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ABSTRACT

PURPOSE High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive
cancer with a complex biology. We aimed to explore the prognostic value of
genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in
HGNEC and to establish a novel prognostic model.

MATERIALS
AND METHODS

We retrospectively enrolled 191 patients with histologically confirmed HGNEC
of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry
(IHC; N 5 191) and comprehensive cancer panel sequencing (n 5 102). Clinical
and genetic data were used to develop an integrated Cox hazards model.

RESULTS Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%)
patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an
integrated Cox hazard model, our data set included information from 357 gene
mutations and 19 clinical profiles. When the targeted mutation profiles were
combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1,
IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prog-
nostic factors for survival. The integrated Cox hazard model, which combines
mutation profiles with a baseline model, outperformed the baseline model
(incremental area under the curve 0.84 v 0.78; P 5 8.79e-12). The integrated
model stratified patients into high- and low-risk groups with significantly
different disease-free and overall survival (integrated model: hazard ratio, 7.14
[95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01).

CONCLUSION We introduced a new prognostic model for HGNEC that combines genetic and
clinical data. The integrated Cox hazardmodel outperformed the baselinemodel
in predicting the survival of patients with HGNEC.

INTRODUCTION

Pulmonary high-grade neuroendocrine carcinomas
(HGNECs) are a distinct type of lung cancer that includes
small cell lung cancer (SCLC) and large cell neuroendocrine
carcinoma (LCNEC). SCLC and LCNEC share common clini-
copathologic characteristics, such as aggressive behavior,
high proliferation rate, neuroendocrine immunohisto-
chemistry (IHC), strong smoking association, male pre-
dominance, and poor prognosis. Although HGNEC is linked
to Notch pathway activation and TP53 and RB1 inactivation
caused by smoking-induced DNA damage,1,2 the lack of
molecular targets and proper prognostic models is a major
hurdle for the treatment of lethal HGNEC. Current SCLC
treatments are stage-dependent, yet outcomes vary within
stages while prognostic models for LCNEC remain scarce
owing to rarity and heterogeneity.3

SCLC exhibits recurrent genetic aberrations in DNA damage
response (DDR) pathways, including poly(ADP-ribose) po-
lymerase (PARP) and ataxia telangiectasia mutated.4-7 PARP
facilitates single-strand DNA break repair via base excision.
Inhibiting PARP leads to single-strand DNA breaks accu-
mulation, potentially causing double-strand DNA breaks
when DNA replication forks stall.8 These DDR pathway ab-
errations are theoretically plausible therapeutic targets for
HGNEC. PARP inhibitors, effective in tumors with deficient
homologous repair pathways such as ovarian, breast, and
prostate cancers,8-10 have shown promise in early-phase
clinical trials in SCLC.11-15 However, established predictive
biomarkers such as BRCA1/2 mutation and homologous re-
combination deficiency scoring metrics do not consistently
predict PARP inhibitor sensitivity in SCLC.16 Schlafen family
member 11 overexpression is a potential biomarker for
predicting response to veliparib treatment, although its
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correlation is imperfect, and mechanisms underlying non-
responsiveness remain unclear.13

In this study, we used patient tumor tissues to investigate
genomic aberrations and aimed to develop a prognostic
model with both clinical and genetic variables to predict
survival of HGNEC. Second, clinical significance of PARP1
expression in HGNEC was evaluated using IHC.

MATERIALS AND METHODS

Study Design and Participants

This retrospective study analyzed archival formalin-fixed
paraffin-embedded (FFPE) specimens from 191 patients
with pulmonary HGNEC treated at the National Cancer
Center of Korea betweenMarch 2001 andApril 2014. Owing to
limited prior data, an exploratory design was adopted.
Specimens and data collection followed the research pro-
tocols approved by the National Cancer Center Ethics
Committee (NCC2014-0156) with an exemption from in-
formed consent after deidentifying information. Patient
demographics, TNM staging, smoking status, and survival
outcomes (overall survival [OS] and disease-free survival
[DFS]) were extracted from medical records. Histological
types followed the 2004 WHO classification, and neuroen-
docrine differentiation was confirmed using IHC markers
(chromogranin, synaptophysin, and NCAM [CD56]). Tumor
node metastasis staging was based on the seventh edition of
the Lung Cancer Staging System.17 The recurrence or me-
tastases were confirmed using chest computed tomography,
brain magnetic resonance imaging, bone scan, and/or
positron emission tomography.

