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Stopping power is the rate at which a material absorbs the kinetic energy of a charged
particle passing through it—one of many properties needed over a wide range of
thermodynamic conditions in modeling inertial fusion implosions. First-principles
stopping calculations are classically challenging because they involve the dynamics
of large electronic systems far from equilibrium, with accuracies that are particularly
difficult to constrain and assess in the warm-dense conditions preceding ignition.
Here, we describe a protocol for using a fault-tolerant quantum computer to calculate
stopping power from a first-quantized representation of the electrons and projectile.
Our approach builds upon the electronic structure block encodings of Su et al. [PRX
Quant. 2, 040332 (2021)], adapting and optimizing those algorithms to estimate
observables of interest from the non-Born–Oppenheimer dynamics of multiple particle
species at finite temperature. We also work out the constant factors associated with an
implementation of a high-order Trotter approach to simulating a grid representation
of these systems. Ultimately, we report logical qubit requirements and leading-
order Toffoli costs for computing the stopping power of various projectile/target
combinations relevant to interpreting and designing inertial fusion experiments.
We estimate that scientifically interesting and classically intractable stopping power
calculations can be quantum simulated with roughly the same number of logical qubits
and about one hundred times more Toffoli gates than is required for state-of-the-art
quantum simulations of industrially relevant molecules such as FeMoco or P450.
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As investment in quantum computing grows, so too does the need to assess potential
computational advantages for specific scientific challenge problems. As such, going
beyond asymptotic analysis to understand constant factor resource requirements clarifies
the degree of such advantages, whether these advantages would be useful for problems
of commercial or scientific value, the broader quantum/classical simulation frontier,
and opportunities for further optimizations. Over the last decade, the problem of
sampling from the eigenspectrum of the electronic structure Hamiltonian in the Born–
Oppenheimer approximation has been a proving ground for constant factor analyses
that quantify the magnitude of quantum speedups (1–4). But ground states can benefit
from properties like area-law entanglement that might make many instances relevant to
chemical and materials science efficient to accurately simulate in some contexts — even
with classical algorithms (5). This leads us to search for scientific challenge problems
beyond ground states, for which classical algorithms might have less structure to exploit
and quantum algorithms are naturally poised to excel. Simulating quantum dynamics
is arguably the most natural application for quantum computers. Just as in the case of
sampling from the eigenbasis of the electronic structure Hamiltonian, here we quantify
the constant factor resource estimates of dynamics calculations in order to frame the
performance of current quantum algorithms with respect to classical strategies. We focus
on the problem of computing the stopping power of materials in the warm dense matter
(WDM) regime, for which both experimental measurements and benchmark-quality
theoretical calculations are expensive and sparse. Even for mean-field levels of accuracy,
high-performance-computing campaigns requiring at least hundreds of millions of CPU
hours are invested annually in first-principles stopping power calculations in WDM.*

Stopping power is the average force exerted by a medium (target) on an incident
charged particle (projectile) (6, 7). This force depends on the material composition

*Two of the coauthors (A.K. and A.D.B.) have maintained allocations on capability-class supercomputers to do stopping
power calculations for nearly a decade. In their last year of allocations, this has involved 14 d of CPU time on a machine
with approximately 300,000 processors.
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and conditions of the target and the charge and velocity of
the projectile. Generically, stopping power is decomposed into
nuclear, electronic, and radiative contributions, but for the
conditions considered in this manuscript the total stopping
power will be dominated by the electronic contribution and we
will implicitly identify stopping power with electronic stopping
power.† Stopping powers are crucial in contexts including radia-
tion damage in space environments (8), materials degradation in
nuclear reactors (9), certain cancer therapies (10–12), electron-
(13) and ion-beam (14, 15) microscopies, and the fabrication and
characterization of qubits based on color centers (16) or nuclear
spins (17, 18). Understanding the impact of stopping power on
these applications is facilitated by the relative ease of conducting
experiments, and decades of effort have produced tables of
experimentally measured stopping powers for targets in ambient
conditions (19–21). Such measurements require colocating
uniform samples of the target with a well-characterized, narrow
bandwidth source of high-energy projectiles and a spectrometer
with sufficient resolution to discern small relative energy losses.
This experimental setup is comparatively straightforward for a
stable target, but it becomes incredibly challenging for a target at
extreme pressure or temperature.

WDM (22, 23) is one such extreme regime, typified by
strong Coulomb coupling and the simultaneous influence of
thermal and degeneracy effects. It arises in contexts ranging from
astrophysical objects (24–26) and planetary interiors (27–29)
to inertial confinement fusion (ICF) targets on the way to
ignition (30–33). Creating WDM conditions requires access to
specialized experimental facilities (34–38) that produce short-
lived and nonuniform samples with low repetition rates relative
to experiments at ambient conditions. These challenges are
compounded by the difficulty of simultaneously characterizing
the target’s thermodynamic conditions and the projectile’s
energy loss, as well as systematic errors attendant to measuring
aggregate energy losses in lieu of energy loss rates. Despite
outstanding recent advances in measurements of stopping power
in WDM (39–41), theoretical calculations will likely remain
disproportionately impactful due to the great cost of obtaining
comprehensive datasets purely through experiment. Each cam-
paign typically probes stopping powers over a narrow range of
velocities for a narrow range of thermodynamic conditions that
might themselves be difficult to constrain or subject to large
systematic uncertainties and inhomogeneities.

The importance of stopping power in WDM, in particular, is
highlighted by its significance to ICF (42). The transport of the
high-energy alpha particles that are created in fusion reactions
forms an important contribution to the self-heating processes
that govern ignition (43–45). WDM conditions are necessarily
traversed in ICF implosions – in fact, depending on the target and
driver, large fractions of the target can spend most of their time
in this regime. This intermediate state also plays a central role in
the fuel/ablator mixing that leads to hydrodynamic instabilities
limiting performance (46–48). Fast-ignition fusion concepts
also rely on charged particle stopping within their separate ion
or electron beam heating mechanism (49–51). Thus accurate
stopping powers are one among many important elements of
the microphysics modeling that informs ICF target design and
experimental interpretation. However, due to the great cost of
experimentally constraining stopping models in the warm dense

†Specifically, we consider stopping of low-Z ionic projectiles at velocities on the order of
1 a.u. in targets near solid density. Nuclear and radiative contributions will be at least
an order of magnitude smaller than our target precision, but they could be separately
estimated if necessary. This style of partitioning is commonly used in classical stopping
power models.

regime, the stopping models that are used in the ICF community
are often instead validated against other models with varying
degrees of accuracy and efficiency.

