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Abstract: Optical coherence tomography (OCT), owing to its non-invasive nature, has demon-
strated tremendous potential in clinical practice and has become a prevalent diagnostic method.
Nevertheless, the inherent speckle noise and low sampling rate in OCT imaging often limit
the quality of OCT images. In this paper, we propose a lightweight Transformer to efficiently
reconstruct high-quality images from noisy and low-resolution OCT images acquired by short
scans. Our method, PSCAT, parallelly employs spatial window self-attention and channel
attention in the Transformer block to aggregate features from both spatial and channel dimensions.
It explores the potential of the Transformer in denoising and super-resolution for OCT, reducing
computational costs and enhancing the speed of image processing. To effectively assist in
restoring high-frequency details, we introduce a hybrid loss function in both spatial and frequency
domains. Extensive experiments demonstrate that our PSCAT has fewer network parameters and
lower computational costs compared to state-of-the-art methods while delivering a competitive
performance both qualitatively and quantitatively.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical Coherence Tomography (OCT) utilizes the interference properties of light waves to non-
invasively measure optical path differences, thus obtaining high-resolution images of biological
tissues [1,2]. It is widely used in medicine for observing tissue microstructure and diagnosing
abnormalities including ophthalmology, cardiovascular medicine, dermatology, and more. Due
to its non-invasive, high-resolution, and real-time imaging nature, OCT plays a crucial role
in medical diagnostics and research. Especially in the field of ophthalmology, it is used as
one of the safest and most effective tools for diagnosing various eye diseases such as retinal
diseases, macular diseases, optic nerve diseases, and glaucoma. Due to the limitations of the
interferometric imaging principle of OCT technology, its images are often affected by inherent
speckle noise [3], decreasing the signal-to-noise ratio (SNR) of OCT images. On the other
hand, to achieve a large field of view and reduce the impact of unconscious microsaccades,
clinical practitioners often use downsampling methods to accelerate the acquisition speed while
maintaining the same scanning frequency of the light source. However, this also reduces the
acquired information, thus lowering the resolution of the OCT image. Developing appropriate
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methods to improve the SNR and resolution of OCT images is crucial, offering clinicians clearer
images for observing retinal structure and disease characteristics.

Over the past decades, considerable efforts have been made to find a reliable method for
reconstructing low signal-to-noise ratio and low-resolution (LSLR) OCT images into high
signal-to-noise ratio and high-resolution (HSHR) images. Fang et al. [4] introduced an
efficient sparse representation-based image reconstruction framework called SBSDI, which
simultaneously performs interpolation and denoising of retinal OCT images. Trinh et al. [5]
proposed a competitive example-based super-resolution (SR) method for medical images capable
of enhancing resolution while being robust to heavy noise. Seelamantula et al. [6] introduced a
super-resolution reconstruction method based on a parametric representation that leverages an
iterated singular-value decomposition algorithm, which is named Cadzow denoiser. Abbasi et
al. [7] presented a nonlocal weighted sparse representation (NWSR) method for reconstructing
HSHR retinal OCT images. Most of these traditional methods require complex regularizers,
resulting in high computational complexity and inflexibility. The image restoration quality is not
ideal and is difficult to apply in clinical practice.

In recent years, deep learning-based algorithms have shown their overwhelming advantages in
image processing, ranging from low-level tasks such as image denoising, deblurring, and SR
to high-level tasks such as segmentation, detection, and recognition. A large number of deep
learning-based methods are employed for speckle noise reduction and resolution enhancement
in OCT images [8–12]. Huang et al. [13] proposed a generative adversarial network-based
approach, SDSR-OCT, to simultaneously denoise and super-resolve OCT images. Qiu et al. [14]
proposed a semi-supervised learning approach named N2NSR-OCT to generate denoised and
super-resolved OCT images simultaneously using up- and down-sampling networks. Cao et
al. [15] modified the existing super-resolution generative adversarial network (SR-GAN) for
OCT image reconstruction to address the problem of generating a high-resolution OCT image
from a low optical and low digital resolution image. Das et al. [16] proposed an unsupervised
framework to perform fast and reliable SR without the requirement of aligned LR-HR pairs,
using adversarial learning with cycle consistency and identity mapping priors to preserve the
spatial correlation, color, and texture details. These CNN-based methods have promoted the
development of OCT image denoising and super-resolution. As more extensive and deeper CNN
models are developed to improve learning ability, image quality has also been greatly improved.
CNN models are based on the idea of local receptive fields, which extract features by sliding
convolutional kernels over the image. However, this local receptive field mechanism limits the
model’s ability to perceive global information.

Recently, Transformer [17] proposed in natural language processing (NLP) has shown
outstanding performance in multiple high-level vision tasks. The core of the Transformer is
the self-attention mechanism, which enables the establishment of global dependencies and
alleviates the limitations of CNN-based algorithms. Considering the potential of Transformer,
some researchers have attempted to apply it to low-level tasks such as image denoising and
super-resolution [18–21]. Despite its success and great promise, the Transformer has been
investigated little in OCT denoising and super-resolution. We aim to explore the potential of the
Transformer fully in simultaneous denoising and super-resolution of OCT. Specifically, we propose
a lightweight parallel spatial and channel attention Transformer (PSCAT) to simultaneously
denoise and super-resolve LSLR OCT images. The window-based multi-head self-attention and
channel attention modules in the Transformer block aggregate features from both spatial and
channel dimensions. The two attention mechanisms complement each other. Spatial attention
enriches each feature map’s spatial representation, helping model channel dependencies. Channel
attention provides global information between features for spatial attention, expanding the
receptive field of spatial attention. Compared with the state-of-the-art methods, PSCAT has
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fewer network parameters and lower computational costs, making it more suitable for rapidly
processing large clinical scan samples.

In summary, the key contributions of this paper are as follows:

• We propose a parallel spatial and channel attention Transformer module that combines window-
based multi-head self-attention and channel attention to capture spatial and channel features
simultaneously, achieving inter-block feature aggregation of different dimensions.

• We develop an effective lightweight Transformer network that utilizes a hybrid loss function in
both spatial and frequency domains for simultaneous denoising and super-resolving OCT
images in an end-to-end manner.

• Extensive experimental results demonstrate that our PSCAT has achieved the SOTA results
for the OCT image enhancement task compared to traditional, CNN-based, and other
Transformer-based methods.