IHC Analysis of PARP1 Expression

IHC staining for PARP1 was performed on 191 tumor samples
using Ventana Medical Systems. Sections (5 mm) from the
FFPE blocks were assessed with total PARP1 antibody

(Thermo Fisher, Freemont, CA) on the Benchmark XT
platform with Cell Conditioning 1 for 64 minutes, pre-
peroxidase inhibition, and primary antibody incubation for
16 minutes at 37°C. PARP1 protein expression was detected
using an OptiView DAB IHC Detection Kit (Ventana Medical
Systems, Tuscan, AZ), with tissues counterstained with
Mayer’s hematoxylin and blue reagent for 4 minutes.

Observers (J.H.L. and G.-K.L.), blinded to the clinicopatho-
logical data, independently assessed tumor cores and PARP1
protein expression using a previously reported method.
Positive PARP1 expression in individual cells was defined as a
brown nuclear reaction, whereas cytoplasmic PARP1 ex-
pression was deemed nonspecific. PARP1 expression was
evaluated using the multiplicative quick score method,
which accounts both staining intensity (scored from0 to 3: 0,
no staining; 1, weak; 2, intermediate; and 3, strong) and the
proportion of positive cells (scored on a scale of 0%-100%).
The quick scorewas calculated bymultiplying the proportion
score by the intensity score, yielding in value ranging from 0
to 300.

Mutation Analysis

Genomic DNA underwent multiplex polymerase chain re-
action (PCR) targeting 409 cancer-related genes using the
Ion AmpliSeq Comprehensive Cancer Panel (Thermo Fisher,
MA). This panel consists of approximately 16,000 primer
pairs covering 409 known cancer-associated genes. Each
sample used 10 ng of genomic DNA to prepare barcoded
libraries using IonXpress barcoded adapters. Libraries,
combined to a concentration of 3 ng/mL, underwent
emulsion PCR with the Ion Torrent OneTouchTM 2 System
and were sequenced on an Ion Proton sequencer using Ion P1
chips. Sequencing reads were aligned to 409 genes on the
basis of Human Genome version 19 using Sequence Pilot
v4.2.0. Read depth and amplicon coverage uniformity were
also assessed. Bioinformatic analysis was performed as
previously described.18

CONTEXT

Key Objective
What is the prognostic relevance of genetic alterations in high-grade neuroendocrine carcinoma (HGNEC) of the lungs?

Knowledge Generated
We integrated clinicopathologic characteristics, including poly (ADP-ribose) polymerase-1 immunohistochemistry ex-
pression, with mutation profiles to develop a prognostic model and identified 12 genes as prognostic factors for survival.
The integrated Cox hazard model, which combines mutation profiles with a baseline model, demonstrated superior pre-
dictive performance compared with the baseline model.

Relevance
The new prognosticmodel effectively stratified patients into high- and low-risk groups, whichmay offer valuable insights for
managing HGNEC patients.
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Integrated Cox Hazard Model

A data set comprising 102 samples and 376 variables (19
clinical and 357 genetic) was used to construct prognostic
models. Cox hazard models were fitted using the coxph
function in survival R-package. To prevent overfitting, the
lasso method with leave-one-out cross-validation was used
on the Cox models, aiding in selection of the most pertinent
variables with nonzero estimates.19 For the evaluation of
feature importance, the selection-adjusted statistics were
calculated20 for the lasso model and compared with the
unadjusted statistics for amultivariate Coxmodelfitted with
the selected variables. The rank correlation of the two sta-
tistics was 1.0, and hence, the latter is reported as the
proportion of the Wald statistics to the sum of all statistics,
approximating the adequacy index.21 The final lasso model
predicted a risk score xTb, calculated as a linear combination
of the model’s coefficient vector b and the observed profile x
for a test sample that was not used during training. The lasso
model performance was evaluated using the time-
dependent area under the receiver operating characteristic
curve from 10 to 90 months.22 The models were compared
using areas under the time-dependent AUC(t) curves (in-
cremental AUC [iAUC]) calculated with the survcomp

R-package and the Wilcoxon rank sum test. A 95% CI for
AUC(t) was calculated using bootstrapping with 500 random
samplings with replacement for each time point while
maintaining the same sample size.23 The integrated model’s
accuracy was compared with the baseline Cox model, fitted
solely to the clinical profiles using the same procedures.
Sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were calculated for both
models. Significant correlations among selected features
were depicted as solid lines of varying width (P < .05).
Pearson’s correlation and r2 were reported for continuous
variables. Fisher’s exact test or the chi-square test was used
for categorical variables. The Kruskal-Wallis test was used
for mixed pairs. Correlations between risk scores and other
variables were also evaluated.