Broadly, the stopping power models that are applied in
the WDM regime fall into four categories: 1) highly detailed
multiatom first-principles models (52–56), 2) highly efficient
average-atom models (40, 56, 57), 3) models based on variants of
the uniform electron gas (58–63), and 4) classical or semiclassical
models (64–68). Type-(2), (3), and (4) models can be efficient
enough to tabulate results across the wide range of thermody-
namic conditions required by radiation-hydrodynamic codes that
support ICF development, or even evaluated inline (69). Certain
type-(3) models are used to generate high-quality reference data
and as a proving ground for method development, but their lack
of explicit electron-ion interaction limits their ability to capture
some important phenomenology in WDM. Therefore, type-(1)
models are most often used to benchmark and calibrate more
approximate type-(2) and (4) models (56, 70). Given that there
are precious few experiments to validate models in the WDM
regime, type-(1) models are particularly valuable for quantifying
the influence of details that more approximate models lack.
However, type-(1) models incur large computational costs that
are aggravated by the large basis sets and supercells that are
required to achieve highly converged results (71).

Thus, the state-of-the-art in algorithms for type-(1) models are
mean-field methods based on time-dependent density functional
theory (TDDFT) (72), including Kohn–Sham (52) and orbital-
free formulations (54). These methods directly evolve the elec-
tronic and nuclear dynamics on the same timescale, going beyond
the Born–Oppenheimer (BO) approximation but still typically
relying on a classical description of the nuclei. Even treating
the electronic dynamics at a mean-field level, the computing
campaigns that use type-(1) models to generate benchmark data
for other stopping power models in the WDM regime can require
hundreds of millions of CPU hours on some of the world’s largest
supercomputers. Opportunities to constrain the accuracy of these
models are limited by not only the scarcity of experimental data,
but also by the notorious difficulty of developing systematically
improvable approximations, particularly for the real-time elec-
tron dynamics far from equilibrium that are the central focus of
type-(1) stopping power calculations.

However, quantum simulation algorithms executed on fault-
tolerant quantum computers provide one potential pathway to
realizing systematically improvable stopping power calculations,
both in the WDM regime and in general. In this work,
we propose a protocol for implementing such a calculation
and analyze its resource requirements to establish a baseline
estimate for the cost of outperforming classical computers in
accuracy. Recently, a number of other works have examined
the quantum resource requirements for simulating materials
represented in first or second quantization (3, 73–77). While
it is now possible to efficiently block encode periodic systems
in second quantization (3, 77) and discretizations based on
localized orbitals are sometimes used in modeling stopping
power (78–80), they are especially poorly suited to WDM
because of the unusual atomic configurations typical to extremes
of pressure and temperature. Plane-wave representations that
are used in first-quantized simulations of materials (75, 76)
provide an efficient representation in which the number of qubits
scales logarithmically with the total number of plane waves,
and nuclei can be treated on the same footing as electronic
degrees of freedom. Furthermore, plane-wave calculations can
be more directly compared to state-of-the-art classical stopping
power calculations based on plane-wave TDDFT. Thus, to assess
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and quantify the prospect of realizing quantum advantages in
these simulations, we provide constant factor resource estimates
of stopping power calculations in first quantization where the
projectile is treated quantum mechanically.

There are a variety of ways to compute stopping power
in the first-quantized plane-wave representation. We focus on
sampling the projectile kinetic energy as a function of distance
traveled and argue that within the desired accuracy range that
naive Monte Carlo sampling at a number of points along the
projectile trajectory is more efficient than alternative mean-
estimation algorithms that enjoy Heisenberg scaling (81). After
fully accounting for sampling costs, two types of time-evolution
protocols, and observable accuracy requirements, we report that
full ab-initio modeling of stopping power for an alpha-particle
projectile in deuterium would require 1015 to 1017 Toffoli gates,
depending on the time-evolution algorithm used, and 103 logical
qubits at system sizes that are converged to the thermodynamic
limit. Relaxing the convergence restriction would lower these
costs quadratically in the particle number and potentially serve
as a WDM benchmark system. While there have been a number
of works that quantify quantum resource estimates for ground
state preparation and sampling from the Hamiltonian eigenba-
sis (1–4), this work specifically considers a dynamics problem of
real world significance and scale. While the reported resource esti-
mates are high, there are a number of avenues for reducing these.

Stopping Power from First Principles. While there are many
different methods for calculating stopping powers, the most
direct method involves time evolving the target and projectile
from an initial condition in which the target is stationary and
the projectile has some imposed velocity vproj = kproj/Mproj,
rest mass Mproj, and charge �proj. The stopping power is related
to the average rate of energy transfer between the target and
projectile over the course of this evolution. Exemplary results for
a classical algorithm that implements this method using Kohn–
Sham TDDFT are illustrated in Fig. 1.

The information required to compute a stopping power can be
extracted from a number of different observables: the force that
the projectile applies to the target, the force that the target applies
to the projectile, the work done by the projectile on the target,
and the work done by the target on the projectile. In classical first-
principles calculations, the differences among the computational
costs of evaluating any of these observables are negligible relative
to the overall cost of time evolving the system. Thus there is
no reason to prefer any particular observable, and it is even
straightforward to verify the consistency among these quantities
(i.e., Newton’s third law and the relationship between force
and work). However, the costs of estimating these observables
using a quantum algorithm differ significantly. For shot-noise
limited estimation the overall cost will scale with the variance of
the observable, whereas Heisenberg-scaling estimation can have
costs that scale, in some cases, with the norm of the observable
of interest. Thus, we should prefer low-weight observables (i.e.,
those supported on the projectile quantum register rather than the
target) with well-behaved spectra [i.e., energies rather than forces,
which exhibit pathologies when estimated naively (82, 83)].