2. Method

2.1. Problem statement

The goal of the simultaneous denoising and super-resolution task for OCT images is to restore
HSHR images from LSLR images. A typical OCT denoising and super-resolution model can be
expressed as

ÎHSHR = G(ILSLR) (1)

where ILSLR is an input OCT image with low SNR and resolution, G is the operator for noise
reduction and resolution enhancement, ÎHSHR represents a denoised and super-resolved OCT
image generated by G.

Given a set of paired LSLR and HSHR images {(ILSLR, IHSHR) | Rn}, the model G can be
represented by the parameterized function GΘ, where Θ is the vector of parameters. The
parameterized vector can be computed as:

Θ = arg min
Θ

1
N

N∑︂
1

L(GΘ(ILSLR;Θ) − IHSHR) (2)

where GΘ(ILSLR;Θ) : Rn → Rn is the deep learning network model represented by a parameterized
vector Θ, N is the number of input images, and L is the loss function used by the network.

2.2. Network architecture

2.2.1. Overall structure

As illustrated in Fig. 1, the overall network of the proposed PSCAT comprises three parts: shallow
feature extraction, deep feature extraction, and image reconstruction. This architecture design is
widely used in natural image super-resolution networks [19,21–23]. Initially, given a LSLR input
image ILSLR ∈ RH×W×Cin, we first exploit one 3 × 3 convolutional layer to extract the shallow
feature FS ∈ RH×W×C. H and W denote the height and width of the input image, While Cin and
C represent the channel number of the input image and intermediate feature.

Subsequently, the shallow feature FS enters the deep feature extraction module to obtain
the deep feature FD ∈ RH×W×C. The deep feature extraction module is stacked by NG parallel
attention Transformer groups (PATGs). The residual strategy is introduced here to ensure the
stability of training. Each PATG contains NB parallel attention Transformer blocks (PATBs).
Each PATB contains a spatial attention module (SAM) and a channel attention module (CAM),
arranged in parallel. At the end of each PATG and deep feature extraction module, there is a
3 × 3 convolutional layer for refining features.
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Fig. 1. The overall architecture of the proposed lightweight parallel spatial and channel
attention Transformer (PSCAT) and the structure of channel attention module (CAM).
⊕/⊗: element-wise addition / multiplication.
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Fig. 1. The overall architecture of the proposed lightweight parallel spatial and channel
attention Transformer (PSCAT) and the structure of channel attention module (CAM). ⊕/⊗:
element-wise addition / multiplication.

Finally, the shallow feature FS and the deep feature FD are fused through global residual
connections and entered into the image reconstruction module. In this module, the HSHR output
image ÎHSHR ∈ RH×W×Cin is reconstructed from the fused feature through upsampling operation
horizontal direction PixelShuffle (HDPS), and 3× 3 convolutional layers are adopted to aggregate
features before and after the upsampling operation.

2.2.2. Spatial attention module (SAM)

Attention mechanism has become one of the most widely used components in deep learning,
especially in NLP and computer vision. Its core idea is to imitate human attention, focusing on
the most relevant or important parts when processing a large amount of information. The self-
attention mechanism reduces the dependence on external information and is better at capturing the
internal correlation of data or features. ViT [24] is the first to introduce multi-head self-attention
(MSA) [17] into computer vision. Swin Transformer [25] introduces the shifted windowing
scheme, which increases efficiency by limiting self-attention computation to non-overlapping
local windows while allowing cross-window connection. It represents a significant advancement
in applying Transformer models to computer vision, combining the strengths of Transformers
and CNNs to process and understand visual data efficiently.

Our SAM follows Swin Transformer’s window-based multi-head self-attention (W-MSA),
reduces receptive fields, and limits self-attention computation to local windows. Given an input
X ∈ RH×W×C, we first reshape X into HW

M2 non-overlapping local windows of the size M × M.
Then, we calculate the standard Softmax attention within each window. For a local window
feature XW ∈ RN×C, where N = M × M, the query, key and value matrices Q, K, and V are
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computed as follows in each head:

Q = XWPQ, K = XWPK , V = XWPV (3)

where PQ, PK and PV are projection matrices that are shared across different windows. The
Softmax attention is computed as:

Attention(Q, K, V) = SoftMax(QKT
√

d
+ B)V (4)

where d represents the dimension of Q/K, B denotes the relative position encoding.

2.2.3. Channel attention module (CAM)

Channel attention aims to model the correlation between different channels, automatically obtain
the importance of each feature channel through network learning, and finally assign different
weight coefficients to each channel to enhance important features and suppress non-important
features. The representative model of the channel attention mechanism is Squeeze and Excitation
Networks (SENet) [26].

As shown in Fig. 1, our CAM consists of two 3×3 convolutional layers with a GELU activation
and a standard channel attention calculation following CBAM [27]. The channel attention in our
CAM is computed as:

FAvg(X) = Conv(ReLU(Conv(AvgPool(X)))),
FMax(X) = Conv(ReLU(Conv(MaxPool(X)))),
CAM(X) = X ∗ δ(FAvg(X) + FMax(X))

(5)

where X represents the input feature map, AvgPool and MaxPool represent adaptive average
pooling and maximum pooling operations that aggregate spatial information into the channel.
Conv is 1 × 1 convolutional layer and ReLU is adopted between two convolutional layer, δ is a
nonlinear activation function Sigmoid, and ∗ is an element-wise multiplication operation. FAvg(X)
and FMax(X) denote the intermediate features, CAM(X) is the output of CAM.

2.2.4. Parallel attention transformer block (PATB)

The hybrid attention mechanism can more comprehensively capture and represent the complexity
of the input data, thereby improving the model’s ability to understand the data and effectively
boosting the modeling ability of the Transformer. Some studies [21,23] explore introducing
channel attention in Transformer to aggregate spatial and channel information. The spatial window
self-attention models the fine spatial relationship between pixels, and the channel attention models
the relationship between feature maps, thereby utilizing global image information.

