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Abstract  

Bioinformatics software tools are essential to identify informative molecular features that 

define different phenotypic sample groups. Among the most fundamental and interrelated tasks 

are missing value imputation, signature gene detection, and differential pattern visualization. 

However, many commonly used analytics tools can be problematic when handling biologically 

diverse samples if either informative missingness possess high missing rates with mixed 

missing mechanisms, or multiple sample groups are compared and visualized in parallel. We 

developed the ABDS tool suite specifically for analyzing biologically diverse samples. 

Collectively, a mechanism-integrated group-wise pre-imputation scheme is proposed to retain 

informative missingness associated with signature genes, a cosine-based one-sample test is 

extended to detect group-silenced signature genes, and a unified heatmap is designed to display 

multiple sample groups. We describe the methodological principles and demonstrate the 

effectiveness of three analytics tools under targeted scenarios, supported by comparative 

evaluations and biomedical showcases. As an open-source R package, ABDS tool suite 

complements rather than replaces existing tools and will allow biologists to more accurately 

detect interpretable molecular signals among phenotypically diverse sample groups.   

 
Introduction  

High-throughput molecular expression profiling technologies provide the ability to 

comparatively study many genes or proteins expressed in biologically diverse samples 

(samples belonging to different phenotypic groups) 1. An important but underappreciated issue 

in proteomics or gene expression analysis is how best to impute informative missingness that 

is often associated with signature genes with uneven missing rates in different groups and 

mixed missing mechanisms 2. Among many data-driven imputation methods, the categorical 

information associated with informative missingness is often ignored 3. Another essential and 

challenging task is to identify high quality signature genes that uniquely characterize the group 

of interest against the rest. Ideally, a signature gene among molecularly distinct groups would 

be either uniquely expressed or silent in the group of interest but in no others 4. However, test 

statistics used by most existing methods do not satisfy exactly this signature definition and are 

theoretically prone to detecting imprecise signatures 5. Furthermore, while a typical heatmap 

design is visually effective, the common reference origin for expression measurements is 

altered by the classical standardization, with zero-expression replaced by floating negative 
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values for different genes. As a result, the color coding does not correctly reflect the relative 

quality among signature genes. 

Here we present ABDS tool suite assembled specifically for analyzing biologically 

diverse samples. Open-source R package includes three fundamental and interrelated analytic 

tools, namely, mechanism-integrated group-wise pre-imputation (MGpI), extended cosine-

based one-sample test (eCOT) 5, and unified heatmap design (uniHM). Collectively, we 

propose a hybrid imputation strategy to impute informative missingness associated with 

signature genes (SG), a cosine-score test to detect downregulated signature genes (DSG), and 

a unified heatmap design to comparably display multiple differential groups (Fig. 1). We 

demonstrate the effectiveness and utility of ABDS tools using both realistic simulations and 

real biomedical case studies, showing improved performance as compared with peer methods. 

The ABDS tool suite will allow biologists to more accurately detect true molecular signals 

from biologically diverse samples.  

Results  
We evaluated the performance of MGpI and eCOT in comparison with representative 

or standard peer methods 5,6. The evaluation does not include uniHM because it is a subjective 

visualization tool. We then conducted case studies to demonstrate the utility of these tools in 

biomedical applications. We used two quantitative measures to evaluate imputation accuracy, 

namely Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE). 

Specifically, RMSE and NRMSE are given by 7,8 RMSE = √∑ (�̂�Ω−𝑋Ω)2Ω |Ω| ,   NRMSE = √∑ (�̂�Ω−𝑋Ω)2Ω|Ω|𝜎𝑋Ω2 , 

respectively, where Ω is the index set of missing values in complete data matrix 𝑋, |Ω| is the 

total number of missing values, �̂� is the imputed complete data matrix, and 𝜎𝑋Ω2  is the variance 

of missing values.  We used both partial Receiver Operating Characteristic (pROC) curve and 

the area under pROC (pAUC) to assess the accuracy of detecting silent signature genes.           

