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Abstract

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great prom-

ise in reducing the global burden of vector-borne diseases. As these technologies advance

through the research and development pipeline, there is a growing need for modeling frame-

works incorporating increasing levels of entomological and epidemiological detail in order to

address questions regarding logistics and biosafety. Epidemiological predictions are

becoming increasingly relevant to the development of target product profiles and the design

of field trials and interventions, while entomological surveillance is becoming increasingly

important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive

Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investi-

gates the spatial population dynamics of mosquito genetic control systems and their epide-

miological implications. The new framework incorporates three major developments: i) a

decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be

paired with a more detailed epidemiological framework, ii) a version of the Imperial College

London malaria transmission model, which incorporates age structure, various forms of

immunity, and human and vector interventions, and iii) a surveillance module that tracks

mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations

are presented demonstrating the application of the framework to a CRISPR-based homing

gene drive linked to dual disease-refractory genes and their potential to interrupt local

malaria transmission. Simulations are also presented demonstrating surveillance of such a

system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R

package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and

extensive examples and vignettes are provided. We intend the software to aid in under-

standing of human health impacts and biosafety of mosquito genetic control tools, and con-

tinue to iterate per feedback from the genetic control community.
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Introduction

Since the advent of CRISPR-based gene-editing, mosquito genetic control technology has been

advancing at a rapid pace, with a plethora of novel genetic constructs being developed in the

lab and the prospect of field releases being discussed in earnest. For malaria vectors, recent

constructs include a suppression gene drive targeting the doublesex gene in Anopheles gambiae
[1], a replacement gene drive linked to dual antimalarial effector genes in both An. gambiae
and An. coluzzii [2], and a genetic version of the sterile insect technique engineered in An.
gambiae [3]. As the impact of insecticide-based vector control tools stagnates [4], genetics-

based strategies represent a potentially transformative approach to vector control—particularly

gene drive, which is intended to either suppress a vector population or drive anti-pathogen

genes into that population, both within and beyond a release site [5]. As the prospect of envi-

ronmental releases of constructs like these nears, there is a need for increasingly detailed math-

ematical models to predict the spread of genes through vector populations, as well as their

epidemiological and biosafety implications [6].

Disease transmission is a key area requiring further development in mosquito genetic con-

trol models. Models thus far have tended to emphasize entomological properties and out-

comes, such as changes in allele frequencies over time and geographical spread [7–10], and

while epidemiological dynamics have sometimes been incorporated, models have tended to

utilize simple representations of vector-borne disease transmission, such as the Ross-Macdon-

ald model of malaria transmission, with some exceptions [11]. Meanwhile, detailed models of

malaria transmission have been developed by several groups [12–14] incorporating symptom-

atic and asymptomatic infection, variable parasite density in humans, age structure, mosquito

biting heterogeneity, and interventions such as vector control utilizing long-lasting insecti-

cide-treated nets (LLINs) and indoor residual spraying with insecticides (IRS), and antimalar-

ial drug therapy. Incorporating this level of epidemiological detail into mosquito genetic

control models would be of great utility, considering that: i) genetic control tools will likely be

implemented alongside other interventions, ii) expected epidemiological impacts should be a

focus in developing these products [6], and iii) initial field trials are expected to have a mea-

sured entomological outcome alongside a modeled epidemiological one [15].

Surveillance is another key area requiring inclusion in mosquito genetic control models.

Models thus far have tended to record allele frequencies and population densities directly from

model output, while incorporating traps explicitly within models would allow questions

related to the optimal density and placement of traps to be explored. This would be useful to

assess monitoring requirements to both: i) accurately measure effectiveness of genetic control

(e.g., establishment and persistence of alleles at future field sites), and ii) detect unintended

spread of transgenes beyond the testing or trial site [16]. This latter concern is of particular

importance for non-localized gene drive mosquito projects, which have potential to spread on

a wide, potentially regional, scale. Efficient, model-informed surveillance programs are there-

fore essential, as surveillance is expected to be a major cost driver for this technology.