Our PATB adopts a hybrid attention mechanism and arranges spatial and channel attention in
parallel. It comprises three parts: SAM, CAM, and multilayer perceptron (MLP). The three parts
are interspersed with LayerNorm (LN) and residual connections, as shown in Fig. 1. For a given
input feature X, the entire calculation process of PATB is as follows:

FSAM(X) = (S)W-MSA(LN(X))),
FCAM(X) = CAM(LN(X)),

FAtt(X) = FSAM(X) + γFCAM(X) + X,
PATB(X) = MLP(LN(FAtt(X))) + FAtt(X)

(6)

W-MSA and SW-MSA represent window-based multi-head self-attention and shifted window-
based multi-head self-attention. In continuous PATB, W-MSA and SW-MSA will be used
intermittently. FSAM(X), FCAM(X), and FAtt(X) denote the intermediate features, PATB(X)
represents the output of PATB, γ is a constant parameter utilized to balance SAM and CAM.
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2.2.5. Horizontal direction PixelShuffle (HDPS)

In the OCT acquisition process, a line scanning mode is typically employed, where the scanning
frequency in the A-scan direction directly influences the resolution in the horizontal direction.
While high-frequency A-scans can yield high-resolution images, their acquisition speed may be
constrained. Unlike natural images, we use the modified PixelShuffle [28] for upsampling, namely
horizontal direction PixelShuffle (HDPS). The use of HDPS can improve the collection speed in
clinical applications. As shown in Fig. 2, input features Fin ∈ RH×W×C is firstly processed through
3 × 3 convolutional layers to obtain the amplified channel number features Famp ∈ RH×W×(r∗C).

Famp = Conv(Fin) (7)

where H, W, and C represent the height, width, and number of channels of the feature map, and r
is the upsampling factor. After that, Famp is shaped to obtain output feature Fout ∈ RH×(r∗W)×C.

Fout = Reshape(Famp) (8)

intermittently. 𝐹𝑆𝐴𝑀 (𝑋), 𝐹𝐶𝐴𝑀 (𝑋), and 𝐹𝐴𝑡𝑡 (𝑋) denote the intermediate features, 𝑃𝐴𝑇𝐵(𝑋)187

represents the output of PATB, 𝛾 is a constant parameter utilized to balance SAM and CAM.188
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In the OCT acquisition process, a line scanning mode is typically employed, where the scanning190
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While high-frequency A-scans can yield high-resolution images, their acquisition speed may192

be constrained. Unlike natural images, we use the modified PixelShuffle [28] for upsampling,193

namely horizontal direction PixelShuffle (HDPS). The use of HDPS can improve the collection194

speed in clinical applications. As shown in Figure 2, input features 𝐹𝑖𝑛 ∈ R𝐻×𝑊×𝐶 is firstly195

processed through 3 × 3 convolutional layers to obtain the amplified channel number features196

𝐹𝑎𝑚𝑝 ∈ R𝐻×𝑊×(𝑟∗𝐶 ) .197

𝐹𝑎𝑚𝑝 = 𝐶𝑜𝑛𝑣(𝐹𝑖𝑛) (7)

where 𝐻,𝑊 , and 𝐶 represent the height, width, and number of channels of the feature map, and 𝑟198

is the upsampling factor. After that, 𝐹𝑎𝑚𝑝 is shaped to obtain output feature 𝐹𝑜𝑢𝑡 ∈ R𝐻×(𝑟∗𝑊 )×𝐶 .199

𝐹𝑜𝑢𝑡 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝑎𝑚𝑝) (8)

Finally, the feature map was upsampled by r times in the horizontal direction.200
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Fig. 2. Horizontal direction PixelShuffle (HDPS) for OCT images.

2.3. Loss function201

To obtain the HSHR OCT image from an LSLR input, we introduce a hybrid loss function in202

both spatial and frequency domains. Two items are included in our loss function: the MAE loss203

L𝑀𝐴𝐸 , and the FFT loss L𝐹𝐹𝑇 . The MAE loss L𝑀𝐴𝐸 is defined as follows:204

L𝑀𝐴𝐸 =


Î𝐻𝑆𝐻𝑅 − I𝐻𝑆𝐻𝑅




1 (9)

where Î𝐻𝑆𝐻𝑅 and I𝐻𝑆𝐻𝑅 represent the HSHR image output by the network and the real HSHR205

image, respectively. ∥·∥1 represents L1 distance, which is generally used in learning-based OCT206

denoising and resolution enhancement. MAE loss ensures that the network’s output is close207

to the ground truth, but using only the pixel-level loss function cannot effectively help restore208

high-frequency details. Therefore, we add frequency constraints to regularize network training:209
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1 (10)

Fig. 2. Horizontal direction PixelShuffle (HDPS) for OCT images.

Finally, the feature map was upsampled by r times in the horizontal direction.

2.3. Loss function

To obtain the HSHR OCT image from an LSLR input, we introduce a hybrid loss function in
both spatial and frequency domains. Two items are included in our loss function: the MAE loss
LMAE, and the FFT loss LFFT . The MAE loss LMAE is defined as follows:

LMAE =
∥︁∥︁ÎHSHR − IHSHR

∥︁∥︁
1 (9)

where ÎHSHR and IHSHR represent the HSHR image output by the network and the real HSHR
image, respectively. ∥·∥1 represents L1 distance, which is generally used in learning-based OCT
denoising and resolution enhancement. MAE loss ensures that the network’s output is close
to the ground truth, but using only the pixel-level loss function cannot effectively help restore
high-frequency details. Therefore, we add frequency constraints to regularize network training:

LFFT =
∥︁∥︁F(ÎHSHR) − F(IHSHR)

∥︁∥︁
1 (10)

F represents fast Fourier transform.
The overall loss function of our proposed PSCAT is as follows:

L = LMAE + λLFFT (11)

where λ is a constant parameter utilized to balance the two terms. Typically, λ is set to a
small value close to 0. For image denoising and enhancement tasks, the MAE loss is the main
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component for ensuring model convergence, while frequency domain constraints are solely
employed for the further protection of structural details.

3. Experiments and results

3.1. Data preparation

The dataset used for training and validation in this work is PKU37 [12], which collected data
from 37 healthy eyes of 37 subjects using a customized Spectral Domain OCT (SDOCT) system.
The center wavelength and full width at half the maximum bandwidth of the light source are 845
nm and 45 nm, respectively. The lateral and axial resolutions are 16 µm and 6 µm, respectively.
More details about obtaining PKU37 can be found in [9].

Two publicly available datasets were used as test sets, namely DUKE17 [29] and DUKE28
[4]. DUKE17 was acquired from 17 eyes from 17 subjects, 10 normal subjects, and 7 with
non-neovascular age-related macular degeneration (AMD) in the A2A SDOCT study. Volumetric
scans were acquired using SDOCT imaging systems from Bioptigen, Inc. (Research Triangle
Park, NC). DUKE28 was obtained from 28 eyes of 28 subjects enrolled in the Age-Related Eye
Disease Study 2 (AREDS2) Ancillary SDOCT (A2A SDOCT) with and without non-neovascular
AMD by 840 nm wavelength SDOCT imaging systems from Bioptigen, Inc. (Durham, NC,
USA).