Another distinction between classical and quantum algo-
rithms for computing stopping powers is the relative cost of
time-dependent Hamiltonian simulation. In classical stopping
calculations that use Ehrenfest dynamics with TDDFT, it is
common practice to explicitly break energy conservation by
maintaining a fixed definite projectile velocity over the course
of the evolution. While energy-conserving calculations in which
the projectile is allowed to slow down under the influence of the
target will produce equivalent stopping powers, minor technical
advantages related to ease of implementation make the fixed
velocity approach preferable in practice. The computational cost
of either of these approaches is practically the same for classical
simulations, but not for quantum algorithms. In fact, we will
show that within the energy-conserving approach, promoting
the projectile to a dynamical and quantum degree of freedom
incurs relatively little overhead while facilitating the use of much
simpler time-independent quantum simulation algorithms.

Fig. 1. (Left) First-principles stopping power calculations involve time evolving a projectile (red) passing through a target medium (blue) while monitoring
observables related to energy transfer between them. The initial velocity, vproj, is chosen to mitigate trajectory sampling and finite-size error using techniques
from ref. 71. The coupled electron-projectile dynamics are time evolved subject to this initial condition and the work or average force on the projectile is
calculated throughout the trajectory. (Right) The stopping power is related to the slope of the work that the target does on the projectile as a function of its
displacement from its original position (solid). A moving average for this slope (dashed) illustrates the rate at which the stopping power estimate converges.
Close collisions involve large impulses in the work that are essential to capture on average. However, if these relatively rare events are included in the sample,
they can dominate the variance for sample-efficient estimates.
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1. Quantum Algorithmic Protocol for Stopping
Power
To circumvent the need for time-dependent Hamiltonian simu-
lation, our protocol identifies the dynamical degrees of freedom
as the electrons and the single projectile nucleus evolving in
the fixed Coulomb field of the remaining nuclei comprising a
representative supercell of the target material. For the projectile
velocities at which electronic stopping is most relevant (on the
order of 1 atomic unit) ignoring the motion of the target nuclei
is justifiable unless their thermal velocities are comparable to the
projectile velocity, at temperatures beyond the WDM regime.
Similarly, nuclear quantum effects (e.g., zero-point energy and
tunneling) can be neglected for the target nuclei, as they occur
on energy scales that are many orders of magnitude smaller than
those relevant to electronic stopping. These could be accounted
for in our protocol at the cost of including the target nuclei
as explicit quantum degrees of freedom, but they would only
contribute to changes to the stopping power at levels of accuracy
higher than would be relevant to ICF applications.

We consider a system composed of � electrons, a quantum
projectile with mass Mproj and charge �proj, and L classical
nuclei with charges �` and positions R` in a cubic supercell of
volume Ω. In a plane-wave basis, the associated first-quantized
BO Hamiltonian is

H = Telec + Tproj + Uelec + Uproj + Velec + Vproj, [1]

Telec =
�∑

i=1

∑
p∈G

‖kp‖2

2
|p〉〈p|i, [2]

Tproj =
∑
p∈G̃

∥∥kp − kproj
∥∥2

2Mproj
|p〉〈p|proj , [3]

Uelec = −
4�
Ω

L∑
`=1

�∑
i=1

∑
p,q∈G
p6=q

(
�`

eikq−p·R`

‖kq−p‖2

)
|p〉〈q|i, [4]

Uproj =
4�
Ω

L∑
`=1

∑
p,q∈G̃
p6=q

(
�`�proj

eikq−p·R`∥∥kp−q∥∥2

)
|p〉〈q|proj , [5]

Velec =
2�
Ω

�∑
i 6=j

∑
p,q∈G

∑
�∈G0

(p+�)∈G
(p−�)∈G

1
‖k�‖2

|p + �〉〈p|i|q − �〉〈q|j,

[6]

Vproj = −
4�
Ω

�∑
i=1

∑
p∈G
q∈G̃

∑
�∈G0

(p+�)∈G
(q−�)∈G̃

�proj

‖k�‖2
|p + �〉〈p|i|q − �〉〈q|proj,

[7]

where kp = 2�p/Ω1/3 represents a plane-wave vector with p ∈
G and G =

[
−(N 1/3

− 1)/2, (N 1/3
− 1)/2

]⊗3
∈ Z3. Each

coefficient for the kinetic and potential operators are determined
as integrals of the Laplacian and Coulomb operator using the
plane wave basis in the standard Galerkin discretization (74, 84).
N is the size of the plane-wave basis, and we assume a cubic
simulation cell of volume Ω. Additionally, the set

G0 =
[
−(N 1/3

− 1), (N 1/3
− 1)

]⊗3
∈ Z3/{0, 0, 0}

is the set of possible differences in momentum (note the range is
twice that of the p range in each direction). The sets G̃ and G̃0 are
defined analogously for the set of plane-wave momenta available
to the projectile, taken relative to its initial mean momentum kproj
with kproj Ω1/3/(2�) ∈ Z3 for compatibility with the supercell’s
periodicity.

In the quantum algorithm, the state of the electrons are repre-
sented as three signed integers requiring np = dlog(N 1/3)e + 1
qubits each. The electronic degrees of freedom require a total
of 3�np qubits to represent. Representing a localized projectile
with a sharply peaked momentum distribution in a plane-wave
basis requires a large energy cutoff, depending on the variance
of the wave packet. Given a number of plane waves for the
projectile Nn, the number of qubits needed to represent each
of the xyz-coordinates is nn = dlog(N 1/3

n )e + 1 as a set of
signed integers, similar to the electronic degrees of freedom. Thus
the total number of qubits to represent the non-BO system is
3�np + 3nn. In SI Appendix, section III we numerically justify
that nn ≈ 3 + np for the target/projectile combinations explored
in this work.

