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Abstract 

Image-guided mouse irradiation is essential to understand interventions involving radiation prior 

to human studies. Our objective is to employ Swin UNEt Transformers (Swin UNETR) to 

segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results 

against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a 

sequence-to-sequence prediction task, using a hierarchical Swin Transformer encoder to extract 

features at 5 resolution levels, and connects to a Fully Convolutional Neural Network (FCNN)-

based decoder via skip connections. The models were trained and evaluated on open datasets, 

with data separation based on individual mice. Further evaluation on an external mouse dataset 

acquired on a different micro-CT with lower kVp and higher imaging noise was also employed 

to assess model robustness and generalizability. Results indicate that Swin UNETR consistently 

outperforms nnU-Net and AIMOS in terms of average dice similarity coefficient (DSC) and 

Hausdorff distance (HD95p), except in two mice of intestine contouring. This superior 

performance is especially evident in the external dataset, confirming the model's robustness to 

variations in imaging conditions, including noise and quality, thereby positioning Swin UNETR 

as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows. 
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1. Introduction 

Radiotherapy (RT) treats an estimated 52.4% of all cancer patients1 and contributes to 40% 

cures2.  Despite the long history of RT, its clinical applications are still being rapidly developed 

with ever-improving technology, understanding of underlying biology, and emerging combined 

therapy3-6.  The pre-clinical study of small animal RT response is a pivotal step to bridge the gap 

between in-vitro concepts and clinical practice7,8.  With the recent advance in gene knockout and 

transgenic techniques, mice and other rodents have become widely used model organisms of 

choice in pre-clinical research given their considerable similarity shared with human physiology 

and pathology, versatility in genetic modification, cost-efficiency, and availability9,10. 

 

The past decade has continued to witness the development of RT prompted by novel small-

animal irradiator-enabled comprehensive studies11.  Small animal irradiators are commonly 

designed with kilovolt x-ray radiation sources combined with high-resolution 3D image guidance 

in the form of onboard micro-computed tomography (CT), the latter of which is used for 

treatment planning and target localization, parallel to modern image-guided human radiotherapy 

workflow11,12.  A major progress in recent pre-clinical devices is the development of image-

guided small animal irradiators, which introduces whole-body imaging modalities and advanced 

image-guided irradiation systems for small animals13-15.  The Small Animal Radiation Research 

Platform (SARRP, Xstrahl Ltd.) and X-Rad SmART (Precision X-Ray Inc.) are two 

representative image-guided small animal radiation treatment systems16,17.  Image-guided small 

animal irradiators empower more accurate radiation dose characterization and delivery.  

However, the current workflow for image-guided small animal irradiator treatment planning 

requires manual organ delineation, which is impractical given the limited time, resources, and 

expertise in the pre-clinical domain18,19.  As a result, organ contouring is often abbreviated, 

inaccurately performed or even bypassed.  Subsequently, the 3D dose is inadequately 

characterized, compromising the experimental reproducibility and translatability.  

 

Apart from the practical challenge of manual contouring, additional challenges faced by mouse 

organ segmentation.  First, the image-guided mouse irradiation workflow must be accomplished 

in real-time with the animal under anesthesia, compared to asynchronous human treatment 

planning.  Second, a small animal irradiation experiment is often performed by a single operator 



whose expertise may not be mouse organ delineation, whereas human therapy is conducted by a 

team of experts, including those familiar with the delineation task.  Third, micro-CT images for 

small animal irradiation are significantly noisier than high-resolution diagnostic CT for human 

patient treatment planning.  Fourth, mouse micro-CT image quality is less uniform due to the 

lack of equipment and scanning protocol standards.  Additionally, delineating the tumor can be 

particularly challenging depending on its location, especially in orthotopic grafts, making the a 

priori knowledge of normal organ anatomy crucial.  Failing to recognize and address these 

challenges prevents biologists from extracting the essential dose-volume information and 

hampers the development of more advanced pre-clinical irradiation techniques, such as intensity-

modulated radiotherapy (IMRT).     

 

Several pioneering methods have been developed to automate small-animal organ contouring.  

