molecular simulations but also hold promise
for a wide range of applications within the scientific community,
particularly among those analyzing structural dynamics and per-
forming model validation.
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Appendix A: Variational minimization of the BICePs score to
find optimal parameters.

It is likely that the second derivative w.r.t FM parameters
would be useful for second-order optimization methods and un-
certainty quantification. For the sake of simplicity, we refrain
from writing out the second derivative for the Good-Bad model
here. However, when ϕ = 1 the second partial derivatives of the
BICePs energy with respect to parameters θi and θk are:

∂ 2u
∂θi∂θk

= N

[
Nd

∑
j=1

−
∂ 2g j(X ,θ)

∂θi∂θk

(d j −g j(X,θ))

σ2
j

+
∂g j(X ,θ)

∂θi
·

∂g j(X ,θ)

∂θk

1
σ j2

]
.

(A1)

When i = k, the second partial derivative of the energy is just:

∂ 2u
∂θ 2 = N

[
Nd

∑
j=1

(
−

∂ 2g j(X ,θ)

∂θ 2
(d j −g j(X,θ))

σ2
j

+

(
∂g j(X ,θ)

∂θ

)2 1
σ j2

)]
.

(A2)

The second partial derivatives of the BICePs score with re-
spect to parameters θi and θk are:

∂ 2 f (θ)
∂θi∂θk

=

〈
∂ 2u

∂θi∂θk

〉
−
(〈

∂u
∂θi

· ∂u
∂θk

〉
−
〈

∂u
∂θi

· ∂u
∂θk

〉′)
,

(A3)
where the notation ⟨·⟩′ denotes the ensemble average with re-
spect to

( 1
Z exp(−u)

)2
. The first term on the right is the

ensemble-averaged second derivative of the energy function u
with respect parameters θi and θk is equation A2 (when ϕ = 1).

When i = k, the second partial derivative of the BICePs score
reduces to the difference between the ensemble-averaged sec-
ond derivative of the energy u and the variance of its first partial
derivative:

∂ 2 f
∂θ 2 =

〈
∂ 2u
∂θ 2

〉
−

(〈(
∂u
∂θ

)2〉
−
〈

∂u
∂θ

〉2
)

(A4)

The calculation is performed using the MBAR free energy esti-
mator for the BICePs score and it’s derivatives, by sampling at

several intermediates ξ = 0 → 1, which enables accurate esti-
mates of all quantities.

In the case of convex landscapes, one can compute reported
uncertainties in the set of optimized FM parameters θ by esti-
mation of the covariance through inversion of the Hessian (the
matrix of second partial derivatives of the BICePs score). Con-
ceptually, this means that the estimated uncertainties in the best-
fit values represent the widths of the basins on the BICePs score
landscape. For non-convex problems, this can sometimes lead to
an under-estimation of uncertainty depending upon the curvature
of the basins of the local minima in the BICePs score landscape.

Appendix B: Supplemental Information

1. Methods

Structural ensembles of ubiquitin

1D3Z Ubiquitin NMR structural ensemble that consists of
10 conformations26.

2NR2 Next, we use an ensemble (144 conformations) from
Richter et al. (PDB: 2NR2), where the refinement was per-
formed using the MUMO (minimal under-restraining minimal
over-restraining) method27. In this approach, simulations started
from the X-ray crystal pose30. NOEs and S2 Lipari–Szabo or-
der parameters were used as NMR structural restraints during a
replica-averaged restrained simulation with TIP3P solvent and
CHARM22 force field. The augmented potential energy func-
tion given as: Etotal = ECHARMM22 +Erestraints. Scalar couplings
were not used during the refinement, but were only used as a
validation metric.

RosettaFold2 (RF2) Using the Colabfold notebook35 with
default parameters, 25 conformations were predicted using
RosettaFold228.

CHARMM22* An ensemble of conformationa states was
derived from a Markov State Model (MSMs) were constructed
from a 1-ms simulation of ubiquitin’s native state at 300 K from
Piana et al.29. The PyEMMA Python package36 was used to
determine appropriate backbone featurizations using the Varia-
tional Approach for Markov Processes (VAMP) scoring func-
tion VAMP-237. Based on the obtained scores, inverse dis-
tances were selected as features, while torsions were excluded
due to lower VAMP-2 scores and minimal contribution when
paired with inverse distances. When comparing distances and
inverse distances, the similarity of the average scores and rela-
tive standard deviations show that both featurizations are ade-
quate, and inverse distances was selected purely on the higher
average scores. Time-lagged independent component analysis
(tICA) followed by k-means clustering was used to discretize
simulations into a structural ensemble of 500 conformational
states for MSM construction38,39. For the BICePs calculation,
each of the 500 states were given equal statistical weight to en-
force the uniform prior p(X).

http://dx.doi.org/10.33011/livecoms.1.1.5965
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Details of parameters used in posterior sampling

The range of sampled uncertainty parameters σ on a grid of
logarithmically-spaced values between 0.001 to 100, to enforce
the Jeffrey’s prior. Each grid value in the list was a factor of 1.02
larger than the next: [1.00e-03, 1.02e-03, 1.04e-03,
1.06e-03, ... 9.72e+01, 9.92e+01], resulting in a list
of 582 values. For the Good-Bad model, sampling of the ex-
tra nuisance parameter, ϕ took place on a grid from 1 to 100
with 1000 equally-spaced points.