Our protocol consists of four steps: initial state preparation,
time evolution, measurement, and postprocessing. The initial
state of the electronic subsystem is drawn from a thermal
distribution modeled as a fermionic Gaussian state, while the
initial state of the projectile is a Gaussian wave packet in
momentum space with a mean velocity corresponding to the
projectile velocity and a variance chosen to balance accuracy and
efficiency (SI Appendix, sections I and II). From that initial state,
the coupled electronic-projectile system is time evolved under H
using qubitization (Section 1.1) or Trotterization (Section 1.2).
Analysis and attendant constant-factor resource estimates are
presented for both types of time-evolution algorithms. The
measurement step consists of estimating the kinetic energy of the
projectile via direct measurement of the kinetic energy operator
on the projectile register. Since we are free to choose a relatively
small variance in the nuclear wave packet, we show that shot-
noise limited estimation is more efficient than Heisenberg-scaling
approaches (81) unless high accuracy is required (Section 1.3).
From estimates of the instantaneous projectile kinetic energy at
a series of distinct times, we can estimate the stopping power
using classical postprocessing similar to Fig. 1. While it is
possible to directly mirror the TDDFT strategy on a fault-tolerant
quantum computer—estimating the projectile energy loss at each
of the thousands of time steps along its trajectory—to ensure a
resource-optimal protocol, we propose a postprocessing strategy
that requires many fewer samples than are typically used in
postprocessing TDDFT data (Section 1.3). Finally, we estimate
resource requirements for implementing this protocol to calculate
electronic stopping powers for projectile/target pairings relevant
to ICF applications in the WDM regime (Section 2).

1.1. Time evolution using qubitization. The first protocol for
time-evolution that we consider is using quantum signal pro-
cessing (QSP) to synthesize the time-independent Hamiltonian
propagator (85), which relies on qubitization (86). The qubiti-
zation walk operator is defined as

Q = (2|0〉〈0| − I) · PREP†
H · SELH · PREPH , [8]

where PREPH (PREPARE) and SELH (SELECT) are defined as
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PREPH |0〉 =
∑

`

√
�`

�
|`〉

SELH |`〉 = |`〉 ⊗H`

�H =
∑
l

�l [9]

and we express H as a linear combination of unitaries (LCU)

H =
∑

`

�`H`, H†
`H` = I. [10]

While many works use Q directly as a phase estimation target it
was originally shown by Low et al. (85) that one can realize the
propagator for H with error � for duration t with

O
(
�t +

log(1/�)
log log(1/�)

)
[11]

queries to Q . Specifically, the query costs are approximately(
�t +

32/3

2
(�t)1/3 log2/3(1/�)

)
, [12]

where the expression in the large parentheses is for the polynomial
order of the function approximation for e−i(H/�)(�t). This cost is
determined by bounding the error in the Jacobi-Anger expansion
and using the improved generalized QSP (87, 88).

An alternative strategy for constructing the propagator dis-
cussed in refs. 76 and 89 is simulation based on the interaction-
picture algorithm. As a proxy for which strategy will be more
efficient, we can refer to the “parameter region of advantage”
plot in Fig. 2 of ref. 76. This plot quantifies for fixed grid spacing
Δ = Ω1/3/N 1/3 and particle number � which algorithm is
more efficient for performing phase estimation. The interaction
picture results in lower Toffoli counts for very high-resolution
simulations with Δ < 0.01 a0. The qubitization approach
outperforms the interaction-picture approach for moderate grid
resolutions (Δ > 0.01 a0) with 10 or more electrons. In this
work, we consider moderate grid resolutions with a large number
of electrons and thus consider the quantum resources necessary
to implement QSP.
1.1.1. Block encoding modifications. Here, we detail the block
encoding modifications necessary to account for the non-BO
projectile. A full detailed accounting of the Hamiltonian term
derivations and encoding is provided in SI Appendix, section IV.
In order to block encode the projectile Hamiltonian we must
define PREPTproj , PREPUproj , PREPVproj , SELTproj , SELUproj , SELVproj

such that

〈0|PREP†
Tproj

SELTproj PREPTproj |0〉 = Tproj/�
proj
T , [13]

〈0|PREP†
Uproj

SELUprojPREPUproj |0〉 = Uproj/�
proj
U , [14]

〈0|PREP†
Vproj

SELVproj PREPVproj |0〉 = Vproj/�
proj
V . [15]

The similarity of the Hamiltonian operators for the projectile
and the electrons means that much of the same infrastructure
for block encoding the electronic Hamiltonian can be used for
the electron-projectile Hamiltonian. The computation of � for
each term is thus also identical to that in ref. 76, except with �
replaced with � + �proj and �� corresponds to the total charge

of all nuclei treated classically. The � values associated with each
additional term are

�proj
� =

∑
�∈G̃0

1
‖�‖2

, �� =
∑
�∈G0

1
‖�‖2

, [16]

�proj
U =

�proj��
�Ω1/3 �

proj
� , [17]

�proj
V =

��proj

�Ω1/3 �� , [18]

�proj
T =

6�2

MprojΩ2/3 22(nn−1), [19]

�mean
T =

2�
∑

w∈{x,y,z} |k
w
proj|

MprojΩ1/3
22(np−1)

2(np−1)
− 1

, [20]

where the �mean
T corresponds to the cross term obtained from

simulating the nuclear kinetic energy in the central momentum
frame (Eq. 16 in SI Appendix, section IV ) and �proj

T corresponds
to the LCU 1-norm for the projectile kinetic energy without a
shift. A full justification for the projectile � values (including
the electronic � values) can be found in SI Appendix, section
IV. While these � terms are substantial we find them orders
of magnitude lower than the electronic kinetic energy � and
electronic potential � values.

A considerable difference in the method for block encoding
the Hamiltonian for the projectile is in how we account for
the success probability of state preparation associated with the
potential terms. In the case without the projectile, the state
preparation is ideally split into preparation for the kinetic energy
component of the Hamiltonian (PREPTelec ) and the potential
components of the Hamiltonian (PREPUelec+Velec ) as

√√√√ �elec
T

�elec
T + �elec

U + �elec
V
|0〉+

√√√√ �elec
U + �elec

V

�elec
T + �elec

U + �elec
V
|1〉


a

⊗
(
PREPTelec |0〉

)
b

⊗ (PREPUelec+Velec |0〉)c .