For instance, atlas-based segmentation was used for mouse whole-body imaging20-23.  However, 

its segmentation quality relies on deformable registration and the prior anatomical knowledge 

defined in the atlas.  Following that, Van der Heyden et al.24 developed a multi-atlas-based image 

segmentation (MABIS) algorithm for six organs to account for individual variations and enhance 

low-contrast organ segmentation.  However, their proposed post-processing techniques are 

manual and time-demanding (~12 minutes per mouse).  In addition to atlas-based approaches, 

Akselrod-Ballin et al.25 proposed super-pixel machine learning algorithms learned from multiple 

imaging modality inputs, which can be generalized to various tissues and imaging modalities but 

added additional complexity to data acquisitions and required dedicated animal holders.  

 

Deep learning (DL) has shown great promise in image processing in the past decade, including 

segmentation26-28.  Multiple DL approaches were proposed for the task of mouse segmentation.  

Specifically, Van der Heyden et al.29 designed a two-step 3D U-Net to automatically contour 

mouse skeletal muscles.  Wang et al.30 developed a 3D two-stage deeply supervised 

convolutional neural network (CNN) to segment multiple major organs.  AIMOS31 (AI-based 

Mouse Organ Segmentation) was designed to be fully automatic with several 2D U-Net-like 

architectures that differ in the number of encoding and decoding levels.  Malimban et al.32 

applied several no-new-Net (nnU-Net) variants to segment mouse micro-CT scans and found that 

3D nnU-Net models outperformed 2D models and AIMOS.  Lappas et al.33 proposed a 



preprocessing step that converted Hounsfield units (HUs) to mass density to improve dataset 

consistency, followed by a 3D U-Net for micro cone-beam mouse CT segmentation.   

 

Fully convolutional neural networks (FCNNs), such as U-Net, have demonstrated solid 

performance in various medical image segmentation tasks34-36.  However, these methods are not 

built on the inherent self-attention mechanism and are unstable for segmenting heterogeneous 

data outside the training cohort.  The challenge is more significant for pre-clinical images due to 

the lack of standardization.  Recently, Transformers, leveraging parallel learning and attention 

mechanisms, have demonstrated efficient and robust inferences in computer vision tasks37-40.   

Rolfe et al.40,41 presented an open-source Mouse Embryo Multi-Organ Segmentation (MEMOS), 

using a fused architecture of U-Net and Transformers (UNETR).  More recently, Transformers 

evolved to be Swin Transformers42-45.  These models applied shifted windows self-attention 

scheme, referencing neighboring tokens during model propagation to enhance regional learning 

ability with surrounding information.  This approach makes the overall network architecture 

more robust and generalizable.  Inspired by Swin Transformers, Swin U-Net Transformers46 

(Swin UNETR) were developed specifically for generalizable medical imaging segmentation.  

The model outperformed other state-of-art approaches in brain tumor segmentation tasks, 

including nnU-Net35, SegResNet47 and a Vision Transformer-based model, TransBTS48, by 

achieving higher Dice scores.  However, the efficacy of Swin Transformer for pre-clinical micro-

CT segmentation has not been studied. 

 

Here, we introduce Swin Transformers for automatic major mouse organ contouring.  Our model 

is trained and validated on a publicly available micro-CT dataset and compared with state-of-art 

models, 3D U-Net architecture, and AIMOS.  A private dataset, acquired using a different micro-

CT at lower kVp, was employed to assess the generalizability of our method. 

 

 

2. Materials and Methods 

      2.1 Data  

In this study, we used public and private mouse micro-CT datasets.  The public dataset49 

consisted of two types of scans: native micro-CT (NACT) and contrast-enhanced micro-CT 



(CECT).  Specifically, the NACT dataset included 140 whole-body scans from 20 mice obtained 

at seven different time points using a pre-clinical micro-CT scanner (Tomoscope Duo, Germany) 

with an energy level of 65 kVp.  The CECT dataset contained 81 scans from 8 mice, acquired at 

various time points with an InSyTe micro-CT scanner (BMIF TriFoil Imaging, France) at 75 

kVp.  Both types of public scans used an isotropic resolution of 0.14 mm.  Additionally, we used 

a private dataset (PCT), consisting of 5 scans from 5 different mice.  These images were captured 

using an X-RAD SmART scanner (Precision X-Ray Inc.) at 40 kVp and featured an isotropic 

resolution of 0.2 mm.  The public and private datasets were annotated by two different biologists 

who were experts in delineating mouse CT anatomy.  The specifics for each dataset are further 

detailed in Table 1.  