The division of the training, validation, and test set is shown in Table 1. Referring to the
original article of PKU37 dataset [12], we selected the images from 20 subjects in PKU37
for training (namely PKU37-train) and used the remaining 17 subjects for validation (namely
PKU37-val). DUKE17 and DUKE28 were used for cross-domain tests to verify the generalization
ability of the deep learning-based methods. PKU37-val was used for hyperparameter adjustment
of all deep learning-based methods.

Table 1. Training, validation, and test datasets used in this work.

Dataset Subject Clean image Noisy image

training PKU37-train 20 20 1000

validation PKU37-val 17 17 734

test
DUKE17 17 17 17

DUKE28 28 28 28

3.2. Implementation details

We implemented the proposed PSCAT using the PyTorch [30] toolbox, and all the experiments
were conducted on an Ubuntu 20.04 operation system and an NVIDIA Geforce RTX 3090 GPU.
In the training stage, the Adam [31] optimizer was adopted with β1 = 0.9 and β2 = 0.99, batch
size was set to 4, and the learning rate was set to 2e-4 for all 2e5 iterations. We keep the depth
and width of the PSCAT structure the same as SwinIR [19]; the numbers of PATG and PATB are
both set to 6. The channel number of the hidden layers in PATB is set to 96. The attention head
number and window size are set to 6 and 16 for (S)W-MSA. The weight γ and λ were set as 0.01
and 0.05 through a lot of searches.

To better evaluate the performance of the proposed PSCAT, twelve methods were considered
for comparison. These methods can be roughly divided into three categories: three typical
traditional methods commonly used for OCT denoising, Wavelet [32], NLM [33], and BM3D
[34]; five excellent CNN-based methods, EDSR [35], RCAN [22], HAN [36], IMDN [37]
and SAFMN [38]; four innovative Transformer-based methods, SwinIR [19], HAT [21], DAT
[23], and DLGSANet [39]. Among them, IMDN, SAFMN, and DLGSANet are lightweight
models. For traditional methods, we combine them with bicubic interpolation and optimize
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their parameters. For the deep learning-based method, we modified the upsampling part of the
published code provided by their authors and used the same dataset partitioning as in our PSCAT.

For quantitative comparison, we used three metrics, including peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and root mean square error (RMSE). PSNR represents the
ratio of the maximum possible power of a signal to the destructive noise power that affects
its representation accuracy. SSIM measures image similarity from three aspects: brightness,
contrast, and structure. RMSE reflects the pixel-by-pixel difference between the generated image
and the ground truth.

3.3. Performance comparison

To quantitatively evaluate the simultaneous denoising and resolution enhancement performance
of the proposed method, Table 2 summarizes two model evaluation metrics (Params, FLOPs)
and three image quality evaluation metrics (PSNR, SSIM, RMSE) results (mean±standard
deviation) of all the methods on PKU37-val. Our PSCAT is significantly superior to other
methods in all image quality evaluation metrics, regardless of whether the scale factor is ×2

Table 2. Quantitative evaluation of the proposed PSCAT against
Non-learning/CNN-based/Transformer-based methods on PKU37-val. #Params means the number of

network parameters. #FLOPs denotes the number of the FLOPs, which are calculated on images
with a resolution of 128 × 128 pixels. The best and second best results are marked in bold and

underlined, respectively.