Statistical Analysis

Fisher’s exact test was used to evaluate the relationship
between PARP1 expression subgroups (low or high) and
clinical variables. The Mann-Whitney U test analyzed dif-
ferences in PARP1 expression scores across clinical variables.
All reported P values were two-sided (P < .05). Survival
curves were created using the Kaplan-Meier method.

TABLE 1. Characteristics of Patients

Characteristic Total (N 5 191) Patients With Genetic Information (n 5 102)

Histology, No. (%)

SCLC 120 (62.8) 63 (61.8)

LCNEC 71 (37.2) 39 (38.2)

Age at diagnosis, median (range) 66 (36-89) 67 (36-85)

Sex, No. (%)

Male 173 (90.6) 94 (92.2)

Female 18 (9.4) 8 (7.8)

ECOG performance, No. (%)

0 22 (11.5) 13 (12.7)

1 123 (64.4) 59 (57.8)

2 30 (15.7) 19 (18.6)

3 16 (8.4) 11 (10.8)

Smoking status, No. (%)

Never-smoker 36 (18.8) 21 (20.6)

Smoker 155 (81.2) 81 (79.4)

Smoking pack-years, median (range) 44 (1-214) 45 (1-214)

TNM stage, No. (%)

1 25 (13.1) 20 (19.6)

2 12 (6.3) 7 (6.9)

3 55 (28.8) 28 (27.5)

4 99 (51.8) 47 (46.1)

First treatment, No. (%)

Surgery 44 (25.7) 29 (30.5)

Chemoradiation 34 (15.8) 9 (9.5)

Chemotherapy 95 (60.8) 57 (60.0)

Abbreviations: ECOG, Eastern Cooperative Oncology Group; LCNEC, large cell neuroendocrine carcinoma; SCLC, small cell lung cancer.
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Multivariate analysis employed the Cox regression model.
Statistical analyses used SPSS 25 software (IBM, Chicago,
IL). To determine the optimal PARP1 expression score cutoff
for survival prediction, we applied amaximally selected rank
statistics test with the Maxstat R-package.

For the meta-analysis of gene expression, a standard mean
difference was calculated as (tumor-normal) normalized by
a pooled standard deviation using Hedges’G as the summary
effect size because it statistically corrects for variance.24 For
the significance test, Wald statistics and CIs were calculated
on the basis of a standard normal distribution.

Enriched Pathway Analysis

All protein interactions with our markers were analyzed
using STRING, a database of known and predicted func-
tional associations from other interaction databases.25

Using the default STRING score while excluding gene
fusion and mere co-occurrence, the analysis focused on
known associations, with maximum of five functional
partners considered per gene. Network nodes were
grouped according to enriched biological processes or
pathways, using a rigorous false discovery rate (FDR)
cutoff of 0.001.
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FIG 1. Expression of PARP1 immunohistochemistry. (A) Intensity 1, extent 5%, 340 (upper right, 3200). No PARP1 expression in tumor
compared with internal control (positively stained lymphocytes; lower right, 3200) focal area of PARP1 expressing tumors with
intensity 1. (B) Intensity 2, extent 95%,340 (right,3200) strong PARP1 expression in most tumor cells, but the intensity is lower than
internal control (positively stained lymphocytes). (C) Intensity 3, extent 100%, 340 (right, 3200) strong PARP1 expression in all
tumor cells, the intensity is same or slightly lower than internal control (positively stained lymphocytes). (D) Scatter dot plots
showing PARP1 score by histology (left) and response to chemotherapy (right). * P < .05. CR, complete response; LCNEC, large cell
neuroendocrine carcinoma; PARP1, poly (ADP-ribose) polymerase-1; PD, progressive disease; PR, partial response; SCLC, small cell
lung cancer; SD, stable disease.
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RESULTS