Experimental design and protocol  

For real omics data, there is no method that can truly assess the accuracy of various 

imputation methods, because missing values will never be known and masked values cannot 

serve as the ground-truth missing values for unbiased evaluation 6,9. While there are multiple 

causes for missing values in omics data, three typical missing mechanisms are widely 

acknowledged. For example, low abundant proteins or transcripts are easily missed because 
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their concentration is below the lower limit of detection (LLOD); and poorly ionizing peptides 

may also cause proteins to be missing not at random (MNAR) 10.  However, missingness may 

also extend to mid- and even high-range intensities 11, statistically categorized into missing at 

random (MAR) 12. More precisely, MAR is missing conditionally at random and is associated 

with observed data distribution or underlying parametric covariates. While MAR allows 

prediction of the missing values based on observed data, unfortunately, the MAR and MNAR 

conditions cannot be distinguished based on the observed data because by definition missing 

values are unknown 9,13. More importantly, missing values in reality can originate from a mix 

of both known and unknown missing mechanisms 12,14. 

To demonstrate the efficacy of MGpI, we evaluated and compared the accuracy of 

imputations by MGpI and seven peer methods on ground truth embedded realistic simulation 

data generated from two real omics data sets (LAD45 proteomics data 10 and Single-cell RNA 

Seq data 15). For proteomics data, the realistic simulations involve 4 groups (normal – NL, fatty 

streaks – FS, fibrous plaques – FP, complex lesion - FC), 713 features, and 292 samples 

(imbalanced, 143 NL, 79 FS, 56 FP, 13 FC). Sample clustering was performed to select a subset 

of representative samples with a more balanced group sizes (10 NL, 20 FS, 30 FP, 10 FC). 

There are 120 SGs (30 SGs per group) with cosine values of 0.7~0.95 5. The ground-truth 

missing values were introduced and assigned by assigning some of the observed values with 

NA. Theoretically, any gene may contain some missing values. The introduced missing values 

are expectedly dominated by random missing mechanism in the group where SGs are highly 

expressed and dominated by LLOD in the groups where SGs are lowly expressed. Overall 

missing rates are 40~60% with MAR missing proportions of 30~50%.  

For single-cell RNA Seq data, the realistic simulations involve five groups, 2,221 

features, and 4,117 cells (imbalanced, cardiac muscle cell 133, endocardial cell 165, endothelial 

cell 1177, fibroblast 2119, leukocyte 523). Samples were first filtered based on the zero-value 

ratio (<400 out of 2,221 per sample), then followed by sample clustering, to select a subset of 

representative samples with higher quality and between-group balance (cardiac muscle cell 50, 

endocardial cell 20, endothelial cell 30, fibroblast 600, leukocyte 100). SGs are selected by 

COT (30 SGs per cell type). Masked missing values are introduced to non-zero values only 

with overall missing rate of 40%, 50% or 60%, of which 30%, 40% or 50% are MAR and 

remaining due to LLOD. Evaluation of imputation accuracy is measure over masked missing 

values only.   

For assessing the accuracy of eCOT, the simulation data were generated according to 

the following design settings (see the scatter simplex illustrated in Fig. 2): K=3~5 groups are 
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considered, feature distribution under the null hypothesis (non-DSGs) follows the mixture of 

a symmetric Dirichlet distribution (1,200 features, black dot,  𝛼=1), a Dirichlet distribution 

(1,200 features, black dot 𝛼=4), and a truncated/non-negative zero-mean Gaussian 

distribution centered at simplex vertices (20 features/SGs per group, green dot); feature 

distribution under the alternative hypothesis (DSGs) follows a truncated/non-negative zero-

mean Gaussian distribution centered at the centers of simplex facets (50 DSGs per group, red 

dot). Note that eCOT detects DSGs in K-dimensional space while OVR-FC/t-test works in 

one-dimensional scalar space after merging the rest into a single group (Fig. 2 illustrates the 

feature movement associated with the group merging – multiphase airflow dynamics or fluid 

diffusion flow). 

Comparative evaluation of MGpI on realistic simulation data 

We evaluated the accuracy of MGpI in comparison with seven representative peer 

methods on ground truth embedded realistic simulation data generated from two benchmark 

omics data sets (LAD45 proteomics data 10 and Single-cell RNA Seq data 15). Our experiments 

emphasized SGs because these genes typically exhibit high and uneven missing rates or 

mechanisms across different groups. The introduced missing values are dominated by random 

missing mechanism in the group where SGs are highly expressed and dominated by LLOD in 

the groups where SGs are lowly expressed (Fig. 1A). 