Previously, our group developed MGDrivE (Mosquito Gene Drive Explorer) [7] to model

the spatial population dynamics of a variety of mosquito genetic control systems, and

MGDrivE 2 [17], incorporating simple models of malaria and arbovirus transmission, season-

ality in mosquito populations, and a novel formulation of mosquito and human state space uti-

lizing stochastic Petri nets (SPNs). Here, we present MGDrivE 3, a new version of MGDrivE 2

that incorporates three major developments: i) a decoupled sampling algorithm allowing the

vector and human portions of the model to be readily modularized, and hence for the mos-

quito portion of MGDrivE to be paired with a more-detailed epidemiological framework, ii) a

version of the Imperial College London (ICL) malaria transmission model [12, 13], which
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incorporates age structure, various forms of immunity, human and vector interventions, and

more meaningful disease outcomes (i.e., age-structured incidence, prevalence and mortality),

and iii) surveillance functionality that tracks mosquitoes captured by traps throughout the

simulation. As such, parasite transmission can now be modeled according to mosquito geno-

type, genetic control interventions can now be modeled alongside other interventions (such as

LLINs, IRS and antimalarial drugs), and the dynamical and surveillance implications of mos-

quito traps can now be modeled.

In this paper, we describe the new features implemented in MGDrivE 3. Additionally, we

present an example applying the framework to a hypothetical release of a CRISPR-based hom-

ing gene drive system linked to dual disease-refractory genes and their implications for malaria

transmission in a low-transmission island setting. Simulations are also presented demonstrat-

ing surveillance of a similar drive system by a network of mosquito traps. We conclude with a

discussion of future directions and applications of MGDrivE 3 to the development and appli-

cation of mosquito genetic control tools towards the goal of vector-borne disease control.

Design and implementation

As with the MGDrivE 2 framework [17], MGDrivE 3 incorporates modules for inheritance

(the distribution of offspring genotypes for given maternal and paternal genotypes), mosquito

life history (development from egg to larva to pupa to adult), landscape (the distribution and

movement of mosquitoes through a metapopulation), and epidemiology (reciprocal pathogen

transmission between mosquitoes and humans). MGDrivE 3 offers three substantial improve-

ments beyond the functionality included in MGDrivE 2—a sampling algorithm that allows

decoupling of the mosquito and human model components, incorporation of a more detailed

malaria transmission model, and inclusion of mosquito traps—each described in depth below.

The software was developed using the R programming language, and retains the SPN formula-

tion of the MGDrivE 2 package. In a SPN, a model is described as a set of places and transi-

tions, where the rate at which each transition occurs is determined by a probabilistic decay

[18]. Representation as a SPN has both computational and architectural benefits—model spec-

ification is separate from simulation, models can be efficiently stored and updated in memory,

and a wealth of fast simulation algorithms may be leveraged from other fields.

Decoupled vector-host sampling framework

Decoupling the vector and host portions of the modeling framework is a major contribution

of MGDrivE 3. Vector-borne disease models describe the reciprocal transmission of pathogens

between vectors and hosts. Prior models have represented the vector and host state space as

compartmental models represented by ordinary [19–21] or partial differential equations

(PDEs) [12], or as individual-based models [22, 23]. In each of these models, vectors and hosts

have the same state space and mathematical representation. In MGDrivE 3, the vector model

is formulated as a SPN with a discrete state space, so we developed a sampling framework to

allow the vector and host models to communicate, even if they have different representations,

removing the need to reformulate one model component using the framework of the other.

Decoupling of vector-borne disease models is facilitated by the fact that all the vector model

needs to know about the host model is the density and level of infectiousness in hosts, and vice

versa. Communicating between the two model portions can therefore be accomplished by

exchanging two composite parameters: i) the force of infection on hosts (λH), i.e., the probabil-

ity that a host is infected per unit time, and ii) the force of infection on vectors (λV), i.e., the

probability that a vector is infected per unit time. For malaria, λH is equal to the entomological

inoculation rate (EIR, the number of infectious mosquitoes per human multiplied by their
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human biting rate) multiplied by the probability of the human becoming infected given an

infectious bite. Similarly, λV is proportional to the human biting rate multiplied by the propor-

tion of humans that are infectious multiplied by the probability of the mosquito becoming

infected [24].

A schematic of an inter-model sampling algorithm for malaria, which we implement in this

paper, is depicted in Fig 1. At each model iteration: i) the host model samples λH from the vec-

tor model, ii) the host model increments its infectious states for a time equal to one time step,

iii) the vector model samples λV from the host model, and iv) the vector model increments its

infectious states for one time step. We choose a simulation time step that is small enough such

that sequential sampling of states between the entomological and epidemiological models does

not compromise model predictions, while being mindful of simulation runtime. Typically this

leads to a time step on the order of 0.01–0.1 days. While the MGDrivE 3 vector model is