 

We first employed both public NACT and CECT images to train two separate models.  For the 

models trained on NACT, the dataset from 20 mice (140 scans) was divided into 

train+validation/test = 14 mice (98 scans)/6 mice (42 scans).  The models trained on CECT 

utilized the dataset with 6 mice (66 scans) for training and validation and 2 mice (with 15 scans) 

for testing.  This data selection was implemented to create entirely separate subsets at the 

individual animal level for training, validation, and testing, thereby ensuring an unbiased and 

comprehensive evaluation of the model’s performance.  In this study, we focused on seven 

organs, including the heart, lungs, liver, intestine, spleen, kidneys, and bladder.  

 

All data were homogenized to ensure consistency as follows.  Scan voxel values were 

normalized to [0, 1], and mouse immobilization devices were scrubbed from the background.  

Noteworthily, the private dataset used a lower energy acquisition setting (40 kVp) than NACT 

(65 kVp) and CECT (75 kVp).  This resulted in a lower average signal-to-noise ratio 

(SNR=mean/standard deviation) for soft tissues, such as the liver, in the PCT dataset 

(SNR=3.57), compared to the average SNR values in the CECT (5.49) and NACT (6.59) datasets.  

As part of the data homogenization, the private dataset was converted to mass density using the 

density-HU calibration curve for 40 kVp and then converted to HU using the 65 kVp curve.  The 

lower-resolution private dataset was linearly resampled to be 0.14 mm isotropically, the same as 

the public dataset.  

 



Dataset Source Scanner Number of Animals Number of Images Energy Resolution 
   

Training/ 
Validation 

Test Training/ 
Validation 

Test 
  

Native CT 
(NACT) 

Public 
Dataset 

Tomoscope 
Duo 

14 6 98 42 65 kV 0.14 mm × 0.14 mm 
× 0.14 mm 

Contrast-
enhanced CT 

(CECT) 

Public 
Dataset 

InSyTe 6 2 66 15 75 kV 0.14 mm × 0.14 mm 
× 0.14 mm 

Private CT 
(PCT) 

City of 
Hope 

SmART / 5 / 5 40 kV 0.2 mm × 0.2 mm × 
0.2 mm 

 

Table 1.  Details of three datasets used in this study. 

 

2.2 Model 

      2.2.1 Swin Transformers for Semantic Segmentation 

Swin Transformer, a variant of the general Transformers model, employs an efficient shifted 

window partitioning scheme, making it suited for medical image analysis where multi-scale 

feature extraction is important.  In this study, Swin UNEt TRansformers (Swin UNETR) was 

adapted from Hatamizadeh et al.46 Swin UNETR reformulates the segmentation task as a 

sequence-to-sequence prediction problem, where multimodal input data is projected into 1D 

sequences of embeddings, utilizing a hierarchical Swin Transformer as the encoder.  This 

encoder has a patch size of 2×2×2 with 7 channels, resulting in a 56-dimensional feature space.  

The encoder is characterized by 4 stages with 2 transformer blocks in each, making a total of 8 

layers.  Swin UNETR has a U-shaped network design in which the extracted feature 

representations of the encoder are used in the decoder via skip connections at each resolution.  At 

each stage of the encoder and bottleneck, the output feature representations are adjusted in size 

and fed into a residual block.  This block consists of two 3×3×3 convolutional layers, normalized 

by instance normalization layers.  Following this, the resolution of the feature maps is doubled 

using a deconvolutional layer, and the resultant outputs are concatenated with those from the 

preceding stage.  The final segmentation is achieved using a 1×1×1 convolutional layer with a 

sigmoid activation function.  The soft Dice loss function is applied in a voxel-wise manner.  The 

Swin UNETR models were trained on NACT and CECT datasets separately.  The inference 

window size is 128×128×128 with an overlap factor of 0.8 between windows.  The U-shaped 

design incorporates Swin Transformer’s strengths into a structure conducive to complex 



segmentation tasks, such as mouse organ segmentation for micro-CT scans.  More Swin UNETR 

architecture details can be found in Figure 1. 