Type Method Scale Inference
time ↓

#Params
[M] ↓

#FLOPs
[G] ↓

PSNR ↑ SSIM ↑ RMSE ↓

Base Bicubic ×2 0.011s - - 20.69±0.58 0.2572±0.0195 23.61±1.74

Non-learning

Wavelet+Bicubic ×2 0.044s - - 24.92±0.93 0.4058±0.0608 14.56±1.40

NLM+Bicubic ×2 0.978s - - 27.38±1.15 0.6758±0.0591 10.99±1.34

BM3D+Bicubic ×2 2.715s - - 29.23±0.93 0.7774±0.0414 8.86±0.90

CNN-
based

EDSR ×2 0.880s 39.55 648.36 32.15±0.80 0.8831±0.0142 6.32±0.60

RCAN ×2 0.559s 15.37 250.80 31.89±0.76 0.8790±0.0137 6.51±0.58

HAN ×2 0.598s 15.85 258.94 32.12±0.80 0.8824±0.0142 6.34±0.60

IMDN ×2 0.460s 0.69 11.3 31.93±0.80 0.8784±0.0141 6.48±0.60

SAFMN ×2 0.316s 0.23 3.68 32.05±0.81 0.8820±0.0144 6.39±0.61

Transformer-
based

SwinIR ×2 2.037s 11.68 191.01 32.13±0.79 0.8829±0.0140 6.34±0.59

HAT ×2 2.854s 20.55 332.82 32.14±0.80 0.8833±0.0142 6.33±0.60

DAT ×2 5.183s 14.58 235.34 32.04±0.78 0.8824±0.0140 6.40±0.59

DLGSANet ×2 1.527s 4.85 79.37 32.05±0.78 0.8821±0.0141 6.40±0.59

PSCAT (ours) ×2 1.356s 3.91 61.24 32.18±0.80 0.8841±0.0140 6.30±0.60

Base Bicubic ×4 0.016s - - 20.53±0.57 0.2441±0.0172 24.05±1.73

Non-learning

Wavelet+Bicubic ×4 0.022s - - 24.56±0.91 0.3893±0.0602 15.17±1.44

NLM+Bicubic ×4 0.478s - - 26.75±1.21 0.6555±0.0613 11.83±1.50

BM3D+Bicubic ×4 1.617s - - 28.62±0.99 0.7671±0.0427 9.51±1.03

CNN-
based

EDSR ×4 0.651s 40.73 687.26 31.40±0.80 0.8695±0.0149 6.89±0.64

RCAN ×4 0.396s 15.44 253.28 31.28±0.74 0.8683±0.0141 6.99±0.59

HAN ×4 0.425s 15.92 261.42 31.37±0.81 0.8681±0.0152 6.92±0.64

IMDN x4 0.377s 0.69 11.35 31.20±0.78 0.8636±0.0157 7.06±0.63

SAFMN x4 0.298s 0.23 3.71 31.19±0.85 0.8656±0.0159 7.07±0.68

Transformer-
based

SwinIR ×4 1.789s 11.75 193.49 31.36±0.81 0.8689±0.0153 6.92±0.64

HAT ×4 1.869s 20.62 335.30 31.37±0.82 0.8699±0.0151 6.92±0.65

DAT ×4 3.337s 14.65 237.82 31.36±0.80 0.8695±0.0151 6.93±0.63

DLGSANet x4 0.826s 4.73 77.41 31.08±0.84 0.8647±0.0152 7.15±0.69

PSCAT (ours) ×4 0.688s 3.98 63.72 31.48±0.78 0.8712±0.0151 6.83±0.61
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or ×4. Particularly, when the scale factor is ×4, compared to conventional CNN-based model
EDSR and Transformer-based model SwinIR, the proposed PSCAT achieves gains of 0.08dB and
0.12dB in PSNR, while the network parameters and FLOPs of EDSR and SwinIR methods are
10 times and 3 times higher than those of PSCAT, respectively. In models based on Transformer,
whether the scale factor is ×2 or ×4, our PSCAT has the fastest inference time. Especially when
the scale factor is ×4, the inference time of PSCAT is about 1/3 of SwinIR and HAT, and 1/5
of DAT. In comparison among lightweight models, DLGSANet has slightly more parameters
than PSCAT, whereas IMDN and SAFMN have fewer. However, all three models significantly
underperform relative to PSCAT. All comparisons presented in Table 2 show that PSCAT is
lightweight and much more efficient than the state-of-the-art methods.

To validate the visual effects of the proposed method, two representative OCT images were
selected from PKU37-val and presented in Figs. 3 and 4. Two ROIs were chosen and magnified
for better visualization. It is easy to notice that the results of the deep learning methods are
obviously better than traditional methods in both speckle reduction and detail preservation.
The results of traditional methods (Wavelet+Bicubic, NLM+Bicubic, BM3D+Bicubic) contain
a large amount of noise, and NLM+Bicubic even introduces some streak artifacts. All deep
learning methods appear to remove noise while enhancing resolution. Our lightweight model
PSCAT matches the visual quality of leading methods like SwinIR, HAT, and DAT with only
about 1/5 to 1/3 of their parameters, while surpassing all in PSNR, SSIM, and RMSE metrics.

ground truth bicubic Wavelet+bicubic

NLM+bicubic BM3D+bicubic EDSR RCAN

HAN SwinIR

HAT DAT PSCAT (ours)

20.94 / 0.2768 / 22.89 PSNR(dB) / SSIM / RMSE 25.46 / 0.4347 / 13.60 

28.46 / 0.7337 / 9.62 30.23 / 0.8282 / 7.85  32.13 / 0.8795 / 6.31  31.94 / 0.8768 / 6.45 

32.08 / 0.8784 / 6.34  32.14 / 0.8801 / 6.30   

32.15 / 0.8807 / 6.29    32.12 / 0.8813 / 6.32     32.18 / 0.8814 / 6.27      

PKU37_val 000719_x2

IMDN

DLGSANet

SAFMN
31.95 / 0.8754 / 6.45  

32.03 / 0.8793 / 6.38     

32.10 / 0.8787 / 6.33    

input

Fig. 3. Performance comparison of different methods on PKU37-val of ×2 SR.

RMSE being second best and closely matching the optimal results. It is evident that, regardless296

of whether the scale factor is ×2 or ×4, the SSIM of PSCAT consistently surpasses that of297

HAT, thereby confirming our method’s superiority in retaining structural details. Furthermore,298

considering the Params and FLOPs data presented in Table 2, our model achieved slightly better299

generalization performance than HAT while consuming only a fifth of the computational costs.300

To compare the simultaneous denoising and super-resolution results of different methods on301

the cross-domain test datasets, we selected one representative image from each dataset for display302

in Figure 5 and Figure 6. It can be seen that all deep learning methods exhibit varying degrees303

of denoising effects while improving resolution. Consistent with the denoising performance304

evaluation results on PKU37-val, the proposed PSCAT is significantly superior to other methods.305

The qualitative and quantitative evaluation results indicate that the proposed lightweight model306

PSCAT has superior generalization ability compared to all reference methods.307

4. Discussion308

4.1. Ablation studies309

4.1.1. Effectiveness of CAM310

We conduct experiments to inspect the effectiveness of the proposed CAM. The quantitative311

performance reported on the PKU37-val dataset for ×2 SR is shown in Table 4. Where dim is312

the channel number of the hidden layers in PATB. When dim=96 or 144, the PSNR of parallel313

CAM is higher. When dim=180, the PSNR of the serial CAM is higher. So, parallel CAM is314

more suitable for our lightweight network. From Table 4, it can be observed that, contrary to315

Fig. 3. Performance comparison of different methods on PKU37-val of ×2 SR.
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ground truth bicubic

BM3D+bicubic EDSR RCAN

HAN SwinIR

HAT DAT PSCAT (ours)

Wavelet+bicubic

NLM+bicubic

PSNR(dB) / SSIM / RMSE 19.80 / 0.2333 / 26.09 24.72 / 0.4006 / 14.81 

27.70 / 0.7065 / 10.51 29.68 / 0.8110 / 8.37 31.30 / 0.8564 / 6.94 30.99 / 0.8545 / 7.19 

31.25 / 0.8551 / 6.98 31.30 / 0.8558 / 6.95 

31.21 / 0.8551 / 7.01 31.31 / 0.8558 / 6.94 31.41 / 0.8567 / 6.86 

PKU37_val 002207_x4

IMDN

DLGSANet

SAFMN

31.10 / 0.8507 / 7.10

31.13 / 0.8518 / 7.08 

31.17 / 0.8534 / 7.05 

input

Fig. 4. Performance comparison of different methods on PKU37-val of ×4 SR.
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Fig. 5. Performance comparison of different methods on DUKE17 of ×4 SR.

our usual intuition, the baseline model without CAM experiences a decrease in PSNR as dim316

increases. We believe that this is due to overfitting of the model caused by an increase in the317

number of parameters.318

Fig. 4. Performance comparison of different methods on PKU37-val of ×4 SR.