We imputed missing values based on equation #1. We used both the root mean squared 

error (RMSE) and normalized RMSE (NRMSE) between the imputed value �̃�(𝑖SG) and the 

ground truth 𝒙(𝑖SG) to assess imputation accuracy 6. The experimental results show that MGpI 

consistently outperforms all seven peer methods with lower RMSE and NRMSE on both 

general features and SGs in these experiments (Tables 1-2, Tables S1-S2). It can be seen that 

the relative performance of various imputation methods varies between proteomics and single-

cell RNA Seq data. This should be expected because different data types have different yet 

complex missingness patterns. It should be noted that the ability to simulate the missing values 

mechanisms (MNAR, MAR) depends on the efficacy of the tools applied. While it may be 

informative to compare the impact of the imputation versus non-imputation on some 

subsequent data analysis, we have opted to focus on assessing direct imputation accuracy using 

realistic simulations with available ground truth, because the evaluation using subsequent 

analysis would be indirect and task-dependent. 
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Comparative evaluation of eCOT-DSG on simulation data 

We evaluated the accuracy of eCOT-DSG in comparison with two most relevant and 

suitable benchmark methods, namely One Versus Rest t-test (OVR t-test) and One Versus Rest 

Fold Change (OVR-FC), on ground truth embedded simulation data 5. In our previous report 

on the COT framework for detecting SGs, we have compared the performance of COT-SG 

with additional methods such as ANOVA and Limma/EdgeR. Here we opted not to include 

ANOVA and Limma/EdgeR in the comparison because they are not designed for detecting 

DSGs. Simulation data include general genes generated from a mixture of two Dirichlet 

distributions, and realistic SGs and DSGs (Fig. 1B, Supplementary Information). We used both 

partial Receiver Operating Characteristic (pROC) curve and the area under pROC (pAUC) to 

assess DSG detection accuracy. The experimental results show that eCOT consistently 

outperforms the two benchmark methods with higher pAUC and almost perfect power at 

standard false positive rate cutoff for K= 3, 4, 5 (Fig. 3). 

The null distribution plays a crucial role in large-scale multiple testing when false 

positives are of great concern. However, because the number of pure group samples is often 

very small and non-DSG patterns are often highly complex and intrinsically data-dependent, 

classical schemes to estimate the null distribution in a two/multiple-sample test setting is 

impractical  16 or even inappropriate 17. A reasonable assumption is that the observed data can 

show the null distribution when a significant majority of features are associated with the null 

hypothesis 17.  

Interpretable biomedical case study  

We applied eCOT to a proteomics dataset acquired from human artery samples enriched 

by the tissue types associated with atherosclerosis 18. Samples were divided into three 

phenotypic groups based on the severity of atherosclerosis pathogenesis (FP, FS, NL). We 

surveyed all cosine scores and reported top SGs and DSGs (Fig. 1C, Table S3-S4). Functional 

pathway analysis of tissue type-specific signature genes produced results consistent with 

pathogenic atherogenesis. Network analysis of the top enriched functional pathways associated 

with FP showed that SGs were enriched for complement and coagulation functions, whereas 

DSGs were enriched for myogenesis and EMT (Fig. 4, Figure S2). Together, this pattern is 

consistent with the increased inflammation and decreased smooth muscle cell contractile 

phenotype composition seen in atherosclerotic lesions. Since IL2-related DSGs were enriched 

in the NL, this finding could reflect that lower IL2 signaling is protective against atherosclerotic 

plaque development. 
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Functional pathway analysis of all signature genes, both upregulated (SG) and down-

regulated (DSG), performed on each pathological group produced results consistent with 

known pathogenesis in atherogenesis. Network analysis of the top enriched functional 

pathways from analysis of fibrous plaque genes indicated upregulated SGs were enriched for 

complement and coagulation functions, whereas DSGs were enriched for Myogenesis and 