[21]

Here, the ancilla qubit a is used to select between the kinetic
and potential terms. The expression for state preparation in
Eq. 21 is not quite what is implemented, due to the fact that
the most computationally efficient methods of implementing
PREPUelec+Velec give a normalization factor of approximately
4
(
�elec
U + �elec

V
)
. The factor of approximately 1/4 corresponds

to the probability of success in the state preparation, so the actual
state preparation is

P̃REPUelec+Velec |0〉f ⊗ I =
1
2
|0〉f ⊗ PREPUelec+Velec

+
√

3
2
|1〉f ⊗ PREP⊥Uelec+Velec

. [22]

The ancilla qubit f flags successful state preparation (on the
|0〉 state) for potential terms. The actual amplitude (which
needs to be squared for the probability) is not exactly 1/2.
The expression to determine the probability of success, p� , is
given in equation 106 of ref. 76. To account for the imperfect
probability of success, the choice of whether to apply the kinetic
or potential term is based on both the ancilla a and the success flag

PNAS 2024 Vol. 121 No. 3 e2317772121 https://doi.org/10.1073/pnas.2317772121 5 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2317772121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2317772121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2317772121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2317772121#supplementary-materials


f . A further subtlety is that we test i 6= j in the block encoding of
Velec, with a further failure in the case where i = j (representing
self-interaction). The total electronic � was thus defined

�elec
H = max [�elec

T + �elec
U + �elec

V ,

[�elec
U + �elec

V /(1− 1/�)]/p� ] , [23]

where the factor of 1− 1/� accounts for testing i 6= j.
We also previously considered the case where amplitude

amplification is performed for the state preparation over G0.
Typically, the value of p� is slightly smaller than 1/4, so a
single step of amplitude amplification can be used to give a new
probability of success (see equation 117 of ref. 76)

pamp
� = sin2 [3 arcsin(

√
p�)] . [24]

This probability will be slightly less than 1. A further step of
amplitude amplification could be performed, but the extra cost
would more than outweigh any advantage from the boosted
success probability. With this boosted success probability one
can otherwise take exactly the same approach, so Eq. 23 would
be changed to

�elec
H = max [�elec

T + �elec
U + �elec

V ,

[�elec
U + �elec

V /(1− 1/�)]/pamp
� ] . [25]

The only amendment is in the probability.
For the current application where we simulate the electrons

and the projectile, we now have three kinetic energy terms
(Telec, Tproj, and Tmean) along with four potential terms (Uelec,
Uproj, Velec, and Vproj). Of the additional two potential terms,
the Uproj term requires a new state preparation over G̃0 while
Vproj is incorporated into the original state preparation from
P̃REPUelec+Velec with slightly different logic for SELelec (discussed
more in more detail in SI Appendix, section IV. Just as before
we consider the tradeoffs in costs for state-preparation of
the potential terms and adjusting the success probabilities for
imperfect preparations. Because the number of qubits required to
represent the projectile is expected to be larger than the electrons
(see SI Appendix, section III for more details) the respective
� superpositions can be prepared on the same register with
additional controls accounting for the fact that np < nn. The
new � value accounting for preparing the total state over both
electronic and projectile degrees of freedom is thus

�H = max [ �elec
T + �proj

T + �mean
T + �elec

U + �proj
U + �elec

V + �proj
V ,

[�elec
U + �elec

V /(1− 1/�) + �proj
V ]/p� + �proj

U /p�,proj ] .
[26]

When using amplitude amplification �H has an identical ex-
pression except p�,proj and p� are exchanged for pamp

�,proj and pamp
�

where amp superscript corresponds to the probability of success
when performing amplitude amplification for the respective state
preparations.

In the electronic-only case, additional registers for selecting be-
tween Uelec and Velec along with kinetic and potential terms were
needed. With the additional terms, we need additional registers
to control the application of each operator. The adjustment of the
probabilities is detailed in SI Appendix, section I. We now provide
a summary accounting of the block encoding costs and relegate
the detailed derivation to SI Appendix, section IV. For consistency

with ref. 76, we consider the costs of each line in SI Appendix,
Table S2 of that work and provide detailed cost updates for each
subroutine in SI Appendix, section IV.D.

The complexity of the block encoding is still dominated by the
controlled swaps (subroutine C4 in SI Appendix, section IV.D).
In all cases, we find that the block encoding cost multiplied by �H
computed with boosting the success probability of the potential
PREP using amplitude amplification is smaller than without.

1.2. Time Evolution Costs using Product Formulas. The second
method we investigate for implementing time evolution uses
product formulas to implement the electron-projectile propaga-
tor. In this section, we consider a real-space grid Hamiltonian
model of the electronic structure instead of the full electron-
projectile system. We justify this consideration based on the
fact that the electronic degrees of freedom are the dominant
simulation costs. In order to simulate the time evolution using a
product formula, there are three main parts.
1. Computing the potential energy in the position basis and

applying a phase according to that energy.
2. Computing the kinetic energy in the momentum basis and

applying the corresponding phase.
3. Performing a QFT between the two bases.

The product formula simulation is performed by alternating
steps 1 and 2, using the QFT to switch the basis. The complexity
is expected to be largest for step 1, because this requires
computing the potential energy between �(� − 1)/2 pairs of
electrons, whereas the kinetic energy just requires summing �
momenta squared.

The main difficulty in calculating the potential energy is in
computing the approximation of the inverse square root. This
was addressed in ref. 90, where it was stated that the function
could be approximated to within 32 bits within five iterations,
given a suitably chosen starting value for the iteration. We have
numerically tested this approach and found that it is only accurate
if the starting value is not too far from the correct inverse square
root of the argument. Accuracy of one part in 232 is only obtained
over a range of less than a factor of 5 for the argument.