Patients’ Characteristics

Table 1 summarizes the characteristics of the 191 patients
included in this study. Among them, 120 (62.8%) had SCLC
and 71 (37.2%) had LCNEC. The median age at diagnosis was
66 years (range, 36-89 years), predominantly male (90.7%)
and ever-smokers (81.4%). Never-smokers were more
common among patients with SCLC (24.2%) than patients
with LCNEC (9.9%). Patients with SCLC had worse baseline
performance status and were diagnosed at more advanced
stages (limited stage 29, 24.2%; extensive stage 91, 75.8%;
stage I-III 39, 32.5%; stage IV 81, 67.5%) compared with
patients with LCNEC (stage I-III, 53, 74.6%; stage IV 18,

25.4%; P < .01). Frontline treatment varied by histological
type and stage. Genomic data were available for 102 of 191
patients (Data Supplement, Fig S1), with similar charac-
teristics to the original cohort.

PARP1 Expression and Its Clinical Correlations

PARP1 protein expressionwas assessed in 191 tissue samples,
and Figure 1 shows representative images. Most tumors
showed strong nuclear staining in tumor cells (intensity 3 5

153/191, 80.1%), whereas a small percentage showed low
PARP1 expression (intensity 15 2/191, 1.0%; intensity 25 36/
191, 18.8%). The median extent of PARP1 expression was
95% (range, 5%-100%), and the median H-score was 285
(range, 5-300). The mean PARP1 H-scores were higher in
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FIG 2. Importance of clinical and genomic features selected in profiles of patients with lung cancer (n 5 102) and their correlation. (A) Top,
feature importance in multivariate Cox models (percentage of the Wald statistics); bottom, total importance for each feature group. (B) A node
represents a feature, and its size is proportional to significance of univariate Coxmodel (P < .05). A line represents significant correlation of a pair
of features (P < .05), and its width is proportional to significance. Features are highlighted with border and shape according to univariate and
multivariate Cox HR, respectively. (C) Risk score and clinical and genomic phenotypes of patients with lung cancer. (D) Relations of risk score
with important prognostic features. Risk is associated with age (linear correlation r5 0.58). Higher mutation burden on TP53 is associated with
higher risk for OS. LCNEC andMAFmutations are associated with lower risk for DFS. (E) Kaplan-Meier curves of survival groups for high- and low
risk patients, categorized by the median risk score. *P < .05, **P < .01, ***P < .001. DFS, disease-free survival; HR, hazard ratio; LCNEC, large cell
neuroendocrine carcinoma; OS, overall survival; SCLC, small cell lung cancer.
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SCLC than in LCNEC, but the difference was not statistically
significant (263.5 v 249.7; P 5 .14; Fig 1D, left). In the
combined cohort of SCLC and LCNEC tumors, no association
was found between the mean PARP1 H-score and baseline
characteristics such as age, sex, smoking history, and dis-
ease stage. However, in patients with extensive-stage
SCLC initially treated with chemotherapy, those with sta-
ble or progressive disease had a higher mean PARP1 H-score
(n 5 12, 276.3) than those with complete or partial response
(n5 62, 254.7; P5 .02; Fig 1D, right). Survival outcomeswere
analyzed separately by histology, as Cox regression analysis
identified histology and stage as statistically significant
prognostic factors. Within various subgroups stratified by
histology and stage, segregating patients into high or low
PARP1 expression subgroups using the maximal x2 method
yielded no prognostic significance.

Genetic Aberrations Identified From
Targeted Sequencing

Of 191 HGNEC specimens, 107 were suitable for genetic
analysis (Data Supplement, Fig S1). Of the 43 LCNEC

specimens, we identified a relatively high prevalence of
nonsynonymous mutations in SYNE1 (33/43, 77%), CIC (32/
43, 74%), CREBBP (27/43, 63%), and SEPT9 (25/43, 58%). By
contrast, we identified a relatively high prevalence of non-
synonymous mutations in PPP2R1A (35/64, 55%), ARID1A
(33/64, 52%),TRRAP (31/64, 48%), andNOTCH2 (11/64, 17%)
in SCLC. Mutations exhibiting statistically significant dif-
ferences in frequency on the basis of histology are presented
in the Data Supplement (Table S1). Several dominant mu-
tations were identified (Data Supplement, Table S2), in-
cluding the P854L mutation in the FLT3 tyrosine kinase
domain, which has not been previously reported in the
COSMIC database.