Fig 1. Schematic of decoupled vector-host sampling algorithm for malaria. MGDrivE 3 uses a stochastic Petri net framework to model

progression of adult female mosquitoes from susceptible (SV) to exposed/latently infected (EV) to infectious for malaria (IV). This framework is

linked to an adapted version of the Imperial College London (ICL) malaria model, which is represented as a set of partial differential equations. In

the ICL model, humans progress from susceptible (SH) to either symptomatic or asymptomatic infection. Humans who develop a symptomatic

infection and are either treated (TH) or diseased and untreated (DH). Treated humans advance to a prophylactic protection state (PH) and

eventually become susceptible again. Untreated symptomatic humans develop successively lower-density infections, from symptomatic to

asymptomatic but detectable by rapid diagnostic test (RDT) (AH) to asymptomatic and undetectable by RDT (UH). Asymptomatic humans can

also be super-infected. To allow the two frameworks to communicate, at each time step: i) the ICL human model samples the force of infection in

humans (λH) from the MGDrivE 3 vector model, ii) the ICL human model increments its infectious states for a time equal to one time step, iii) the

MGDrivE 3 vector model samples the force of infection in vectors (λV) from the ICL human model, and iv) the MGDrivE 3 vector model

increments its infectious states for one time step.

https://doi.org/10.1371/journal.pcbi.1012133.g001
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represented as an SPN with discrete state space, it is agnostic to how the host model is repre-

sented, which in this case is a system of PDEs with continuous state space [12, 13]. Additional

considerations in implementing this algorithm include: i) choosing a time step appropriate to

both models, ii) ensuring the MGDrivE 3 vector model produces output consistent with the

vector model within the host model that it replaces, and iii) validating the EIR produced by the

combined model framework. While a specific use case is presented in Fig 1, this inter-model

sampling framework applies generally—it could equally be applied to models of arboviruses

transmitted by Aedes aegypti [21], or to models of citrus greening disease transmitted by Dia-
phorina citri [25], provided the appropriate model adjustments are made.

Malaria transmission model

Having established the decoupled sampling algorithm, next we incorporated an adapted ver-

sion of the malaria model developed by the ICL malaria modeling group [12, 13] into

MGDrivE 3. The MGDrivE 3 vector framework may be linked to several published malaria

models; however, the ICL model represents a suitable level of parsimony for the current stage

of development, as it can be described by a succinct set of PDEs while incorporating several

important features of malaria epidemiology, and has been fitted to extensive malaria data sets

throughout sub-Saharan Africa [12, 13]. Important epidemiological details captured in this

model include symptomatic and asymptomatic infection, variable parasite density and super-

infection in humans, human age structure, mosquito biting heterogeneity, and antimalarial

drug therapy and prophylaxis. The model also includes several forms of immunity: i) pre-

erythrocytic immunity reduces the probability of infection if bitten by an infectious mosquito;

ii) acquired and maternal clinical immunity represent the effects of blood stage immunity on

reducing the probability of developing clinical symptoms and severe illness; and iii) detection

immunity represents the effects of blood stage immunity on reducing the detectability of an

infection and onward transmission to mosquitoes. A full set of equations describing the ICL

malaria model is provided in the S1 Text.

In incorporating certain genetic vector control tools—e.g., gene drive systems intended to

spread disease-refractory genes into mosquito populations [2, 26]—an important addition to

the epidemiological framework is transmission parameters that are mosquito genotype-spe-

cific. In the ICL malaria model, the force of infection on humans, λH(a, t), is dependent on

both age, a, and time, t, and is a product of the EIR, ε(a, t), and the transmission probability,

b(t), i.e.:

lHða; tÞ ¼ εða; tÞbðtÞ

A given human could be bitten by a mosquito having any genotype, g, from the set of all

genotypes, G, proportional to its time-varying frequency in the population, pg(t). For an effec-

tor gene that blocks mosquito-to-human transmission, the transmission probability, bg, will be

genotype-specific, and so the expected transmission probability is equal to the time-varying

weighted average:

bðtÞ ¼
X

g2G

pgðtÞbg

Incorporating more epidemiological detail into the model of transmission dynamics also

allows more nuanced epidemiological outcomes to be calculated. As the ICL malaria model is

age-stratified, both malaria prevalence and incidence can be calculated according to age group.

Prevalence is calculated across all infectious human compartments—treated and untreated

symptomatic disease, asymptomatic but detectable by rapid diagnostic test (RDT), and
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asymptomatic but undetectable by RDT—since each of these compartments contributes to

onwards transmission of malaria to mosquitoes. Clinical incidence refers to new clinical

malaria cases within a defined time interval, and is of particular relevance to the healthcare sys-

tem. One commonly reported metric is malaria prevalence among children aged 2–10 years

[27], as pediatric cases of malaria tend to be the most severe. A mathematical description of

how each of these outcomes is calculated within the MGDrivE 3-ICL malaria model frame-

work is provided in the S1 Text.