3.4. Generalization comparison

Due to the inconsistencies in OCT acquisition devices, objects, protocols, and other factors
used in clinical practice, there is a domain shift problem between different datasets. It is
necessary to study the generalization performance of well-trained OCT simultaneous denoising
and super-resolution networks. Therefore, we conducted cross-domain testing on two datasets,
DUKE17 and DUKE28, using various deep learning networks trained on PKU37-train.

3 presents the quantitative results of all deep learning methods on DUKE17 and DUKE28. The
proposed PSCAT achieves the optimal performance on the DUKE17 dataset with a scale factor
of ×4 and on the DUKE28 dataset with a scale factor of either ×2 or ×4. When the scale factor
is ×2 on the DUKE17 dataset, the SSIM of PSCAT is the best, with PSNR and RMSE being
second best and closely matching the optimal results. It is evident that, regardless of whether
the scale factor is ×2 or ×4, the SSIM of PSCAT consistently surpasses that of HAT, thereby
confirming our method’s superiority in retaining structural details. Furthermore, considering the
Params and FLOPs data presented in Table 2, our model achieved slightly better generalization
performance than HAT while consuming only a fifth of the computational costs.

To compare the simultaneous denoising and super-resolution results of different methods
on the cross-domain test datasets, we selected one representative image from each dataset for
display in Figs. 5 and 6. It can be seen that all deep learning methods exhibit varying degrees
of denoising effects while improving resolution. Consistent with the denoising performance
evaluation results on PKU37-val, the proposed PSCAT is significantly superior to other methods.
The qualitative and quantitative evaluation results indicate that the proposed lightweight model
PSCAT has superior generalization ability compared to all reference methods.
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Table 3. Quantitative comparison of cross-domain test with different deep learning-based methods
on DUKE17 and DUKE28. The best and second best results are marked in bold and underlined,

respectively.

Method Scale
DUKE17 DUKE28

PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓
Bicubic ×2 18.40±0.41 0.1824±0.0136 30.70±1.45 18.56±0.47 0.2066±0.0314 30.16±1.65

EDSR ×2 27.80±1.79 0.8446±0.0303 10.60±2.26 29.23±2.40 0.8538±0.0277 9.17±2.89

RCAN ×2 26.70±1.18 0.8439±0.0280 11.89±1.62 28.43±2.18 0.8555±0.0289 9.98±2.84

HAN ×2 27.85±1.85 0.8458±0.0316 10.55±2.33 29.30±2.47 0.8548±0.0284 9.12±2.96

IMDN x2 27.45±1.74 0.8385±0.0312 11.02±2.23 29.01±2.38 0.8557±0.0320 9.40±2.94

SAFMN x2 27.34±1.60 0.8410±0.0307 11.13±2.12 28.64±2.27 0.8515±0.0283 9.78±2.95

SwinIR ×2 27.87±1.83 0.8462±0.0310 10.53±2.32 29.35±2.49 0.8560±0.0288 9.07±2.97

HAT ×2 27.99±1.89 0.8508±0.0316 10.40±2.36 29.53±2.61 0.8605±0.0323 8.93±3.07

DAT ×2 27.12±1.47 0.8468±0.0315 11.38±1.97 28.66±2.29 0.8589±0.0325 9.77±2.97

DLGSANet x2 27.64±1.74 0.8413±0.0300 10.78±2.24 28.99±2.27 0.8516±0.0274 9.38±2.78

PSCAT (ours) ×2 27.99±1.96 0.8510±0.0325 10.42±2.44 29.59±2.64 0.8626±0.0334 8.88±3.10

Bicubic ×4 18.37±0.40 0.1877±0.0143 30.78±1.42 18.50±0.45 0.2059±0.0265 30.34±1.59

EDSR ×4 27.74±1.74 0.8424±0.0296 10.66±2.21 29.02±2.23 0.8489±0.0242 9.35±2.73

RCAN ×4 27.23±1.54 0.8424±0.0308 11.26±2.04 28.66±2.23 0.8533±0.0290 9.74±2.85

HAN ×4 27.81±1.83 0.8436±0.0311 10.60±2.31 29.18±2.37 0.8515±0.0258 9.22±2.88

IMDN x4 27.69±1.79 0.8417±0.0309 10.74±2.26 29.15±2.38 0.8527±0.0284 9.26±2.93

SAFMN x4 27.41±1.66 0.8408±0.0308 11.06±2.19 28.39±2.15 0.8479±0.0242 10.02±2.86

SwinIR ×4 27.79±1.78 0.8453±0.0300 10.62±2.26 29.16±2.36 0.8528±0.0257 9.24±2.89

HAT ×4 27.83±1.78 0.8477±0.0301 10.56±2.24 29.16±2.44 0.8544±0.0276 9.26±3.01

DAT ×4 27.65±1.69 0.8473±0.0313 10.76±2.17 28.98±2.38 0.8559±0.0308 9.44±2.99

DLGSANet x4 27.87±1.96 0.8434±0.0307 10.56±2.47 29.30±2.55 0.8527±0.0286 9.15±3.07

PSCAT (ours) ×4 27.96±1.91 0.8498±0.0312 10.44±2.39 29.39±2.51 0.8582±0.0301 9.04±2.98
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Fig. 4. Performance comparison of different methods on PKU37-val of ×4 SR.
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Fig. 5. Performance comparison of different methods on DUKE17 of ×4 SR.

our usual intuition, the baseline model without CAM experiences a decrease in PSNR as dim316

increases. We believe that this is due to overfitting of the model caused by an increase in the317

number of parameters.318

Fig. 5. Performance comparison of different methods on DUKE17 of ×4 SR.
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Fig. 6. Performance comparison of different methods on DUKE28 of ×4 SR.

factor being ×2 or ×4, once the dim value exceeds 96, there is a downward trend in PSNR as322

the dim value and the number of model parameters increase. This suggests that in our specific323

OCT image denoising and resolution enhancement tasks, overfitting does occur as the number of324

parameters increases, leading to a decline in model performance. This is also why our lightweight325

Transformer can outperform models with large parameter counts.326
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Fig. 7. Effects of different dim values.