 

      2.2.2 nnU-Net 

 

The nnU-Net method35 is the first standardized out-of-the-box publicly available tool in 

biomedical segmentation.  It is a self-adapting algorithm that selects the hyper-parameters, such 

as the batch size, patch size, and network topology, depending on the dataset given by the user 

with a set of heuristic criteria.  nnU-Net offers a fully automated deep learning pipeline, 

including three different 3D U-Net architectures with a depth of 5.  It selects the best network 

architecture through a 5-fold cross-validation procedure to split the data into training and 

validation sets.  The same test set was withheld in this study, and the rest of the data were used 

for cross-validation.  The estimated best performance of all nnU-Net models was the 3D full-

resolution architecture32.  Subsequently, the 3D full-resolution nnU-Net models were separately 

trained on the NACT and CECT datasets, with 32 feature channels and a batch size of 2 for 

comparison.  More nnU-Net architecture details can be found in Figure 1. 

 

      2.2.3 AI-based Mouse Organ Segmentation (AIMOS) 

 

Schoppe et al.31 introduced AIMOS, a specialized deep-learning pipeline for segmenting mouse 

organs in micro-CT images.  This system offers various 2D U-Net-like architectures with 

minimal user intervention.  For this study, the UNet-768 structure was used, featuring six 

encoder-decoder stages with 32 and 768 feature channels at the highest layer and bottleneck, 

respectively.  The network was trained on all slices with a batch size of 32.  Malimban et al.32 

showed that 3D nnU-Net achieved better segmentation accuracy than 2D U-Net-based AIMOS 

for thorax organs using the same public NACT and CECT datasets.  Previous studies have 

benchmarked nnU-Net performance against AIMOS32.  Therefore, in this study, we used one 

published AIMOS model trained on the NACT dataset (NACTmodel.pt) to perform segmentation 

on the PCT dataset. 

 

 



2.3 Evaluation metrics  

 

The segmentation network performance was quantitatively evaluated using the Dice similarity 

coefficient (DSC) and the 95th percentile of the Hausdorff distance (HD95p)50 between automated 

and manual reference contours.  The analysis is performed for individual scans and then 

combined for each unique animal via averaging if multiple scans are present for the same animal.  

𝐷𝑆𝐶 =
2|𝐴⋂𝐵|
|𝐴| + |𝐵|																																																													,1./ 

𝐻𝐷!"# = 𝑚𝑎𝑥{𝑑!"(𝐴, 𝐵), 𝑑!"(𝐵, 𝐴)}, 		𝑑!" = 𝑥!"
$∈&

:min
'∈(

𝑑(𝑎, 𝑏)?																			,2./ 

DSC measures the volume overlap between the references and predicted masks.  A and B 

represent the corresponding voxels of the ground truth and the prediction, respectively. 𝑥!" 

denotes the 95th percentile. The HD95p is a specific variant of the Hausdorff Distance, designed to 

be robust toward outliers yet relevant to radiation treatment planning, aiming at constraining 

most voxels to be within a certain dose level.  The average DSC and HD95p were used for 

analysis to provide a balanced representation of the data across mice with varying numbers of 

scans, ensuring that the results were not influenced disproportionately by those with more or 

fewer scans.  

 

      2.4 Implementation details 

In our project, all neural networks were trained using a single NVIDIA RTX A6000 with 48 GB 

of GPU memory.  A five-fold cross-validation method was employed, and during each fold, two 

mice for NACT and one mouse for CECT were randomly selected for validation.  The Adam 

optimizer with an initial learning rate of 0.001 was applied.  The same dataset split configuration 

was used for all networks, and the test set and external set were withheld to evaluate and 

compare the predictions generated from all networks.  The training process with 500 epochs took 

approximately 1-3 days.  The inference speed was evaluated on the same system. 