Additional interventions and seasonality

Additional functionality has been included in both the vector and host portions of the

MGDrivE 3 framework to incorporate currently-available interventions that genetic control

tools would likely be implemented in conjunction with. While a range of novel vector control

tools are currently under development [28]; the mainstay of malaria interventions for the last

two decades has been a combination of LLINs, IRS and antimalarial drugs—largely artemisi-

nin-combination therapy (ACT). Some combination of these interventions will invariably be

present when a genetic control intervention is implemented, and it is important to characterize

their implications for both vector population dynamics and vector-borne disease transmission.

We model the impact of LLINs and IRS on mosquito life history parameters according to the

elaborated feeding cycle model developed by Le Menach et al. [29] and adapted by Griffin

et al. [12]. Within this framework, LLINs and IRS increase the mortality rate and decrease the

biting rate of adult mosquitoes, and also decrease the egg-laying rate by virtue of extending the

gonotrophic cycle. Equations for how each of these parameters are impacted by different cov-

erage levels of LLINs and IRS are provided in the S1 Text. The proportion of symptomatic

malaria cases that receive antimalarial drug therapy is included within the ICL malaria model

[12, 13].

MGDrivE 3 also includes updated functionality for incorporating seasonal weather pat-

terns. While MGDrivE 2 allows mosquito life history parameters, such as adult and larval

development and mortality rates, to vary with time in response to environmental variables

such as temperature and rainfall [17], the new framework utilizes environmental data to gener-

ate seasonal profiles to modulate these parameters. Rather than using raw daily rainfall data,

which varies from year to year, the umbrella R package [30] is used to fit a mixture of sinusoids

to the rainfall data. This provides a more general characterization of the seasonal trends at a

given location, and facilitates comparison across other locations with similar seasonal patterns.

As with MGDrivE 2, development times are Erlang-distributed, and the model of White et al.
[31] is used to modulate larval carrying capacity and hence density-dependent mortality in

response to recent rainfall—a key driver for Anopheles population dynamics. Users are able to

input climate data specific to their locations of interest, or to modify seasonal trends, to charac-

terize seasonal population dynamics.

Traps and spatial surveillance

In MGDrivE 3, the landscape module of MGDrivE 2 has been extended to accommodate traps

as part of the mosquito metapopulation. In MGDrivE and MGDrivE 2, the landscape module

describes the distribution of mosquitoes across discrete, randomly-mixing population nodes,

with movement between them quantified by a dispersal kernel [7, 17]. MGDrivE 3 additionally

accommodates “trap nodes” in one of two ways: i) traps are placed within a subset of popula-

tion nodes, and are associated with a probability of trapping for mosquitoes within the corre-

sponding population node per unit time, and ii) traps are assigned their own nodes, and are

associated with coordinates and an attractiveness kernel, which includes an amplitude, mean
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distance of attractiveness, and other parameters as required by the kernel function. The former

case is appropriate for applications on a larger spatial scale (e.g., where population nodes rep-

resent villages that traps may be placed in), while the latter is appropriate for applications on a

finer spatial scale (e.g., where nodes represent blood, sugar or water sources that traps are

placed relative to). In both cases, the landscape including traps may be generated using

MGSurvE (Mosquito Gene Surveillance) [32]. Here, the number and locations of traps may be

user-specified, along with their trapping probabilities (for the former case) or attractiveness

kernel parameters (for the latter case), which should be chosen according to the types of traps

being modeled. Data analysis functions are provided to visualize the distribution of mosqui-

toes having certain genotypes that are captured by each trap over time.

Results

To demonstrate how MGDrivE 3 can be used to simulate releases of gene drive-modified mos-

quitoes, including implications for epidemiological outcomes and surveillance, we have pro-

vided examples and information on GitHub at https://github.com/amondal2/

MGDrivE3-Examples/tree/main/examples. In the first example, we model the release of a full

gene drive system designed to drive malaria-refractory genes into an An. coluzzii mosquito pop-

ulation with seasonal population dynamics, pre-existing interventions and transmission inten-

sity calibrated to a setting resembling the island of São Tomé, São Tomé and Prı́ncipe. The full

gene drive system resembles one engineered in An. coluzzii [2], which includes dual linked

effector genes targeting the malaria pathogen, and is one of the most promising population

replacement systems in a mosquito vector to date. While we model this system in a setting cho-

sen largely for its isolation [33], we note that regulatory and biosafety issues must be considered

seriously for self-propagating systems with the potential to spread beyond their release site [34].