EMT (Fig. 4). Together, this pattern is consistent with increased inflammation and decreased 

smooth muscle cell contractile phenotype composition within atherosclerotic lesions (PMID: 

32202800, PMID: 35365353, PMC4762053, PMID: 15269336). While equal numbers of SG 

and DSGs were confidently identified for the FP group, there was lower SG quality (e.g., lower 

cosine score) and fewer numbers identified for the FS and NL groups, although DSG for these 

groups were strong. Pathway analysis for the FS and NL groups indicated marker genes 

associated with mTORC1 signaling and reactive oxygen species (ROS) pathway enriched 

among FS signature proteins and myogenesis, EMT, hypoxia and IL2/STAT5 signaling were 

enriched among NL signature proteins (Fig. S2). Both mTORC1 and ROShave previously been 

linked to atherogenesis (PMC8835022, PMID: 28446473). Interestingly, IL2 in blood vessels 

is produced, at least in part, by resident T cells with IL2 receptors located on the smooth muscle 

cells (PMC3162067) and IL2 signaling has been linked to atherogenesis (PMID: 1515626). 

Since IL2-related proteins were enriched among the DSG in the NL group, this finding could 

reflect that lower IL2 signaling is protective against atherosclerotic plaque development. This 

hypothesis and others generated from the analysis of SG and DSG warrants further testing in 

future studies.  

Visualizing expression patterns of SGs/DSGs by uniHM 

We used the newly designed heatmap to display the differential expression patterns of 

the DSGs reported in section 3.3 (Fig. 1C), in comparison with the classically designed 

heatmap (Fig. S1). Using this newly implemented heatmap function, DSGs are arranged based 

on their sample-averaged cosine scores with respect to hypothesis-enumerated references. The 

new heatmap visually reflects the idealness of DSGs where the common origin remains the 

same across all genes and the contrast is consistent with the corresponding cosine scoring. 

Additional biomedical case study using eCOT-DSG 

We applied eCOT to our Edinburgh breast cancer gene expression data from mostly 

estrogen receptor-positive tumors acquired prior to standard endocrine therapy. Samples were 

divided into four roughly equal-sized phenotypic groups based on the follow-up sample-wise 
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recurrence times. We again surveyed and reported all SGs/DSGs (Figs. S3-S4, Tables S5-S6). 

Signaling activated downstream of EGFR family members is a central feature of breast cancer. 

HER2/ERBB2 is the most widely studied, where protein overexpression or gene amplification 

defines one of the three primary breast cancer groups and targeting the HER2 protein and/or 

blocking its kinase function greatly improves overall survival is now standard of care for 

patients with HER2+ breast tumors. When applied to transcriptome data from breast cancer 

patients, the eCOT identified EGFR/ERBB2 and multiple EGFR-related downstream targets 

as enriched in estrogen-receptor positive (ER+) breast cancers likely to recur late (≥ 5 years 

after initial diagnosis). Most of these tumors were treated with the antiestrogen Tamoxifen and 

many patients would experience an overall survival benefit from Tamoxifen. However, 

consistent with the eCOT prediction, higher expression of EGFR (ERBB) or HER2 (ERBB2) 

would be expected to reduce Tamoxifen responsiveness and increase the likelihood of a 

subsequent recurrence. 

Discussion  
ABDS suite presents three novel data analytics tools for analyzing biologically diverse 

samples across multiple groups. These tools are specifically designed to complement existing 

methods for imputing mechanism-mixed informative missingness, detecting downregulated 

signature genes, and visualizing complex differential expression patterns. Specifically, MGpI 

enables recruiting critical SGs that are often prematurely eliminated due to high overall missing 

rates. Moreover, the detected DSGs will allow researchers to study silenced pathways, assisting 

potentially more comprehensive characterization of disease progression. For readers interested 

in the relevant mathematical formulation and algorithmic workflow, we highly recommend the 

original reports 4-6. While the focused applications here involve gene or protein expression data 

acquired from bulk or sorted-cell samples, the ABDS tools are principally generalizable to 

other molecular omics measurements with further developments. 

 We emphasize that the ABDS suite is intended to complement rather than replace 

existing tools. For example, MGpI imputes potentially informative missingness associated with 

signature genes that may be eliminated prematurely due to relatively high overall missing rates. 