 



 
Figure 1.  Swin UNETR architecture and 3D nnU-Net architecture used in this study. 

 

 

3. Results 

Seven major mouse organs were segmented using the Swin UNETR, 3D nnU-Net, and AIMOS.  

The test sets withheld from the NACT and CECT datasets were inferred and analyzed separately, 

and the PCT was used further to investigate each model’s robustness across institutional 

boundaries.  Figure 2 and Figure 3 illustrate comparisons for median cases between manual 

contouring and automated contouring by the Swin UNETR model and the 3D nnU-Net model 

from the NACT and CECT test sets.  Generally, both neural networks accurately segmented the 

target organs, except for the intestine and spleen.  The spleen lacked contrast in the NACT 

dataset but was visible in the CECT dataset. 



Additionally, the automatically delineated boundaries of predictions from both models were 

smoother compared to the actual ground truth, a characteristic most evident in the lungs.  Figure 

4 shows the model’s generalizability to the PCT using completely different imaging equipment, 

protocol, and organ annotator.  Swin UNETR was better at capturing lung features and providing 

more precise boundary predictions for the bladder, liver, and kidneys than the other two models.   

 

Both average DSC and HD95p were reported on the individual animal level for the NACT and 

CECT test sets in Table 2.  For the NACT test set, Swin UNETR generally showed slightly 

higher DSC in most organs, except in the intestine, where nnU-Net performed marginally better 

in two mice.  Consistently, both neural networks had difficulties with spleen segmentation in the 

NACT dataset, resulting in approximately 70% DSC and ~1 mm HD95p.  However, for the CECT 

test set, contrast agents significantly enhanced spleen segmentation, achieving more than 90% 

DSC and ~0.6mm HD95p.  All models achieved HD95p less than 1 mm except for the liver and 

intestine in both NACT and CECT test sets and the spleen in the NACT test set.  For the PCT 

dataset, metrics were reported for 5 mice in Table 3.  Superior performance and generalization 

using Swin UNETR, compared to the other two models trained with the NACT dataset, were 

more pronounced in the completely unseen PCT dataset.  Swin UNETR consistently achieved 

superior DSC and HD95p for all 7 organs, providing more than 80% DSC in the bladder, lungs, 

and liver, while the other two models’ performance suffered an evident drop to ~70% DSC.  For 

kidneys, the DSC also improved from ~60% for the 3D nnU-Net and AIMOS, to 73.1% for Swin 

UNETR.  The HD95p was nearly halved to 1.44 mm vs. 2.81mm for AIMOS.   

 

The yellow arrows in Figures 2-4 denote key differences in segmentation performance across 

various models.  Specifically, arrows in Figures 2-4 indicate that all deep-learning models yield 

smoother boundary contours for the lungs and mis-segmentations in the intestine.  In Figure 2 for 

the NACT dataset, arrows show over-segmentations at the spleen boundary due to a lack of 

contrast with adjacent tissues.  In Figure 4 for the PCT dataset, more false-positive islands can be 

observed in heart, liver, and kidney segmentation, as well as minor false-negative islands in the 

bladder. 

 



 
Figure 2.  Example of the median-scored case in mouse multi-organ segmentation in coronal 

view from the NACT test set.  Yellow arrows denote key differences in segmentation. 

 
Figure 3.  Example of the median-scored case in mouse multi-organ segmentation in coronal 

view from the CECT test set.  Yellow arrows denote key differences in segmentation. 

 
Figure 4.  Example of the median-scored case in mouse multi-organ segmentation in coronal 

view from the PCT test set.  Yellow arrows denote key differences in segmentation. 

 



DSC (%) 
mean±s.d. 