Prognostic Model Through Integration of Genomic and
Clinical Data

PARP1 IHC expression alone showed limited correlation
with clinical factors, and we investigated whether the ad-
dition of the mutational status of genomic data to multi-
modal data would help with outcome prediction. We
constructed an integrated Cox hazardmodel using a data set
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FIG 3. Time-dependent AUC(t) was measured from 10 months to 90 months at every event time, reflecting the performance of predicting (A) OS
and (B) DFS at different time points for the integrative risk model (with genomic and clinical variables) and the baseline model (solely with clinical
variables). iAUC values summarize the AUC(t) with P value of Wilcoxon rank sum test for the difference between AUC(t). DFS, disease-free
survival; iAUC, incremental AUC; OS, overall survival.

TABLE 2. Time-Dependent Performance of Baseline and Integrated Risk Models With Respect to AUC at Each Year

Survival

AUC(t) (95% CI)

Model t 5 1 year t 5 2 year t 5 3 year t 5 4 year t 5 5 year

OS Baseline 0.75 (0.62 to 0.86) 0.85 (0.72 to 0.93) 0.87 (0.7 to 0.94) 0.83 (0.64 to 0.92) 0.78 (0.56 to 0.92)

Integrative 0.82 (0.71 to 0.90) 0.88 (0.77 to 0.95) 0.88 (0.76 to 0.96) 0.85 (0.69 to 0.95) 0.86 (0.69 to 0.95)

DFS Baseline 0.89 (0.74 to 0.95) 0.87 (0.78 to 0.94) 0.88 (0.76 to 0.94) 0.82 (0.71 to 0.92) 0.82 (0.66 to 0.93)

Integrative 0.90 (0.78 to 0.96) 0.89 (0.81 to 0.96) 0.89 (0.78 to 0.96) 0.85 (0.73 to 0.94) 0.82 (0.70 to 0.93)

Abbreviations: DFS, disease-free survival; OS, overall survival.
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of 357 gene mutational profiles and 19 clinical profiles from
102 individuals. The 19 clinical variables encompassed age,
sex, smoking history, smoking status, performance status,
comorbidity scores, histology, stage, treatment type, and
response to chemotherapy. Four of these variables (his-
tology, stage, age, and PARP1 H-score) were identified as

clinical prognostic factors and incorporated into a baseline
model. Combining the targeted mutation profiles with the
clinical profiles revealed 11 genes (ATRX, CCND2, EXT2,
FGFR2, FOXO1, IL21R,MAF, TGM7, TNFAIP3, TP53, and TSHR)
as prognostic factors for OS and three genes (DDR2, MAF,
and TGM7) for DFS (Fig 2A) through the feature selection
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FIG 4. (A) Forest plot shows the difference in gene expression (square) with 95% CI for lung HGNEC
samples in two different studies. A summary diamond is added to show a pooled difference for each
gene selected in this study, and its P value is highlighted (95% CI is depicted by length of the di-
amond). (B) Association (line) among prognostic genes and their neighbors (node). Line width is in
proportion to confidence score (>0.4). Genes are colored according to enriched biological processes,
and their tumorigenic roles are represented by node shape (MAF is both tumor suppressor and
oncogene). Genes for transferase are depicted with thick border. (A) The genes of abnormal ex-
pression in tumors are highlighted with (*). HGNEC, high-grade neuroendocrine carcinoma. (con-
tinued on following page)
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(See “Integrated Cox hazard model”). To assess the pre-
dictive performance, we used the time-dependent AUC(t),
as prognostic models guide decisions across multiple dis-
ease time points.20 The integrated model consistently
exhibited superior predictive performance over the baseline
model at each time point (Table 2), as reflected in the area
under the AUC(t) (iAUC) summary.24 Moreover, the inte-
grated model outperformed the baseline model in true-
positive fraction at a fixed false-positive fraction of 20%
(or sensitivity for a fixed 1–specificity; Data Supplement,
Fig S2). For OS in the baseline model (Fig 3A, blue), per-
formance declined over time, reaching a maximum AUC(t)
of 0.90 at 32 months and 0.73 at the final time point. By
contrast, the integrated model (orange) maintained con-
sistent performance with a lesser decline (max. AUC(t) of
0.90 and 0.85). The iAUC’s of the competing models were
significantly different (0.84 v 0.78; Wilcoxon test; P 5

8.79e-12). A similar trend was observed for DFS (iAUC of
0.85 v 0.81; P 5 8.03e-10; Fig 3B). The Data Supplement
(Table S3) provides additionalmetrics, such as PPV andNPV,
for comprehensive comparison.