The key difference between MGpI and existing methods is that MGpI performs group-wise 

imputation by considering both MNAR and MAR/MCAR mechanisms within each group, thus 

serving as a pre-imputation step. We note that MGpI may lose some power due to smaller 

within-group sample size. Hence, we recommend that users may apply global methods to refine 
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missing value imputation using all samples after MGpI 3,6. We also advise users to apply a 

classical heatmap design for visualizing differential expression patterns.  

Method 

Mechanism-integrated group-wise pre-imputation 

Signature genes play important roles in studying and characterizing biologically diverse 

samples 18. Missing values associated with these genes are expected to have a group-specific 

mix of different missing mechanisms and cross-group uneven missing rates. Thus, using an 

overall missing rate for data quality control would be problematic and could adversely affect 

subsequent analyses. For example, the current practice in analyzing omics data containing 

missing values is to eliminate genes with overall missing rates higher than a threshold. This 

would not be ideally applicable to biologically diverse samples, e.g. belonging to multiple yet 

different groups. A common solution for missingness is to impute the missing values based on 

assumed missing mechanisms. However, this approach can introduce a profound change in the 

distribution of protein-level intensities because most methods are only designed for a single 

missing mechanism 2. These changes can have unpredictable effects on downstream 

differential analyses. For example, MNAR in the group(s) dominated by LLOD is often 

imputed in the same way as in the groups dominated by MAR mechanisms 6, ignoring the 

categorical information about biologically diverse samples.     

We propose a mechanism-integrated group-wise pre-imputation (MGpI) strategy that 

explicitly considers mixed missing mechanisms varying across different phenotypic groups, 

where we assume that the molecular expression data are approximately and normally 

distributed. First, with an initial data normalization based on a subset of genes with no 

missingness, a common overall minimum value 𝜖 associated with LLOD is determined from 

all observed values of the full data matrix in log-space. Second, for each gene i and for each 

group k, group-specific mean value �̅�𝑘(𝑖) and standard deviation 𝜎𝑘(𝑖) are calculated. Note 

that none of missing values (NA) is involved in the estimation of these model parameters. Third, 

within each group k, a missing value is imputed by �̃�𝑘(𝑖) = 𝛼𝑘(𝑖) 𝜖 2⁄ + [1 − 𝛼𝑘(𝑖)]�̅�𝑘(𝑖), (1) 

where 𝛼𝑘(𝑖) is the probability of LLOD missing mechanism (the area under the green curve 

outlined by the red-dash block in Fig. 1A) and is estimated by 𝜖 and the approximated normal 

distribution specified by �̅�𝑘(𝑖) and 𝜎𝑘(𝑖). MGpI scheme integrates two popular and simple 

imputation methods 2,6, i.e., weighted ‘overall min/2’ for imputing LLOD/MNAR missingness 
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and ‘group-specific mean’ for imputing MAR/MCAR missingness. Specifically, for each 

group k, we plug-in the overall minimum observed value to the estimated normal distribution 

to determine the probability 𝛼𝑘(𝑖) of LLOD/MNAR (under green curve within red block), then 

assign [1 − 𝛼𝑘(𝑖)] to be the probability of MCAR/MAR. 

Seven most-relevant peer methods for missing value imputation 

• min/2 (half minimum): Taking MNAR as the missing mechanism (e.g. LLOD), for 

each protein the missing values are estimated as half the minimum value of the observed 

intensities in that protein across all samples  9,10. 

• Mean: For MAR/MCAR as the missing values mechanism, for each protein we 

replaced the missing values with the mean value of the observed intensities in that 

protein across all samples 9,10.  

• swKNN (sample-wise k-nearest neighbors): Taking MAR as the missing values 

mechanism, we leveraged local similarity among samples for each protein, replacing 

the missing values with the weighted average of observed intensities in that protein 

proportional to the proximities of k-nearest neighboring samples 9. 

• PPCA (probabilistic PCA): For MCAR/MAR as the missing values mechanism, a low-

rank probabilistic PCA matrix factorization was estimated by the expectation 

maximization (EM) algorithm and then used to impute missing values 19. 