Four alleles are considered at the gene drive locus: an intact drive allele containing disease-

refractory genes (denoted by “H”), a wild-type allele (denoted by “W”), a functional, cost-free

resistant allele (denoted by “R”), and a non-functional or otherwise costly resistant allele

(denoted by “B”). The inheritance dynamics of this system were fitted to laboratory cage data

and are provided in Carballar-Lejarazú et al. [2] with model parameters summarized in S1

Table. Notably, we considered a 10% fitness cost associated with mosquitoes carrying either

one or two copies of the intact drive allele, as there were no major fitness loads inferred in the

An. coluzzii cage experiments [2]; however, fitness costs due to integration and expression of

the gene drive system could become apparent in the field. Additionally, we assume that mos-

quitoes carrying either one or two copies of the H allele confer complete mosquito-to-human

transmission blocking, consistent with data from Carballar-Lejarazú et al. [2] for sporozoite

thresholds� 7, 500.

The life history module is parameterized with typical bionomic parameters for An. coluzzii
[31, 35], with incorporation of a generalized seasonal profile that modulates certain life history

parameters. In MGDrivE 3, as in MGDrivE 2, the carrying capacity of the environment for lar-

vae is a function of recent rainfall, and a mathematical relationship from White et al. [31] is

used to translate local rainfall data to larval carrying capacity; however, in this example, we

capture broad variations in the rainfall profile of São Tomé and Prı́ncipe using the umbrella

[30] package in R, using a shapefile of the national administrative boundary and a three-year

timeframe for rainfall data (Fig 2). Otherwise, the life history module mirrors that of MGDrivE

2, including mean-variance relationships describing development times of the juvenile life

stages [36]. For the purpose of this demonstration, and to emphasize the novel epidemiological

component of MGDrivE 3, the island of São Tomé was treated as a single randomly mixing

population.
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The ICL malaria model is parameterized according to published intervention coverage and

transmission levels for São Tomé and Prı́ncipe—an LLIN coverage of 62%, IRS coverage of

66.5%, 2% of symptomatic malaria cases being treated with antimalarial drugs, and an all-ages

P. falciparum prevalence of 2%, according to the World Health Organization Global Health

Observatory (https://www.who.int/data/gho). The LLIN and IRS coverage parameters modify

vector parameters in the life history module, while the antimalarial treatment parameter is

input directly into the ICL model. Output from the ICL malaria model is then calibrated to all-

ages malaria prevalence in the context of interventions and the seasonal rainfall profile by mul-

tiplying the carrying capacity for larvae by a constant. Other parameters of the ICL malaria

model describe heterogeneity, human infectious periods, various types of immunity and treat-

ment, and are as described in the original model [12, 13]. Finally, we note that these simula-

tions are intended to demonstrate the software’s capabilities and that, while the simulations

are calibrated to data from São Tomé, they are not intended to provide an accurate forecast of

gene drive dynamics on the island, or to imply approval of the intervention by the local popu-

lation and regulatory agencies.

Simulation workflow

The code for running this simulation is available at: https://github.com/amondal2/

MGDrivE3-Examples/blob/main/examples/stp_local.R. We begin by loading the MGDrivE

and MGDrivE 2 packages in R to gain access to the inheritance cubes, mosquito life history

and malaria modeling functionality required for the simulation. Inheritance cubes were intro-

duced in the first version of MGDrivE [7] and describe the distribution of offspring genotypes

given parental genotypes. Next, we load the inheritance cube for the TP13 population replace-

ment gene drive system in An. coluzzii [2]. This specifies the inheritance-biasing properties of

the system, as well as its malaria transmission-blocking effect. Note that there are a variety of

other inheritance cubes available in the MGDrivE software—e.g., Wolbachia [37], release of

insects carrying a dominant-lethal gene (RIDL) [38], precision-guided sterile insect technique

(pgSIT) [3], population suppression gene drive [1], and remediation systems such as ERACR

(element for reversal of the autocatalytic chain reaction) [39]—and users are also able to design

Fig 2. Seasonal rainfall profile for São Tomé and Prı́ncipe. Points represent mean daily rainfall measurements (in mm) for the three years between

January 1st, 2017 and December 31st, 2019. The solid line represents the seasonal rainfall profile, fitted using the umbrella [30] package in R, used to

calculate the time-varying environmental carrying capacity for larvae in the life history module of MGDrivE 3.

https://doi.org/10.1371/journal.pcbi.1012133.g002
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their own inheritance cubes. Next, we specify general simulation parameters, such as the simu-

lation length, the timestep of the stochastic model, and the timestep at which data is output

(daily). Fitted reproductive fitness parameters for the TP13 construct in An. coluzzii [2] are

loaded, and a 10% fitness load on male mating competitiveness and female fecundity is imple-

mented, as described earlier.