4.1.3. Effects of different designs of CAM327

We conduct experiments to explore the effects of different CAM designs. Three implementation328

methods of channel attention are shown in Figure 8. CBAM [27] aggregates channel information329

of a feature map by using two pooling operations, generating two 2D maps, while SENet [26]330

only uses one pooling operation. NFANet [40] proposes simplified channel attention (SCA),331

preserving channel attention’s two most crucial roles, aggregating global and channel information.332

Based on Table 5, the channel attention implementation of CBAM is better suited for our specific333

task.334

4.1.4. Effectiveness of hybrid loss function335

We conduct experiments to demonstrate the effectiveness of the proposed hybrid loss function.336

The quantitative performance reported on the PKU37-val dataset is shown in Table 6. It can be337

seen that after using the hybrid loss function, the PSNR, SSIM, and RMSE metrics of ×2 and ×4338

SR have all been improved to varying degrees. To explore the effects of different hybrid ratios,339
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4. Discussion

4.1. Ablation studies

4.1.1. Effectiveness of CAM

We conduct experiments to inspect the effectiveness of the proposed CAM. The quantitative
performance reported on the PKU37-val dataset for ×2 SR is shown in Table 4. Where dim is the
channel number of the hidden layers in PATB. When dim=96 or 144, the PSNR of parallel CAM
is higher. When dim=180, the PSNR of the serial CAM is higher. So, parallel CAM is more
suitable for our lightweight network. From Table 4, it can be observed that, contrary to our usual
intuition, the baseline model without CAM experiences a decrease in PSNR as dim increases.
We believe that this is due to overfitting of the model caused by an increase in the number of
parameters.

Table 4. Ablation study on the proposed CAM.

Structure
dim=96 dim=144 dim=180

#Params[M] PSNR[dB] #Params[M] PSNR[dB] #Params[M] PSNR[dB]

Baseline (No CAM) 3.62 32.1760 7.71 32.1496 11.84 32.1435

Serial CAM 3.91 32.1405 8.34 32.1334 18.93 32.1699
Parallel CAM 3.91 32.1784 8.34 32.1603 18.93 32.1443

4.1.2. Effects of different dim values

We further investigated the performance impact of different dim values on the baseline model
without CAM, and the results are shown in Fig. 7. It is evident that, regardless of the scale
factor being ×2 or ×4, once the dim value exceeds 96, there is a downward trend in PSNR as
the dim value and the number of model parameters increase. This suggests that in our specific
OCT image denoising and resolution enhancement tasks, overfitting does occur as the number of
parameters increases, leading to a decline in model performance. This is also why our lightweight
Transformer can outperform models with large parameter counts.

4.1.3. Effects of different designs of CAM

We conduct experiments to explore the effects of different CAM designs. Three implementation
methods of channel attention are shown in Fig. 8. CBAM [27] aggregates channel information
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4.1.3. Effects of different designs of CAM327

We conduct experiments to explore the effects of different CAM designs. Three implementation328

methods of channel attention are shown in Figure 8. CBAM [27] aggregates channel information329

of a feature map by using two pooling operations, generating two 2D maps, while SENet [26]330

only uses one pooling operation. NFANet [40] proposes simplified channel attention (SCA),331

preserving channel attention’s two most crucial roles, aggregating global and channel information.332

Based on Table 5, the channel attention implementation of CBAM is better suited for our specific333

task.334

4.1.4. Effectiveness of hybrid loss function335

We conduct experiments to demonstrate the effectiveness of the proposed hybrid loss function.336

The quantitative performance reported on the PKU37-val dataset is shown in Table 6. It can be337

seen that after using the hybrid loss function, the PSNR, SSIM, and RMSE metrics of ×2 and ×4338

SR have all been improved to varying degrees. To explore the effects of different hybrid ratios,339
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of a feature map by using two pooling operations, generating two 2D maps, while SENet [26]
only uses one pooling operation. NFANet [40] proposes simplified channel attention (SCA),
preserving channel attention’s two most crucial roles, aggregating global and channel information.
Based on Table 5, the channel attention implementation of CBAM is better suited for our specific
task.
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Fig. 8. Illustration of (a) Simplified Channel Attention in NAFNet [40] , (b) Channel
Attention in SENet [26], and (c) Channel Attention in CBAM [27]. ⊕/⊗: element-wise
addition / multiplication.

Table 5. Effects of different channel attention (CA) in CAM.

CA
×2 ×4

PKU37-val DUKE17 DUKE28 PKU37-val DUKE17 DUKE28

SCA in NAFNet 32.1552 27.5943 29.1671 31.3960 27.6562 29.0953

CA in SENet 32.1784 27.9056 29.4827 31.4120 27.8966 29.3193

CA in CBAM 32.1716 27.9786 29.5684 31.4380 27.9636 29.3870

we set a 𝜆 group from 0.01 to 0.1 to examine the performance change, as shown in Figure 9. It340

can be found that when 𝜆 = 0.05, the model achieves the highest PSNR regardless of whether the341

scaling factor is ×2 or ×4.342

Table 6. Ablation study on the proposed hybrid loss function.

Loss
×2 ×4

PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓

MAE 32.1716 0.8840 6.3053 31.4376 0.8704 6.8628

MAE+FFT 32.1815 0.8841 6.2997 31.4832 0.8712 6.8254

4.2. Enhancement in retinal layer segmentation343

For retinal OCT images, segmenting layers containing various anatomical and pathological344

structures is crucial for diagnosing and researching eye diseases. The preprocessing of denoising345

and super-resolution preserves important clinical structures, making segmentation results more346

accurate. To further demonstrate the effectiveness of our PSCAT, we compared the impact of347

Fig. 8. Illustration of (a) Simplified Channel Attention in NAFNet [40], (b) Channel
Attention in SENet [26], and (c) Channel Attention in CBAM [27]. ⊕/⊗: element-wise
addition / multiplication.

Table 5. Effects of different channel attention (CA) in CAM.

CA
×2 ×4

PKU37-val DUKE17 DUKE28 PKU37-val DUKE17 DUKE28

SCA in NAFNet 32.1552 27.5943 29.1671 31.3960 27.6562 29.0953

CA in SENet 32.1784 27.9056 29.4827 31.4120 27.8966 29.3193

CA in CBAM 32.1716 27.9786 29.5684 31.4380 27.9636 29.3870
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4.1.4. Effectiveness of hybrid loss function

We conduct experiments to demonstrate the effectiveness of the proposed hybrid loss function.
The quantitative performance reported on the PKU37-val dataset is shown in Table 6. It can be
seen that after using the hybrid loss function, the PSNR, SSIM, and RMSE metrics of ×2 and ×4
SR have all been improved to varying degrees. To explore the effects of different hybrid ratios,
we set a λ group from 0.01 to 0.1 to examine the performance change, as shown in Fig. 9. It can
be found that when λ = 0.05, the model achieves the highest PSNR regardless of whether the
scaling factor is ×2 or ×4.
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Table 6. Ablation study on the proposed hybrid loss function.