• NIPALS (non-linear estimation by iterative partial least squares): Taking MCAR/MAR 

as the missing values mechanism, a low-rank missing-data-tolerant PCA matrix 

factorization was estimated by iterative regression and then used to impute missing 

values 20,21. 

• SVD (SVDImpute): For MCAR/MAR as then missing values mechanism, a low-rank 

SVD matrix factorization was estimated by the EM algorithm and used to impute 

missing values 20,22. 

• SVT (singular value thresholding): Where we assumed MCAR/MAR to be the missing 

values mechanism, a low-rank SVT matrix factorization was estimated by iteratively 

solving a nuclear norm minimization problem and then used to impute missing values 

23. 

Extended cosine-based one-sample test on downregulated signature genes 

An important but frequently underappreciated issue is how best to define and detect a 

cell or tissue marker among many groups. Here we extended cosine-based one-sample test 
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(COT), a SG detection method that we previously developed 5. For readers interested in the 

mathematical formulation, algorithmic workflow, and comparative evaluations of the COT 

approach for detecting SGs, we highly recommend the original reports 5,16.  

In addition to signature genes 4,5, a molecularly distinct group may also be characterized 

by features that are uniquely silent in the group of interest but in no others (Fig. 1B), i.e. the 

aforementioned DSGs. Mathematically, a DSG of group k is defined, 

{ 𝑥𝑘(𝑖DSG,k) ≈ 0,𝑥𝑙≠𝑘(𝑖DSG,k) ≫ 0, (2) 

where 𝑥𝑘(𝑖DSG,k) and 𝑥𝑗≠𝑘(𝑖DSG,k) are the average expressions of DSG 𝑖DSG,k in groups k and 𝑗, 
respectively. However, test statistics used by most existing methods do not satisfy exactly this 

DSG definition and are theoretically prone to detecting imprecise DSGs 5. The most frequently 

used methods rely on an ANOVA model that adopts the null hypothesis that samples in all 

groups are drawn from the same population and is originally designed to detect differentially-

expressed genes across any of the groups. Another popular method is the One-Versus-Rest 

Fold Change or t-test (OVR-FC/t-test/Limma/EdgeR) that is based on the ratio of the averaged 

expression in a particular group to the averaged expression in all other groups 24,25. However, 

a gene with a low average expression value in the rest is not necessarily expressed at a low 

level in every group in the rest. 

According to (2), the cross-group expression pattern of an ideal DSG can be represented 

concisely by the vector �̂�𝑘 ⊕ �⃗⃗�  (one-zero degenerate �⃗⃗� ), where �̂�𝑘  are the Cartesian unit 

vectors, �⃗⃗�  is the all-1s vector, and ⊕  is the exclusive disjunction XOR operation on the 

Cartesian unit vectors �̂�𝑘, readily serving as a reference for a one-sample test. Conceptually, 

the null hypothesis for non-DSG, and the alternative hypothesis for DSG, can be described as 𝐻non-DSGnull :       𝒙(𝑖) ≠ �̂�𝑘 ⊕ �⃗⃗� ;𝐻DSGalternative:   𝒙(𝑖) = �̂�𝑘 ⊕ �⃗⃗� ; (3) 

where 𝒙(𝑖) = [𝑥1(𝑖), 𝑥2(𝑖),… , 𝑥𝐾(𝑖)] is the sample-averaged cross-group expression vector of 

gene i, and K is the number of groups. Fundamental to the success of eCOT is the magnitude-

invariant test statistic cos(𝒙(𝑖), �̂�𝑘 ⊕ �⃗⃗� ) that measures the match between the cross-group 

expression pattern 𝒙(𝑖) of gene i and the ideal DSG expression pattern of constituent groups in 

scatter space (Fig. 1B) 𝑡eCOT(𝑖DSG,k) = cos(𝒙(𝑖), �̂�𝑘 ⊕ �⃗⃗� ) , (4) 
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where 1 √𝐾 − 1⁄ < 𝑡eCOT(𝑖) < 1 (Supplement Information). Under the assumption that most 

genes are associated with the null hypothesis, eCOT approximates the null distribution with 

the empirical histogram of the test statistics estimated directly from the data. 