To improve on that computation, we consider a hybrid
approach combining the QROM function interpolation of ref. 91
with the Newton–Raphson iteration of ref. 90. There are a
number of variations that one could consider, depending on
how the function interpolation is performed and how many
steps of Newton–Raphson iteration are used. We find that
excellent performance is obtained by using a single step of
QROM interpolation with a cubic polynomial, followed by a
single step of Newton–Raphson iteration. A further optimization
targeting high-order product formulae is that the Newton–
Raphson iteration is generalized to find b/

√
x instead of 1/

√
x

which saves complexity by avoiding multiplying the potential
by the product formulae coefficient. There is also a choice of
how many points are used in the interpolation, and we find that
using two points within each factor of 2 of the argument gives
relative error within about one part in 4× 108. This is almost as
high precision as that claimed in ref. 90 and works over the full
range of input argument. In SI Appendix, section V, we provide a
detailed accounting of the cost and error analysis for the QROM
function interpolation followed by a single step of Newton–
Raphson. Including these costs in the three multiplication and
two subtractions of Newton–Raphson results in a total of

2137 + 4n2 + 19n [27]

Toffoli cost for n bits.
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In SI Appendix, section V.B we estimate the number of Trotter
steps using norm bounds from ref. 92. According to Theorem 4
of ref. 92, for a real-space grid Hamiltonian defined for orbital
indices {j, k, l, m} and spin indices {�, �} of the form

H =
∑
j,k,�

�j,ka†
j,�ak,� +

∑
l,m,�,�

�l,ma†
l,�al,�a

†
m,�am,� [28]

the spectral norm error in a fixed particle manifold for an order-k
product formula Sk(t) can be estimated as∥∥Sk(t)− e−itH

∥∥
W�

= O
(
(‖�‖1 + ‖�‖1,[�])k−1

‖�‖1 ‖�‖1,[�] � tk+1
)

. [29]

If the constant of proportionality is �, then breaking longer
evolution time t into r intervals gives error

≈ �(‖�‖1 + ‖�‖1,[�])k−1
‖�‖1 ‖�‖1,[�] � tk+1/rk . [30]

In order to provide a simulation to within error �, the number
of time steps is then

r ≈ t1+1/k(‖�‖1 + ‖�‖1,[�])1−1/k(� ‖�‖1 ‖�‖1,[�] �/�)1/k.

[31]

In order to determine the constant � in Eq. 30, we numerically
determine the spectral norm of Eq. 29 for a variety of product
formulas for a variety of systems scaling in N and �. To avoid
building an exponentially large matrix, we adapt the power
method to determine the spectral norm of Δ(t) = Sk(t)− e−itH
as the square root of the maximal eigenvalue ofΔ(−t)Δ(t). Using
the FQE (93), we can target a particular particle number sector,
projected spin sz sector, and use fast time evolution routines based
on the structure of the Hamiltonian. Our numerics involved
systems as large as 64 orbital (128 qubit) systems involving 2 to 4
particles. We determined � by explicitly calculating the spectral
norm of the difference between the exact unitary and a bespoke
8th-order product formula described in SI Appendix, section V.B.
For N = 64 � = 4 we estimate a � = 3.4× 10−8.

For the 8th-order product formula, each step requires 17
exponentials. Each exponential has a complexity on the order
of 2,395�(� − 1)/2. Combining the constant factors, norm
computation, and number of Toffolis required per exponential
allowed us to calculate the Toffoli and qubit complexities for time
evolution via product formula. We provide comparative costs to
QSP in Section 2.

1.3. Projectile Kinetic Energy Estimation. Our protocol estimates
the stopping power from a time series for the projectile kinetic
energy loss over the course of the electron-projectile evolution.
Here, we analyze the sampling overheads for two approaches
to estimating the projectile kinetic energy, one at the standard
quantum limit and the other with Heisenberg scaling. This
allows us to estimate the number of circuit repetitions required
to achieve stopping power estimates with a target accuracy, and
thus the aggregate Toffoli count for the entire protocol. For either
approach, an estimate of the total number of samples needs to
account for both the thermal distribution of the electrons in the
initial state, the variance of the kinetic energy operator, and the
effect of time evolution on both of these. Short of implementation
and empirical assessment, there is no clean way to precisely bound

the number of samples required to compute the stopping power
while taking into account all of these factors and we rely on a few
simplifying assumptions to facilitate analysis.

Our estimate of the sampling overhead for the first approach
(at the standard quantum limit; see SI Appendix, Fig. S1) is based
on classical Monte Carlo sampling of the projectile’s kinetic
energy, given in SI Appendix, Eq. 8 in section III, using the
kproj(t) from a plane-wave TDDFT calculation with classical
nuclei and �k set according to the discussion in SI Appendix,
section II. The variation in �k will be negligible over the timescale
associated with electronic stopping, which is short relative to
the timescale over which such a wave packet would diffuse
thanks to the large difference between the electron and projectile
masses. We estimate the stopping power by computing the slope
of the kinetic energy change of the projectile as a function of
time. We take 10 points within the simulated time interval and
extract the slope and its error through least-squares regression. In
SI Appendix, Fig. S1, we compare the number of samples required
to resolve the stopping power to within 0.1 eV/Å ≈ 0.002
a.u. We find that between 101 and 103 samples are required
depending on the desired accuracy in the stopping power, with
the sample cost growing with the velocity of the projectile. In
practice, we expect to require only 101to102 samples for accuracy
relevant to applications in WDM. As shown in SI Appendix,
section III, this corresponds to a precision (SE) in the individual
kinetic energy points of approximately 0.1 Ha. If the desired
accuracy in the stopping power is lowered from 0.1 to 0.5
eV/Å (corresponding to the green shaded region in SI Appendix,
Fig. S1) then the number of samples required drops by a factor
of 10.

However, this estimate does not directly account for the
sampling overhead associated with capturing the thermal dis-
tribution of the electrons. Because the projectile and medium
are far from equilibrium and will remain so over the timescale
of our simulation, we do not expect that variance of the wave
packet to depend on the electronic temperature and these two
sources of randomness are independent. A complete assessment
of the associated sampling overhead would require evaluating
an ensemble of full quantum dynamics simulations in which the
initial states are thermally distributed, thus, we leave this to future
work. However, we expect the sampling overhead associated with
capturing the thermal distribution of the electrons to already
be accounted for in the overhead associated with sampling the
final observable, provided we measure a low variance observable
like the kinetic energy of the projectile. We note that we have
tested another related strategy to estimate the sampling overhead,
involving Monte Carlo estimation of the increase in energy of
the electronic system. It was found to have a substantially larger
variance and required an order of magnitude more samples to
obtain comparable precision in the stopping power.