Next, we specify details of the epidemiology module—baseline malaria prevalence, human

population size, human age stratification, and coverage levels of LLINs, IRS and antimalarial

drugs. Following this, as with MGDrivE 2, the “places” and “transitions” of the SPN formula-

tion are set up using the “spn_P_epi_decoupled_node()” and “spn_T_epi_decoupled_node()”

functions. Equilibrium values of states in the mosquito and human models are calculated

using the “equilibrium_Imperial_decoupled()” function, and as the ICL malaria model

requires the annual EIR to calculate the state distribution at equilibrium, a function is provided

to convert malaria prevalence to EIR. Next, the seasonal rainfall profile used to calculate the

larval carrying capacity time-series (described above) is used to calculate time-varying hazard

rates for density-independent larval mortality. Custom time-varying hazard functions for lar-

val mortality are provided, and hazard functions are provided for the mosquito life history and

ICL malaria transmission models. The MGDrivE 2 vignette, “Simulation of Time-inhomoge-

neous Stochastic Processes,” provides instructions for writing user-specified time-varying haz-

ard functions. Finally, we specify the release scheme—genotypes, size and timing of releases—

using an “events” dataframe.

With all model components specified, we call the “sim_trajectory_R_decoupled()” function

to simulate model trajectories. This implements a tau-leaping algorithm to sample stochastic

trajectories, and records daily output to an R dataframe. For further analysis external to R, we

provide functionality to write simulation output to CSV files.

Entomological dynamics

In Fig 3, we display a potential visualization scheme for the entomological and epidemiological

outcomes of the simulated gene drive mosquito release described above. This figure was gener-

ated in Python and is available at https://github.com/amondal2/MGDrivE3-Examples/tree/

main/viz. We note that MGDrivE 3 is not dependent on Python, and the MGDrivE 3 R pack-

age provides basic plotting and analysis functions for model output visualization. In this case,

we generated data for 15 stochastic model repetitions, and the dynamics displayed in Fig 3

depict the mean output of these repetitions. Fig 3A depicts allele frequencies for adult female

mosquitoes over the simulation period. After eight consecutive releases of 20,000 male mos-

quitoes homozygous for the TP13 construct (H), the H allele rapidly spreads through the pop-

ulation, reaching near-fixation within a few months. This is a result of the high accurate

homing rate, as determined by laboratory experiments [2], relatively low fitness costs (esti-

mated), and low rate of resistance allele generation. Homing-susceptible wild-type alleles (W)

are quickly eliminated, although a small number of in-frame and out-of-frame resistance

alleles (R and B, respectively) accumulate since, although they are generated infrequently, they

slightly outcompete the H alleles in terms of fitness. Note that while these dynamics represent

a potential outcome of TP13 gene drive mosquito releases, the dynamics are highly dependent

on the relative fitness of H and R/B allele-carrying mosquitoes, which are difficult to accurately

quantify outside the field.

Epidemiological dynamics

Here, we demonstrate the refined epidemiological outcomes obtained by linking the human

portion of the ICL malaria transmission model to the vector portion of MGDrivE 3. We depict
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age-stratified clinical incidence in Fig 3B and age-stratified prevalence in Fig 3C. The rapid

spread of the gene drive allele through the An. coluzzii population, and its strong modeled

transmission-blocking effect, mean that humans are no longer exposed to new infectious mos-

quito bites five months after the beginning of the release schedule, and hence clinical incidence

also falls to zero on this timescale. Notably, clinical incidence includes symptomatic cases that

are either treated or untreated (i.e., the TH and DH compartments in the ICL malaria model

depicted in Fig 1), and does not include asymptomatic cases that are either detectable or unde-

tectable by RDTs (i.e., the AH and UH compartments depicted in Fig 1). Stochastic variation in

clinical incidence is pronounced due to the small number of incident cases relative to the total

population.