Unified heatmap design for comparative display 

A popular heatmap design for displaying differentially expressed genes is to standardize 

each gene separately, that is, the expression levels of each gene across samples are first centered 

and then normalized by standard deviation. To address the aforementioned drawbacks, we now 

propose an alternative heatmap design that can display the differential patterns among multiple 

groups consistent with the quality of SGs/DSGs. Specifically, for each gene i, the sum of group-

specific mean values is calculated and used to normalize the expression level 𝑥(𝑖) in individual 

samples in linear space 

�̂�(𝑖) = 𝑥(𝑖) ∑ 𝑥𝑘(𝑖)𝐾𝑘=1⁄ , (5) 

where �̂�(𝑖)  is the perspective projection of 𝑥(𝑖) onto a scatter simplex. The proximity of 

normalized cross-group expression vectors �̂�(𝑖) to the signature references reflects the quality 

of SGs/DSGs, measured by the corresponding cosine values 5. The group-specific mean value �̂�𝑘(𝑖) and standard deviation �̂�𝑘(𝑖) are then calculated in log-space and used to standardize the 

expression values of SGs/DSGs for display purpose. Furthermore, we can order each sample 

or gene based on their sample/gene-averaged cosine values with respect to SG/DSG references 

(Fig. 1C) (Supplementary Information). 

 We should clarify that in the uniHM design, between-sample normalization in linear-

space remains a prerequisite for any downstream analysis, by creating a comparable gene-wise 

distribution across samples or groups. Standardization in log-space is for display purpose to 

ensure comparable contrast across genes. Importantly, our new design can visually rank the 

discriminatory genes in relation to a common color-coded origin across all genes.       

ABDS software package 

The ABDS tool suite consists of three unique yet interrelated analytics tools (Fig. 1) 

implemented in R package. A user’s guide and a vignette are provided. The software packages 

are evaluated by community-trial software testing. The R package is open-source at GitHub, 

and is distributed under the MIT license. The ABDS software tools are easy to use and 

principally applicable to other omics data with further development. Group label on each 
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sample is required. The output file contains the cosine scores for individual genes with respect 

to the ideal SG/DSG references. 

Data availability 

The R package of ABDS tool suite is freely available at 

https://github.com/niccolodpdu/ABDS. The operation system can be any system supporting R 

language. Human artery proteomics dataset was obtained from publicly available datasets 

from previously published study available 

at https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00118 . 
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Figures/Tables and legends 

Figure 1. Overview of ABDS tool suite with three analytics tools: MGpI, eCOT, and uniHM. 

(A) Illustrative intensity distributions of non-missing values over three groups, where 

signature gene expressions are high in group 1 (missingness dominated by MAR/MCAR) and 

low in groups 2 and 3 (missingness dominated by LLOD/MNAR). (B) Illustrative scatter 

simplex showing the referenced distributions of SGs and DSGs. (C) uniHM of the SGs and 

DSGs detected by COT/eCOT in real proteomics data. 
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Figure 2. Scatter simplex of simulation data for assessing the performance of eCOT 

(including feature movement associated with the group merging BC versus A – multiphase 

airflow dynamics or fluid diffusion flow in OVR test), where red circles represent DSGs. 

 

 
 

Table 1. Imputation accuracy achieved by MGpI compared with seven peer methods on 

realistic simulation data (LAD45 proteomics data) embedded with ground truth and measured 

by RMSE (overall and SG-focused). 
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Table 2. Imputation accuracy achieved by MGpI compared with seven peer methods on 

realistic simulation data (single-cell RNA Seq data of heart tissue) embedded with ground 

truth and measured by RMSE (overall and SG-focused). 
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Figure 3. Detection accuracy of DSGs achieved by eCOT compared with benchmark OVR t-

test and OVR-FC test on simulation data embedded with ground truth, measured by pROC 

curves and pAUC values at false positive rate of 0.05. 
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Figure 4. Upregulated (orange nodes) and downregulated (blue nodes) SGs/DSGs detected 

by COT/eCOT in FP group clustered into the top 5 functional pathways from the MSigDB 

component of Enrichr pathway analysis software. 
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