Bladder-1 Lungs-2 Heart-3 Liver-4 Intestine-5 Kidneys-6 Spleen-7 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

NACT 

M01 90.9±1.8 90.1±2.3 89.4±1.5 88.3±1.3 92.6±1.3 90.8±1.2 91.1±1.2 88.8±1.3 86.5±2 86±1.8 91±1.1 90.4±1 74.6±7.7 72.5±8.7 

M02 92.5±2.3 92.4±2 91.2±0.9 89.2±0.9 91.8±1.2 90.8±1.3 92±1.3 90.5±1.1 89.7±1.9 89.3±1.8 91.3±1.4 90.4±1.3 75.2±3.6 73.8±6.5 

M03 92.3±0.6 90.7±1 90.6±1.2 89.4±1.5 91.4±0.9 91.3±1.1 91±0.5 90.9±1.1 88.7±1.5 88.9±1.2 88.8±2 88.6±3.1 75.5±3.9 74.9±4.2 

M04 91.7±1.6 90.5±1.5 92.5±0.7 89.8±0.9 92.7±0.6 91.6±0.5 91.6±1 91.1±1.2 89.8±1.3 89.8±1.5 90.9±1.1 90.6±1 76.1±4.4 74.1±6 

M05 88.5±0.6 86.8±1.3 89.5±0.7 88.9±0.9 93.4±0.3 92.1±0.4 92±1.3 90.2±1.4 88.2±1.6 88.4±1.7 90±1.4 89.9±1.7 77.2±2.8 75.8±4.5 

M06 89.8±2.6 89.1±2.3 93.2±1.6 92.4±1.5 93±0.6 91.8±0.8 87.7±0.7 87.6±1.8 88±1.5 88±2.2 86.6±2.7 85.5±3 67.5±7.2 65.9±8.7 

 

CECT 
M01 91.9±3 90.1±3.2 89.9±4 89.9±4.8 93±1.3 92.3±1.6 92.7±0.3 92.4±0.6 89.5±2.9 88.9±2.8 92±1.3 91.2±1.3 92.4±1.4 90.5±2.5 

M02 91.4±3.1 89.1±3 86.6±5.5 85.8±7.1 92.5±1.4 90.8±1.6 88.5±4.2 85.5±4.3 84.9±3.5 84.6±5.1 88.8±2.8 87.7±2.6 92.3±1.3 91.4±1 

 

HD
95p
(mm) 

mean±s.d. 

Bladder-1 Lungs-2 Heart-3 Liver-4 Intestine-5 Kidneys-6 Spleen-7 

Swin  
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

Swin 
UNETR nnU-Net 

NACT 

M01 0.42±0.16 0.47±0.16 0.29±0.11 0.31±0.16 0.42±0.2 0.46±0.24 1.16±0.47 1.38±0.33 1.86±0.66 1.86±0.53 0.57±0.2 0.65±0.11 0.97±0.32 1.11±0.44 

M02 0.39±0.17 0.41±0.17 0.28±0.09 0.28±0.08 0.47±0.14 0.47±0.16 0.93±0.37 1.03±0.39 1.86±0.46 1.93±0.68 0.56±0.18 0.69±0.12 0.85±0.19 1.15±0.29 

M03 0.41±0.14 0.45±0.13 0.27±0.07 0.48±0.11 0.37±0.15 0.40±0.16 0.98±0.28 1.03±0.62 2.31±0.68 2.28±0.7 0.61±0.29 0.75±0.24 1.06±0.19 1.03±0.17 

M04 0.43±0.12 0.46±0.13 0.27±0.12 0.30±0.14 0.39±0.1 0.39±0.17 0.99±0.3 1.02±0.38 1.60±0.4 1.63±0.58 0.53±0.14 0.65±0.15 1.00±0.23 1.09±0.34 

M05 0.64±0.17 0.64±0.19 0.26±0.1 0.31±0.15 0.36±0.07 0.37±0.08 0.98±0.29 1.08±0.3 1.98±0.33 1.91±0.45 0.58±0.18 0.68±0.17 1.06±0.21 1.12±0.32 

M06 0.37±0.14 0.51±0.16 0.32±0.18 0.32±0.2 0.39±0.16 0.39±0.2 1.23±0.53 1.47±0.66 2.02±0.51 2.03±0.62 0.65±0.15 0.77±0.25 1.39±0.3 1.65±0.45 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

CECT 
M01 0.38±0.1 0.44±0.2 0.25±0.15 0.29±0.13 0.52±0.24 0.58±0.19 1.14±0.29 1.26±0.42 1.78±0.5 1.94±0.67 0.62±0.29 0.65±0.24 0.72±0.2 0.76±0.33 