Figure 2E demonstrates the robust ability of the integrated
model to generate scores strongly correlated with patient
outcomes. Patients were stratified into high- or low-risk
groups on the basis of the median score, and survival
analysis for OS andDFSwas conducted. The integratedmodel
outperformed the baselinemodel for both OS (P5 1e-10) and
DFS (P 5 8e-09) by assigning high scores to patients with
early events, compared with the baseline model for OS
(P5 6e-10) and DFS (P5 3e-08). Adjusting the cut threshold
with the Maxstat R-package optimized for survival outcome

association further improved performance (P59e-12 v 3e-11
and P 5 3e-13 v 1e-08 for OS and DFS, respectively). In
addition, the results of the univariate Cox hazardmodel with
dichotomized scores favored the integrated approach (P 5

2e-10 v 7e-10 and P 5 8e-12 v P 5 8e-08 for OS and DFS,
respectively). The Data Supplement (Table S4) provides a
comprehensive comparison of these results. Consistent with
previous research, stage and age were identified as prog-
nostic factors,26,27 and our cohort exhibited higher risk
among elderly patients (linear correlation, r 5 0.58), many
TP53 mutations, or SCLC histological type (Fig 2D). Con-
versely, patients with many MAF mutations tend to have
lower disease stages and better survival rates. This prompts
an exploration of the interactions among prognostic vari-
ables. A systematic examination of variable pairs revealed
significant correlations, forming a network (Fig 2B). The
network showcased two clusters, genomic and clinical,
suggesting their independence yet complementarity. Within
the clinical cluster, the stage was significantly correlated
with age (P 5 .017), histology (P 5 9.6e-08), and MAF
mutations (P 5 .007). Notably, the OS and DFS correlation
network exhibited a quadruplet structure, underscoring their
crucial roles in predicting survival outcomes in HGNEC. The
correlation was most discernible in the spectrum of risk
scores, arranged in an ascending order (Fig 2C).

Meta-Analysis of Gene Expression

We computed the standardized mean difference of gene
expression across two data sets from previous studies on
lung neuroendocrine carcinoma (NEC)27,28 to assess tumor
expression distinctions from normal. Among the 13 genes,
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nine were significantly altered in tumors (Fig 4A; P < .005).
Genes were ranked by importance (Fig 2A). The most crucial
genes were upregulated (TP53, IL21R, TSHR, TGM7, and
PARP1), whereas less critical genes were downregulated
(ATRX, FOXO1, TNFAIP3, and DDR2). Notably, PARP1 showed
substantial upregulation in NEC (P 5 4.6e-21) and various
tumor types across 20 studies,27-44 including TCGA lung
adenocarcinoma and squamous cell carcinoma (P5 2.5e-58;
Data Supplement, Fig S3). The high PARP1 expression in the
meta-analysis aligned with our results (IHC intensity of 3 in
80.1% of samples). Dysregulated genes in lung NEC are
highlighted (*) in Figure 4B.

Enrichment Analysis of Marker Genes

In this study, we aimed to identify biological processes
influencing HGNEC risk. Genes from our models and their
functional partners from the STRING database25 were
pooled. Figure 4B shows the gene ontology analysis results
for the 17 pooled genes, revealing functional links, especially
with TP53, within biological processes affecting HGNEC risk.
Several gene clusters engaged in cellular regulation, re-
sponses, and/or differentiation (FDR <0.001). Notably,
mutated genes (MAF, FOXO1, DDX5, TP53, and ATRX) were
significantly involved in negative regulation of transcription
by RNA polymerase II (FDR 5 0.00012, GO:0000122). Mu-
tations in this pathway, including the tumor suppressors
TP53, RB1, and MAF, might be associated with high PARP1
expression via dysregulated expression of ATRX, FOXO1, and
TP53 in HGNEC. Some mutations in tumor suppressor EXT2
involved in cell differentiation (FDR 5 5.22e-05, GO:
0045595), and others related to regulation of apoptotic
process (FDR 5 0.00025, GO:0042981) may disrupt apo-
ptosis through high PARP1 and low TNFAIP3 expression.
Additionally, mutations in genes involved in response to
chemical stimulus (FDR50.00018, GO:0070887)were linked
to altered expression (TSHR and IL21R overexpression, FOXO1
downregulation), implying a potential abnormal response to
toxic chemicals in 81 (78.6%) ever-smoker patients in our
cohort. The risk was also associated with mutations in
transferase/kinase regulators (eg, TNFAIP3 and DDR2),
crucial in signaling pathways (FDR 5 0.003, GO:0051338).
Mutations causing constitutive kinase activation or dis-
rupting normal FGFR2 maturation, internalization, and
degradation can induce aberrant signaling (UniProt:
Q91147). Many transferase partners (AURKA, UBE3A,
TNFRSF1A, SIRT1, and DDX5) are connected to this pathway
through the hub protein TP53. Notably, the proto-oncogene
MAF (BZIP transcription factor) is expressed in monocytes
and macrophages, acting as both a positive and negative
regulator of cytokine-encoding gene expression. It is also a
critical controller of immunosuppressive M1/M2 macro-
phage polarization and functions in cancer. Deletion of MAF
resulted in reduced tumor burden with enhanced antitumor
T-cell immunity in lung cancer, providing a partial expla-
nation for the correlation of hypermutations with low-stage
(P 5 .007) and low-risk scores (Figs 2B-2D). MAF had the
largest effect size in the risk model (Fig 4A). These results