The second method we consider is a Heisenberg-scaling
kinetic energy estimate based on an algorithm by Kothari and
O’Donnell (81) (later referred to as KO). This mean-estimation
algorithm has O(�/�) scaling of the time-evolution oracle, a
quadratic advantage over Monte Carlo sampling, but requires
coherent evolution of a Grover-like iterate constructed from the
time-evolution unitary and a phase-oracle constructed from the
projectile kinetic energy cost function—i.e. the projectile kinetic
energy SELECT. To compare this strategy to expectation value
estimation by Monte Carlo sampling we estimate the Toffoli
complexity of time-evolution based on QSP and determine the
constant factors associated with constructing the Grover-like
iterate. Details on the phase-oracle construction are described in
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Fig. 2. The Toffoli cost of estimating the projectile kinetic energy with
traditional Monte Carlo sampling and the mean estimation algorithm from
Kothari and O’Donnell (81) (KO). Both techniques have SE that linearly
depends on the square root of the variance of the observable. The number
of samples required for fixed SE in Standard Monte Carlo mean estimation
scales as O(1/�2) while the KO algorithm scales as O(1/�) but with larger
constant factors originating from code (circuit) for the random variable and
quantum phase estimation on the Grover like iterate used in the algorithm.
More details of the algorithm’s main subroutines are provided in SI Appendix,
section VI.

SI Appendix, section VI. The reflection oracle requires two calls
to the time-evolution circuit and is also described in SI Appendix,
section VI. Ref. 81 describes a decision problem associated with
the mean-estimation task which can be lifted to full expectation
value estimation through a series of classical reductions. Using the
assumption that we have a fairly accurate estimate of the kinetic
energy (valid for an almost classical projectile) the number of
calls to the core decision problem is expected to be a small
integer multiple. Thus our cost estimates focus on Toffoli
counts associated with the core decision problem (Theorem
1.3 of ref. 81) assuming a projectile wavepacket variance
of one.

To facilitate resource estimation, we have built a model of
the entire protocol using the Cirq-FT software package (94),
which allows us to quantify the cost of each subroutine. In
Fig. 2, we plot this estimate (in black) along with estimates
for standard Monte Carlo estimates based on the variance of
the Gaussian wave packet representing the projectile which
assumes no spreading of the particle. In the low-precision regime
needed for the stopping power calculations standard sampling
has a computational advantage due to the lower overhead
(smaller prefactors). Coincidentally, the crossover is just beyond
the � necessary for the kinetic energy observable precision. In
applications where higher precision is necessary (e.g., stopping
at/below the Bragg peak or other dynamics problems entirely) the

KO algorithm likely provides a computational advantage over
sampling despite the classical reduction and phase estimation
overheads.

2. Resource Estimates for ICF-Relevant
Systems
We present resource estimates for stopping power calculations in
three systems relevant to ongoing efforts aimed at characterizing
errors in transport property calculations used in the design and
interpretation of ICF and general high-energy density physics
experiments (70). This allows us to explore how costs vary with
the projectile and target conditions over the relevant phase space.
The first system is an alpha-particle projectile in a hydrogen target
at a density of 1 g/cm3. The second system is a proton projectile in
a deuterium target at a density of 10 g/cm3. The third is a proton
projectile in a high-density carbon target at 10 g/cm3. Details of
associated Ehrenfest TDDFT calculations of the latter two can
be found in ref. 56. Each system’s relevant classical parameters
are defined in Table 1.

For each of the systems, we consider a stopping power
calculation with a projectile kinetic energy of 4 a.u. and a
projectile wave packet variance of �k = 6 a.u. This allows us
to determine the number of bits of precision needed to represent
the projectile wavepacket. Considering the costs in the previous
section we tabulate the block encoding costsCB.E .,�, and number
of logical qubits, for each system in Table 2. For all systems, it was
considerably cheaper to amplitude amplify the state preparation
cost instead of reweighting the kinetic and potential terms.

To further analyze the cost breakdown and to demonstrate the
expected Õ(�) block encoding complexity we plot the Toffoli
requirements for each subroutine outlined in the subroutine
protocols of SI Appendix, section IV.D in Fig. 3. As expected
controlled swaps of each electron into the working register for
performing SELECT (C4) dominates the costs by an order of
magnitude or more for each system. It is unlikely that this step
can be further improved within this simulation protocol and
representation.

Finally, we can estimate the total Toffoli costs for performing
time evolution on the electron-projectile system. In Fig. 4A, we
plot the total Toffoli counts for evolving the Alpha + Hydrogen
system for times t = 10, 20, 30, 40 in units of a.u. for various
infidelities �. As the Toffoli complexity scales logarithmically in �
there is little change in the total Toffoli complexity with infidelity.
Time linearly scales the query complexity which is already linearly
proportional to �. Given the � values in Table 2 and the block
encoding costs, the 1013 Toffoli gates for small constant t values
is not unexpected. While this is the price of one state preparation
at time t it has already been discussed in Section 1.3 that an
additional Ns ≈ 50 to 100 samples for 10 points are needed
to reach the desired accuracy of the stopping power estimate.
To probe costs for smaller systems, we examine the cost of

Table 1. Summary of ICF-relevant systems considered in this work and associated classical simulation parameters
Projectile + Target Volume [a3

0] � [electrons] Wigner–Seitz radius [a0] Ecut [eV] (Ha) N1/3 Δ [a0] np
Alpha + Hydrogen 2419.68282 218 1.383 2,000 (73.49864) 53 0.25330 6
Proton + Deuterium 3894.81126 1,729 0.813 2,000 (73.49864) 63 0.24974 6
Proton + Carbon 861.328194 391 0.807 1,000 (36.74932) 27 0.35239 5

a0 is the atomic Bohr radius, Ecut is the cutoff energy used in classical TDDFT calculations to model the system, which corresponds to a grid spacing in one direction of N1/3 using a
spherical cutoff, Δ is the grid spacing of the TDDFT calculations, and np is the number of qubits needed to achieve a similar resolution along one grid dimension. The reference classical
calculations used different convergence criteria and merely represent a sample of systems commonly encountered when performing stopping power calculations.
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Table 2. Summary of quantum algorithmic parameters and costs associated with the systems listed in Table 1
Projectile + Target Mproj/Mproj,H nn kproj @ 4 a.u. CB.E. [Toffolis] Num. Qubits �

Alpha + Hydrogen 3.9726 8 29,376 2.498× 104 5,650 1744784.42
Proton + Deuterium 1 8 7,344 1.423× 105 33,038 88202784.59
Proton + Carbon 1 8 7,344 3.836× 104 8,841 7727607.07

Each column of the table is as follows: system description in terms of the projectile and target type, mass of the projectile Mproj relative to the proton mass Mproj,H , the number of bits
for the projectile, nn , for projectile wave packet variance of �k = 6 a.u., the cost of block encoding the system, the required number of logical qubits, and total system �.