M02 0.46±0.11 0.50±0.14 0.27±0.13 0.35±0.1 0.59±0.27 0.62±0.2 1.06±0.39 1.10±0.5 2.04±0.9 2.10±0.8 0.59±0.2 0.83±0.38 0.64±0.12 0.73±0.26 

 

Table 2.  Quantitative evaluation results on average DSC (%), HD95p (mm) for the NACT and 

CECT test sets.  Swin UNETR model performance is compared with the 3D full-resolution nnU-

Net model.  The better results are bolded, with those not from Swin UNETR also underlined. 

 

 

 



 Bladder-1 Lungs-2 Heart-3 Liver-4 Intestine-5 Kidneys-6 

mean±s.d. 
Swin 

UNETR nnU-Net AIMOS 
Swin 

UNETR nnU-Net AIMOS 
Swin 

UNETR 
nnU-
Net AIMOS 

Swin 
UNETR nnU-Net AIMOS 

Swin 
UNETR nnU-Net AIMOS 

Swin 
UNETR nnU-Net AIMOS 

DSC (%) 86.9±4.1 74.2±5.4 72.6±11 84.8±2.5 78±2.1 72.4±2.1 89.9±1.2 86±3.1 86.3±1.8 84.1±1.4 75.2±2.6 68.9±2.5 76.9±2.2 72±3.9 63.7±4.8 73.1±6.9 64.2±9.2 58.9±8 

HD
95p 

(mm) 0.62±0.17 0.89±0.58 2.1±1.14 0.69±0.13 1.22±0.14 0.94±0.06 0.6±0.06 1±0.14 0.79±0.08 1.8±0.18 1.97±0.66 2.24±1.1 2.57±0.7 2.88±0.37 3.86±1.25 1.44±0.5 2.79±1.2 2.81±0.41 

 

Table 3.  Quantitative evaluation results on average DSC (%), HD95p (mm) for the ECT test set.  

Swin UNETR model performance is compared with the 3D full-resolution nnU-Net and the 

published AIMOS model.  The better results are bolded, with those not from Swin UNETR also 

underlined. 

 

4. Discussion 

 

3D image-guided pre-clinical irradiation platforms afford more accurate and conformal dose 

delivery for targeted interventional response assessment.  The conformal dose delivery also lends 

to more translatable radiation research51.  However, conformal dose distribution needs to be 

contextualized with 3D organ contours, which are not readily available in the existing pre-

clinical research workflow.  The importance of accurate organ and structure contours increases 

with the recently introduced small animal intensity-modulated radiotherapy (IMRT), which 

better mimics human radiotherapy52-57.  IMRT planning solves an inverse optimization problem 

for specific 3D organ dosimetric goals, thus requiring accurate delineation of involved organs.  

Manual delineation of normal organs has been routinely performed for human patients, but such 

a task can be impractical for pre-clinical research.  Automated segmentation of the mouse organs 

has been performed using conventional methods, including active contouring and deformable 

registration.  DL has emerged as a more precise tool for organ segmentation in mouse imaging.  

Several existing studies have employed CNNs, e.g., 2D and 3D U-Net, to facilitate automated 

segmentation of mouse organs.  Despite their improved performance over conventional methods, 

CNNs lack inherent self-attention mechanisms necessary for stable performance, as shown in 

“domain shift” problems58.  Swin Transformers demonstrated superior robustness with the 

shifted window self-attention mechanism and a hierarchical architecture for natural image 

processing.  In this study, we focused on investigating the robustness of Swin Transformers 

versus U-Net variants (nnU-Net and AIMOS)31,35. 