suggest that MAF’s mutational burden could serve as a
marker for effective antitumor T-cell immunity in HGNEC.
Further studies are necessary to determine the connections
from TSHR, IL21R, EXT2, or TGM7 to the enriched pathways in
lung HGNEC.

DISCUSSION

HGNEC, an aggressive lung cancer subtype with extraordi-
narily complex biology but lacking an established prognostic
model,45,46 may benefit from integrating with SCLC and
LCNEC because of the potential biological similarities. Our
data-driven modeling, involving clinicians and biological
researchers, offers a novel method for identifying the best
prognostic predictors. Despite insights into the inter-
connected nature of prognostic factors in HGNEC survival,
practical constraints and costs limit widespread clinical
application. Further validation across diverse cohorts is
required to ascertain the biological and clinical implications
of our findings.

This study leveraged patient-level real-world genomic and
clinicogenomic data sets to evaluate raremutations. Through
various regression analyses and the LASSO-Cox model, we
identified a set of 12 genes and PARP1 expression levels as
components of an integrated prognostic model. Mutations in
CCND2, FOXO1, IL2R, INFAIP3,MAF, and TGM7were identified
as prognostic factors for HGNEC survival. Although these
mutations are not standard cancer hallmark genes,47 meta-
analysis and GO enrichment analysis revealed their associ-
ations with immune cell signaling, cytokines, genomic
instability, and metabolic derangement in cancer cells. Par-
ticularly, TGM7 andMAFmutations affected both DFS and OS.
TGM7 gene encodes a transglutaminase involved in protein
stabilization48-50 and potentially influencing carcinogenesis
and the tumor microenvironment, including epithelial-
mesenchymal transition andmacrophage infiltration into the
tumor.51,52 MAF, known as a transcriptional modulator, has
been linked to multiple myeloma and lymphoma, tumor-
stroma interactions, and lymphocyte regulation, suggesting
its significance in tumorigenesis, metastasis, and manipu-
lation of the tumor microenvironment.53,54 Liu et al55

evaluated c-MAF as a controller of immunosuppressive
macrophages in lung cancer and suggested that c-MAF is a
potential target for effective tumor immunotherapy. Further
exploration of TGM7 andMAF roles in HGNEC is warranted to
better understand their implications.

Previous studies have linked high PARP1 expression to poor
prognosis in non–small cell lung cancer (NSCLC).56,57 In lung
NEC, meta-analysis indicated high PARP1 expression in
HGNEC,27,28 yet the underlying mechanisms for universally
high PARP1 expression compared with NSCLC4 remain
unknown. Given emerging evidence of DDRpathways defects
in HGNEC, high PARP1 expression may offer avenues for
novel therapies. Although PARP1 expression alone did not
correlated with patient survival in our study, it correlated in
our integrated prognostic model. GO analysis suggested that
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mutations in various signaling pathways may contribute to
increase PARP1 expression in HGNEC, warranting further
investigation.

In conclusion, our study emphasizes the importance of in-
tegrating genetic aberrations, high PARP1 expression, and

clinical variables into prognostic models for HGNEC. How-
ever, the small sample size and retrospective design may
limit the generalizability of our findings, highlighting the
need for validation and refinement in larger cohorts. Further
research is necessary to identify additional prognostic bio-
markers for HGNEC.
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