São Tomé is a low-transmission setting with little acquired immunity, so incidence and

prevalence are lower in younger age groups (0–5 and 5–17 years old) due to maternal immu-

nity and the lesser skin surface area available for mosquito bites. P. falciparum prevalence

includes all diseased states—i.e., symptomatic disease, whether treated or untreated (TH and

DH, respectively), and asymptomatic disease, whether detectable or undetectable by RDTs (AH

and UH, respectively). Prevalence in the human population takes much longer to decline than

incidence, as an individual can harbor P. falciparum parasites for 1–2 years if left untreated

[40], which is common for asymptomatic infections. These predictions highlight the transfor-

mative promise of gene drive interventions for malaria control; however, we caution that there

Fig 3. Example MGDrivE 3 simulations for a full gene drive system designed to drive dual malaria-refractory genes into an An. coluzzii mosquito

population with seasonal population dynamics, transmission intensity and interventions calibrated to a setting resembling the island of São Tomé,

São Tomé and Prı́ncipe. The gene drive system resembles one recently engineered in An. coluzzii [2] in which all drive components—the Cas9, guide RNA

and effector genes—are all present at the same locus. Four alleles are considered: an intact drive allele (denoted by “H”), a wild-type allele (denoted by “W”),

a functional, cost-free resistant allele (denoted by “R”), and a non-functional or otherwise costly resistant allele (denoted by “B”). Model parameters

describing the construct, mosquito bionomics and malaria transmission are summarized in S1 Table. (A) Allele frequencies for adult female mosquitoes

over the simulation period. Grey vertical bars beginning at year two denote eight consecutive weekly releases of 20,000 male mosquitoes homozygous for

both the gene drive construct. The high efficiency of the drive system and low rate of resistance allele generation mean that almost no disease-competent

An. coluzzii mosquitoes remain five months after the release. (B) Daily clinical malaria incidence per 100,000 people partitioned according to age group.

Reductions in human incidence within five months of the release parallel spread of the drive construct in the mosquito population. (C) P. falciparum
malaria prevalence partitioned according to age group. As humans recover from infection and few develop new infections, the P. falciparum parasite rate

declines until it reaches near undetectable levels by year five.

https://doi.org/10.1371/journal.pcbi.1012133.g003
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are several limitations—notably, treatment of São Tomé as a panmictic population of humans

and mosquitoes, calibration to malaria prevalence data that is likely underreported [41], and

lack of knowledge of the fitness and transmission parameters of gene drive mosquitoes in the

field, including their evolution over several years—which preclude the confidence with which

such predictions can be made.

Spatial surveillance

Finally, we demonstrate the capability of MGDrivE 3 to simulate surveillance of mosquitoes

via traps placed throughout a landscape. The code for this example is available at https://

github.com/amondal2/MGDrivE3-Examples/blob/main/examples/traps.R. We used the

MGSurvE framework [32] to optimize the placement of five traps across a spatial network

resembling the southern portion of São Tomé, São Tomé and Prı́ncipe. This landscape is

described by Sánchez C. et al. [32]—namely, nodes were sourced from the São Tomé and Prı́n-

cipe census (https://projectsportal.afdb.org/dataportal/VProject/show/P-ST-KF0-001) and

aligned with coordinates from Google Maps (https://www.google.com/maps). Daily mosquito

movement probabilities were derived using an ecology-motivated algorithm [42], with model

output calibrated to mark-release-recapture experiments on An. gambiae sensu lato [43, 44].

Traps were placed within population nodes to represent placement within selected villages,

and trapping probabilities were specified, along with the rest of the landscape, in MGSurvE.

We consider a release in the southernmost population node of the island and monitor the

progression of gene drive phenotypes for trapped mosquitoes over time. As for the epidemio-

logical simulation, we consider eight weekly releases of male An. coluzzii homozygous for the

gene drive system. We consider a simplified version of the TP13 gene drive construct [2] with

only a single resistance (R) allele. The cutting frequency at the target site for this construct is

1.0, and the rate of accurate homology-directed repair is 0.99. The inheritance cube is flexible

to specify genotype-specific mating fitness, multipliers on adult mortality, male and female

pupatory success, and reductions in fertility, but we do not modify them in this example. We

model mosquitoes as accumulating in traps over the course of a week, after which they are

counted and the traps are “reset.” We also tally gene drive phenotypes when trapped mosqui-

toes are counted, considering a marker allele associated with both the intact drive allele (H)

and the wild-type target allele (W) [2]. This allows us to distinguish the following genotypes:

HH/HR, WW/WR, HW, and RR. Fig 4 depicts the time-series of gene drive marker pheno-

types in each trap by week, with the time of first detection of a transgenic mosquito indicated

by a vertical line for each trap. Output like this will be useful to model surveillance strategies

for the progression of field trials and interventions, and the emergence of alternative alleles

that could interfere with intervention effectiveness [16].