 

Swin UNETR consistently outperformed the 3D nnU-Net model except for two mice, where the 

latter performed marginally better on the intestine, which has an intrinsically large manual 

delineation uncertainty due to morphologically complex and heterogeneous imaging intensity 
31,32.  This uncertainty was observed from inter- and intra-observer variations in the ground truth 

contours across the three test sets.  Additionally, the intestine contouring can be highly subjective, 

lacking clear boundaries to surrounding tissues, especially in low-resolution and noisy CBCT 

images.  Spleen segmentation posed a challenge for both neural networks in the NACT dataset, 

for the spleen often exhibits low contrast relative to adjacent tissues, such as the stomach, 

pancreas, and kidneys.  Notably, applying contrast agents in the CECT test set yielded significant 

improvements in spleen segmentation, achieving over 90% DSC as illustrated in Figure 3, where 

the spleen appears highlighted.  Although contrast agents did influence the liver, there were no 

discernible improvements in the CECT dataset.  In NACT images, the liver typically exhibits 

well-defined boundaries and relatively high contrast with adjacent tissues, which allows for 

accurate segmentation by neural networks.  These intrinsic characteristics of the liver may be 

sufficient for precise segmentation, rendering the additional contrast agents used in CECT less 

impactful.         

 

Domain shift is one of the crucial tests to measure DL model generalizability58, a property 

essential for the pre-clinical micro-CT images demonstrating substantial inter-institution 

variation due to the lack of standards.  Imaging equipment, scanning geometry, kVp, and mAs 

can substantially alter the CT image characteristics.  Yet, existing models for mouse 

segmentation are often trained and tested on samples acquired within one institution with 

homogeneous scanning parameters.  The untested model robustness can hinder the adoption of 

automated segmentation.  We acquired a PCT dataset using different micro-CT and image 

protocols to test the model robustness, including a lower kVp and resultant lower SNR.  A 

different expert annotated the images.  Inter-observer variations led to an estimated average 

decline in DSC of 8% and HD95p of 0.5 mm for Swin UNETR, compared to a 15% and 1 mm 

decline for 3D nnU-Net.  Both models were trained on the NACT dataset with the original 

annotator.  The declines in DSC and HD95p were calculated by comparing the models’ average 

performance on the PCT dataset, annotated by a different individual, against their performance 



on the NACT dataset.  This comparison provided an approximate measure of annotator bias, 

showing the performance drop when models trained on one annotator’s labels were evaluated 

against another.  Swin UNETR demonstrated its robustness to domain shift and consistently 

outperformed 3D full-resolution nnU-Net and AIMOS.  The superior performance of Swin 

UNETR can be firstly attributed to its ability to capture long-range dependencies through an 

inherent self-attention mechanism, allowing for accurate organ structure recovery.  Second, the 

model effectively balances global context awareness with local feature extraction by integrating 

Swin Transformers with a U-shaped network, further facilitating overall and detailed contour 

representation understanding.  

 

This study is not without limitations.  First, the public dataset used in this study included 221 

sequential images of only 28 mice.  Although we reasonably assumed the anatomical similarity 

of these genetically homogeneous mice, the training was not based on fully independent samples.  

To mitigate the limitation, we carefully split data based on individual mice to minimize 

interdependence among the training samples.  In the current work on the other hand, the concern 

of data dependence is largely answered by the independent test on PCT.  Second, all NACT, 

CECT and PCT datasets scans were conducted in the prone position.  Mice setup in other 

postures, including supine and decubitus positions, likely require training a new model on 

corresponding CT images.  Third, neural network performance is inherently task-specific and 

contingent upon the data used, as different DL methods yield varying results on disparate 

datasets.   Fourth, auto-segmentation on low native contrast organs (spleen) and morphologically 

complex organs (intestine) can be unreliable.  Possible solutions, including domain adaptation 

adversarial generative networks59, could be explored to highlight spleen-related voxels to assist 

neural networks further.  Lastly, the test results depend on the quality and consistency of manual 

annotation.  Digitization errors, such as the rough boundaries of the manual lung contours, 

contributed to residual discrepancies that cannot be completely eliminated.  

 

5. Conclusion 

 

In this study, we assessed the performance of Swin UNETR in segmenting major mouse organs 

across different datasets.  Swin UNETR consistently outperformed 2D and 3D U-Net. Most 



importantly, Swin UNETR demonstrated superior robustness via testing on an independent 

mouse CT dataset with substantially different image characteristics.  The resilience to more noisy 

images is an important step toward a generalizable auto-segmentation method for pre-clinical 

radiation research.  
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