Details of ξ optimization

Optimization was performed for a maximum of 2M steps
with a tolerance of 1e-7 and α = 1e − 5. With increas-
ing amounts of data restraint energy, the optimization prob-
lem becomes more complicated and more iterations are re-
quired to converge. In the case of insufficent iterations, the
ξ -optimization might return negative ξ -values, which is in-
correct and not physical. Initially, we start with 11 ξ -values
{1.0, 0.9, 0.8,...,0.0} and with shift to lower values of
ξ after optimization e.g., {1.0, 0.7, 0.56, 0.45, 0.36,
0.28, 0.2, 0.14, 0.08, 0.04, 0.0}.
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Figure S1. The Good-Bad model properly detects outliers. The probability density function (a) computed as p(D|X,σ0,ϕ) = ∏
N j
j p(d j|X,σ0,ϕ)

and energy landscape (b) of the marginal likelihood for the Good-Bad model with respect to the replica-averaged forward model data f (X) using
multiple data points. Shown here, are three data points, two good data points {0.25,0.3} and one outlier {1.0}. The Good-Bad model (ϕ = 7.0) is
centered about the mean of the two good data points, demonstrating that this model can distinguish the good and bad data. The standard Gaussian
likelihood (ϕ = 1) is centered about the mean of all three data points. The colored curves are different values of nuisance parameter ϕ . Subplots (a)
and (b) show how the Good-Bad model when ϕ = 1 is equivalent to the Gaussian likelihood and harmonic potential energy function. Subplots (c)
and (d) are the first and second derivatives of the potential energy curves shown in subplot (b).
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Figure S2. BICePs predicted forward model parameters in the presence of random and systematic error (σdata = 0.471) for a toy model
system. (a) Karplus curves predicted for SVD (orange) and BICePs (blue), where the "true" (black dashed line) parameters were set to be {A =
6.51,B =−1.76,C = 1.6}. The extracted parameters from the SVD fitting were found to be {A = 6.11±0.06,B =−1.63±0.04,C = 1.80±0.04}
and the BICePs was {A = 6.6±0.037,B =−1.8±0.016,C = 1.5±0.027}, averaged over three independent chains. The uncertainty is represented
by the thickness of the curves. For the BICePs calculation, we used the Good-Bad likelihood model with 32 replicas and burned for 20k steps,
followed by 50k steps of additional sampling. (b) The marginal posterior distribution of uncertainty p(σJ). The maximum a posteriori was
determined to be σ̂J = 0.272, and the a posteriori variance scaling parameter ϕ̂J = 1.98. (c) Landscapes of the BICePs score, f for pairs of Karplus
coefficients. (d) The marginal posterior distribution of Karplus coefficients.
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Figure S3. The Student’s model gives similar performance to the Good-Bad model. Karplus coefficients predicted using the Student’s likeliood
model ({A = 6.8±0.033,B =−1.9±0.025,C = 1.4±0.033}) are compared against SVD when faced with random and systematic error (σdata =
0.471). The "True" parameters were set to be {A = 6.51,B =−1.76,C = 1.6}, the same as Figure S2.

Figure S4. The BICePs score is a measure of structural ensemble quality. Using the same toy model system described in the main text. We vary
the quality of the prior structural ensemble (σprior) by perturbing the "true" φ angles of the structural ensemble. In these experiments, we induced
over 1,000 random perturbations to the prior structural ensemble, and calculated BICePs scores for each. Error bars represent the standard deviation
from the mean. The top panel shows the relationship between the BICePs score and the amount of error added to the structural ensemble. Each data
point is an average across of 100 BICePs calculations. In these calculations, we used the Good-Bad likelihood model with 32 replicas.
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Figure S5. Optimization of ξ -values to enhance free energy estimation. The y-axis is thermodyamic length, |ℓ(ξn+1)− ℓ(ξn)| for each pair of
intermediates, derived from the variance in distributions p(∆un,n+1). The top panel shows ξi values before optimization. The bottom panel shows the
optimized ξ ∗

i values. Optimized ξ -values have shifted to smaller values to make up for the lack of overlap between these adjacent thermodynamic
ensembles.
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Figure S6. The overlap matrix Oi j between thermodynamic states i and j for intermediates along the (ξ = 0→ 1) transformation, before optimization
of ξ -values. The overlap matrix (Klimovich et al 2015) is a Monte Carlo estimate of the average probability of samples in thermodynamic state
j being observed in thermodynamic state i: Oi j =