Availability and future directions

MGDrivE 3 is available at https://cran.r-project.org/package=MGDrivE2 as version 2.1.0 of

the MGDrivE 2 package, due to naming conventions. The source code is under the GPL3

License and is free for other groups to modify and extend as needed. Mathematical details of

the model formulation are available in the S1 Text. Examples for running MGDrivE 3 simula-

tions are available at https://github.com/amondal2/MGDrivE3-Examples/tree/main/examples,

and documentation for MGDrivE 3 functions are available at the MGDrivE 2 project website

at https://marshalllab.github.io/MGDrivE/docs_v2/index.html. To run the software, we rec-

ommend using R version 3.1.0 or higher.

We are continuing development of the MGDrivE 3 software package and welcome sugges-

tions and requests from the research community regarding future directions. As gene drive
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mosquito projects advance from the lab to the field, we intend our software to address the

evolving modeling needs of the technology [45]—from contributing to target product profiles

(TPPs) [6] and environmental risk assessments [46], to planning field trials, interventions

[8, 9] and surveillance programs [16]. The epidemiological extensions offered in MGDrivE 3

will enable more accurate predictions of implications of mosquito genetic control for disease

Fig 4. Example MGDrivE 3 simulations for spatial surveillance of a full gene drive system on the island of São Tomé, São Tomé

and Prı́ncipe. Mosquito population nodes represent villages and suburbs of comparable size with mosquito movement probabilities

between localities derived from an ecology-motivated algorithm [42] and calibrated to mark-release-recapture data [43, 44].

Simulation was restricted to the southern portion of the island, with population nodes including traps depicted in pink and other

population nodes depicted in blue. Traps were placed using the MGSurvE framework [32]. Eight weekly releases of a full gene drive

system (cutting rate of 1.0 and homology-directed repair rate of 0.99) were simulated in the southernmost population node of the

island, and the phenotype distribution of trapped mosquitoes is depicted for the five trap nodes in panels a-e. Vertical lines denote

the time of first transgene detection for each trap.

https://doi.org/10.1371/journal.pcbi.1012133.g004
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transmission, which are relevant as an outcome for TPPs, and field trial and intervention plan-

ning. This will also enable prediction of the impact of genetic control interventions alongside

other currently-implemented interventions such as LLINs, IRS and ACTs. The ICL malaria

model can currently only be implemented at a single node; but will be expanded to multiple

nodes in subsequent releases. The surveillance extensions included in MGDrivE 3 will enable

assessment of mosquito trapping schemes to both: i) measure the effectiveness of genetic con-

trol strategies in the field, and ii) detect unintended spread of gene drive alleles beyond field

sites, and the emergence of alternative alleles broadly [16].

Logistical modeling questions are invariably associated with larger state spaces—more

genotypes to keep track of, more human and mosquito disease states, and larger metapopula-

tion networks—which quickly approach the computational limits of the modeling framework.

To address this, we are exploring numerical sampling algorithms to increase computational

efficiency and speed, and the use of lower-level programming languages such as C++. We are

also interested in linking the vector portion of MGDrivE 3 to other epidemiological models

that capture human transmission dynamics more comprehensively—e.g., dengue models that

incorporate multiple serotypes with temporary cross-protective immunity and complications

related to antibody-dependent enhancement [21], and individual-based malaria transmission

models that allow sources of heterogeneity to be incorporated more comprehensively and for

infection history to be directly associated with immune status [47]. There are also opportuni-

ties to adapt the framework to species of relevance to agriculture and conservation—e.g.,

enhanced epidemiological capabilities could be applied to citrus greening disease transmitted

by D. citri [25], and surveillance functionality could be suitable for models of invasive rodents

on islands [48].
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(PDF)
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tions that govern the malaria transmission model, including prior interventions and outcomes

of interest.

(PDF)
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the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics. 2001; 157(2):743–750. https://

doi.org/10.1093/genetics/157.2.743 PMID: 11156993

44. Thomson MC, Connor SJ, Quinones ML, Jawara M, Todd J, Greenwood BM. Movement of Anopheles

gambiae s.l. malaria vectors between villages in The Gambia. Med Vet Entomol. 1995; 9(4):413–419.

https://doi.org/10.1111/j.1365-2915.1995.tb00015.x PMID: 8541594

45. Marshall JM, North AR. Modeling priorities as gene drive mosquito projects transition from lab to field.
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