Loss
×2 ×4

PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓
MAE 32.1716 0.8840 6.3053 31.4376 0.8704 6.8628

MAE+FFT 32.1815 0.8841 6.2997 31.4832 0.8712 6.8254

4.2. Enhancement in retinal layer segmentation

For retinal OCT images, segmenting layers containing various anatomical and pathological
structures is crucial for diagnosing and researching eye diseases. The preprocessing of denoising
and super-resolution preserves important clinical structures, making segmentation results more
accurate. To further demonstrate the effectiveness of our PSCAT, we compared the impact of
different methods on downstream retinal layer segmentation tasks. We used the images from
DUKE17 that were processed using various methods and fed them into a public segmentation
tool OCTSEG [41] to segment seven layers automatically. Figure 10 shows the results of a typical
case, and it is evident PSCAT and HAT achieve the best performance in layer segmentation, as
the segmentation lines are relatively flat, and there are no abnormal burrs, protrusions, or offsets.
However, PSCAT restored more choroidal details than HAT.

To better evaluate the enhancement effect, we employed various methods to process OCT
images from a public retinal layer segmentation dataset [42]. We selected 772 image pairs,
comprising OCT retinal images and corresponding retinal layer segmentation masks, from 20
subjects. The U-Net [43] and Υ-Net [44] were trained for segmentation, and mean dice score
and mean interaction over the union (mIoU) were used to evaluate all the methods. Figure 11
shows the visual segmentation results with the help of denoising and super-resolution by various
methods. We can observe that the proposed PSCAT achieves the best segmentation results.
Table 7 presents the quantitative results, which also demonstrate the superiority of our PSCAT in
serving the downstream segmentation task.
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Table 7. Quantitative results of retinal layer segmentation after preprocessing with
different methods of x2 SR.

Method
UNet Υ-Net

Mean Dice mIoU Mean Dice mIoU

Bicubic 0.932 0.910 0.926 0.905

Wavelet+Bicubic 0.937 0.918 0.914 0.898

NLM+Bicubic 0.933 0.913 0.934 0.917

BM3D+Bicubic 0.933 0.914 0.937 0.916

EDSR 0.937 0.919 0.936 0.915

RCAN 0.932 0.911 0.934 0.909

HAN 0.934 0.915 0.931 0.908

IMDN 0.934 0.915 0.930 0.906

SAFMN 0.935 0.916 0.935 0.913

SwinIR 0.934 0.916 0.932 0.909

HAT 0.938 0.919 0.937 0.915

DAT 0.934 0.914 0.931 0.908

DLGSANet 0.933 0.915 0.936 0.914

PSCAT (ours) 0.939 0.921 0.941 0.921

4.3. Enhancement in pronounced retinal pathologies363

As the training set PKU37-train used in this study was collected from healthy eyes, to further364

validate the effectiveness of our PSCAT in processing retinal pathological images, we employed365

Fig. 11. Visual comparison of retinal layer segmentation after preprocessing with different
methods of x2 SR.
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Table 7. Quantitative results of retinal layer segmentation after
preprocessing with different methods of x2 SR.

Method
UNet Υ-Net

Mean Dice mIoU Mean Dice mIoU

Bicubic 0.932 0.910 0.926 0.905

Wavelet+Bicubic 0.937 0.918 0.914 0.898

NLM+Bicubic 0.933 0.913 0.934 0.917

BM3D+Bicubic 0.933 0.914 0.937 0.916

EDSR 0.937 0.919 0.936 0.915

RCAN 0.932 0.911 0.934 0.909

HAN 0.934 0.915 0.931 0.908

IMDN 0.934 0.915 0.930 0.906

SAFMN 0.935 0.916 0.935 0.913

SwinIR 0.934 0.916 0.932 0.909

HAT 0.938 0.919 0.937 0.915

DAT 0.934 0.914 0.931 0.908

DLGSANet 0.933 0.915 0.936 0.914

PSCAT (ours) 0.939 0.921 0.941 0.921

4.3. Enhancement in pronounced retinal pathologies

As the training set PKU37-train used in this study was collected from healthy eyes, to further
validate the effectiveness of our PSCAT in processing retinal pathological images, we employed
the trained model to analyze OCT images with drusen and retinal edema from the retinal layer
segmentation dataset [42] and retinal edema segmentation challenge dataset [45]. Figure 12
presents the visual comparison before and after PSCAT denoising and ×2 super-resolution.
PSCAT significantly eliminates noise and enhances visual quality. Notably, although the PKU37-
train does not include pathological images, the trained PSCAT can effectively enhance the quality
of various OCT images with different pathologies, shapes, and structures. This is because the
characteristics of speckle noise in OCT images are largely determined by the imaging system.

4.4. Limitations

The ablation studies demonstrate that the performance of our PSCAT is heavily dependent on
the settings of hyperparameters. The process of identifying the optimal hyperparameters is
complex and time-consuming, as it typically involves conducting numerous experiments to assess
the impact of various hyperparameter combinations on model performance. Looking ahead,
we can consider the implementation of automated hyperparameter tuning techniques, which
aim to diminish the burden associated with manual hyperparameter adjustments. In addition,
although our PSCAT is a lightweight Transformer model, the inherently complex architecture of
the Transformer and the computations involved in its self-attention mechanism result in longer
inference times. This can be a limiting factor for clinical applications that require rapid processing.
Future improvements could focus on employing more efficient attention mechanisms, such as
sparse attention, and utilizing techniques like model pruning and quantization to reduce the
computational load.
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Fig. 12. Visual comparison of OCT images with drusen and retinal edema before and
after processing by PSCAT of ×2 SR.
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5. Conclusion

In this paper, we propose an effective lightweight Transformer that parallelizes spatial and channel
attention for OCT image simultaneous denoising and resolution enhancement in an end-to-end
manner. Our method uses spatial window self-attention and channel attention in the Transformer
block to aggregate features from both spatial and channel dimensions. It explores the potential
of the Transformer for OCT image quality improvement while having low computational costs.
Extensive experiments have shown that our proposed method exhibits competitive performance in
qualitative and quantitative aspects compared to traditional, CNN-based, and Transformer-based
methods. The benefit of its lightweight design is that our method has fewer network parameters,
lower computational costs, and faster processing speed, and it is more suitable for clinical
application needs.
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