〈
Ni pi(x)

∑
K
k=1 Nk pk(x)

〉
j
, where Ni are the number of samples from thermodynamic state i and pi(x) are

posterior probabilities. Significant off-diagonal overlap provides evidence of reliable free energy estimates.
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Figure S7. The overlap matrix Oi j between thermodynamic states i and j for intermediates along the (ξ = 0 → 1) transformation, after optimization
of ξ -values. Stronger overlap is clearly demonstrated by comparison of post- and pre-optimization (Figure S6).
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Figure S8. Variational minimization of the BICePs score can be used to optimize forward model parameters. By variational minimzation
of the BICePs score, f optimization traces converge to the "true" parameters. In these calculations, ξ -values were optimized prior to running the
parameter refinement. We used the Good-Bad model with 4 replicas to minimize computational cost. Karplus coefficients predicted using the
Good-Bad likeliood model ({6.31± 0.02,−1.69± 0.03,1.69± 0.01}) are compared against SVD when faced with random and systematic error
(σdata = 0.471). The "True" parameters were set to be {A = 6.51,B =−1.76,C = 1.6}, the same as Figure S2.

Figure S9. Karplus curves with BICePs refined Karplus coefficients using the 1d3z ensemble for (a-f) 3JC′C′ , 3JC′Cβ , 3JHαC′ , 3JHNC′ , 3JHNCβ ,
3JHN Hα . BICePs calculations were run using four chains with 32 replicas each, where we burned 50k steps, then sampled for another 50k MCMC
steps. For comparison, SVD on 1ubq using experimental scalar coupling constants with φ -angles derived from the X-ray structure (black dashed
line) and red dots correspond to the fitted data points. Additionally, parameterizations from Bax et al. 1997 (green), and parameterization from
Habeck et al. 2005 (yellow) were overlaid for comparison. The thickness of the line corresponds to the uncertainty.
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Figure S10. Sampling the joint posterior distributions of six sets of Karplus coefficients using the Good-Bad model on the 1d3z ensemble.
BICePs calculations were run using four chains with 32 replicas each, where we burned 50k steps, then sampled for another 50k MCMC steps.
These marginal posterior distributions shown here are from a randomly selected chain.
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Figure S11. Sampling the joint posterior distributions of six sets of Karplus coefficients using the Good-Bad model on the RosettaFold2
(RF2) ensemble. BICePs calculations were run using four chains with 32 replicas each, where we burned 50k steps, then sampled for another 50k
MCMC steps. Compare with Figure S10 to see similarities.
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Figure S12. Traces of sampled Karplus coefficients for the 1d3z ensemble over 50k steps of MCMC, post-burn. BICePs calculations used the
Good-Bad model with 32 replicas. Traces display low variance with no jumps, which demonstrates converged samples
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Figure S13. The marginal posterior distribution of σJ, the uncertainty parameters for each set of J-coupling in the 1d3z ensemble. Densities are
a result of posterior sampling of FM parameters during ensemble refinement using the Good-Bad model with 32 replicas. The marginal posterior
distributions of the variance scaling parameter ϕ has a sampled mean slightly larger than 1.0 for particular sets of J-coupling, indicating that the
functional form of the likelihood opted for long tails to account for a few outlier data points deviating from the mean.
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Figure S14. BICePs score landscapes of FM parameters on the 1d3z ensemble, unveiled during ensemble refinement. BICePs calcualtions used the
Good-Bad model with 32 replicas. Each set of {A,B,C} was included in the joint posterior of FM parameters.
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Figure S15. Validation of refined Karplus coefficients using BICePs on the 1D3Z structural ensemble show similar results to Bax1997 and minor
improvements over Habeck2005 for scalar coupling predictions. Here, we compare models for predicting six sets of scalar coupling constants. Each
panel shows strong correlations and relatively low error.

Figure S16. Validation of refined Karplus coefficients using BICePs on the 2NR2 structural ensemble show similar results to Bax1997 and minor
improvements over Habeck2005 for scalar coupling predictions. Here, we compare various models for predicting six sets of scalar coupling
constants. Each panel shows strong correlations between predictions and experiment.
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Figure S17. Validation of refined Karplus coefficients using BICePs on the CHARMM22* structural ensemble show similar results to Bax1997 and
minor improvements over Habeck2005 for scalar coupling predictions. Here, we compare various sets parameters for predicting six sets of scalar
coupling constants. Each panel shows strong correlations between predictions and experiment. On average, BICePs parameters derived from the
2NR2 ensemble give the lowest MAE between experiment and predictions, whereas Habeck2005 has the highest due to 3JC′Cβ .
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