Fig. 3. Subroutine costs for each component of implementing the block-
encoding. The labels C{n} correspond to the costs enumerated in protocol
SI Appendix, section IV.D. CR is the reflection cost which given the additional
register and augmented � is nT+2n�+6nn+nM+16 where nT = 10+log(�/�),
with � being the target precision of time evolution, and n� = dlog(�)e.

systematically shrinking the unit cell at a fixed Wigner–Seitz
radius. Given the scaling of qubitization, Õ

(
�2

Δ2 + �3

Δ

)
, fixing

the number of planewaves and shrinking the unit cell at fixed
particle density corresponds to increasing the grid resolution Δ.
Expressing the total complexity in terms of �, the Toffoli
complexity is expected to scale somewhere between O(�4/3)
and O(�8/3) depending on which term is dominant in the
qubitization costs. This value is plotted in blue in Fig. 4B with a
slope of approximatelyO(�2). For reference, we provide the QPE
scaling costs assuming the QPE precision in 10−3 demonstrating
that time-evolution with sampling can be substantially cheaper
than eigenvalue estimation. While decreasing the system size
while maintaining fixed grid resolution is possible we are only able
to decrease the number of gridpoints by powers of two. Shrinking
the system by powers of two quickly leads to nonphysically
realistic system sizes, and thus, we focus on shrinking the system
with increasing grid resolution which leads to a quadratic decrease
in complexity with the number of particles at fixed Wigner–Seitz
radius.

We now make a comparison of the total Toffoli and logical
qubit costs to estimate the stopping power. This requires ten
kinetic energy estimations at times from t = 1 to t = 10.
Each time evolution is constructed with infidelity � = 0.01. A
comparison between building the propagator with QSP and the
8th-order product formula is shown in Table 3 which includes
a factor of Ns = 50 accounting for the sampling overhead at
each of the 10 time points. The product formula numerics use

a prefactor of � = 3.4 × 10−8 and the analytical values for the
‖�‖1 and ‖�‖1,� norms.

Fig. 4. (Left) Toffoli complexity to synthesize the system propagator of the
Alpha + Hydrogen system for time t = 10,20,30,40 (in atomic units) for a
range of fidelities. Using the lowest sample complexity considered Ns ≈ 50
to 100 and 10 total times to estimate the slope the Toffoli complexity is
≈200 times the Toffoli costs shown. (Right) Toffoli scaling with respect to
particle number at fixed rs and a fixed number of planewaves (increasing
grid resolution). Time evolution cost is expected to scale as somewhere in
betweenO(�4/3) andO(�8/3) using quantum signal processing. In blue the
time evolution cost for t = 1 is shown demonstrating the expected scaling
along with constant factors. Constant factors associated with QPE are shown
in red for 1/t = � = 10−3 which is should proportionally increase the cost.
The displayed constant factor resources are in line with what is demonstrated
in ref. 76 for constant rs ≈ 1.
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Table 3. Comparison of the total Toffoli cost for time-evolution using QSP or product formulas for 10 uniformly
spaced times starting from t = 1 and going to t = 10 with infidelity � = 0.01 including 50 samples to measure the
kinetic energy of the projectile
Projectile + Target � QSP Toffoli Product Formula Toffoli QSP Qubits Product Formula Qubits

Alpha + Hydrogen (50%) 28 2.796× 1014 1.124× 1013 1,749 2,666
Alpha + Hydrogen (75%) 92 1.017× 1016 3.069× 1014 3,309 3,902
Alpha + Hydrogen 218 9.960× 1016 1.399× 1015 5,650 6,170
Proton + Carbon 391 1.113× 1018 1.074× 1016 8,841 9,284
Proton + Deuterium 1729 1.061× 1020 2.079× 1017 33,038 33,368

The smallest Alpha + Hydrogen system used np = 5 while all other systems used np = 6. For all systems, the projectile kinetic energy register used nn = 8 bits. The number of qubits
for the product formula is estimated based on the system size plus an upper bound to the number of ancilla needed for performing the polynomial interpolation multiplications and
Newton–Raphson step floating point arithmetic.

3. Discussion
We have described a quantum protocol for estimating stop-
ping power and derived constant factor resource estimates for
systems relevant to ICF. This study provides an analysis of a
practically relevant quantum time dynamics simulation. It is also
a specific proposal for how fault-tolerant quantum computers
can contribute to the development of inertial fusion energy
platforms. While the overall resource estimates are high, we
expect that the product formula estimates are loose and further
algorithmic innovations are possible. Supporting this optimism
are the orders-of-magnitude improvements in constant factors
for second-quantized chemistry simulation seen over the last five
years (1–4).

We estimated that fully converged (in system size and basis-set
size, with respect to TDDFT) calculations for an alpha particle
projectile stopping in a hydrogen target would require 1017

Toffoli gates using QSP as the time-evolution routine. If 8th-
order product formulas are used to build the electron-projectile
propagator then we estimate that approximately 1015 Toffoli
gates would be required. Both strategies require 103 logical qubits
to represent the system and a modest number of additional
ancilla required for QROM and implementing product formulas.
This estimate is for a system that is substantial in size (219
quantum particles) and corresponds to a calculation that has
only been classically tractable using mean-field-like methods like
TDDFT or more approximate models. Scaling down the system
to a benchmark scale (29 quantum particles) would require
substantially fewer resources (1013 Toffoli gates) and could be
used to quantify the accuracy of TDDFT calculations and other
approximate dynamics strategies.

In order to determine the constant factors, we compiled all
time-evolution subroutines that contribute to the leading-order
complexity. To implement time-evolution, we considered two
methods to construct the electron-projectile propagator: QSP
with qubitization and high-order product formulae. For QSP, we
extended the block encoding construction of ref. 76 to account
for the non-Born–Oppenheimer treatment of the projectile
and analyzed the trade-off for constructing the block encoding
with and without amplitude amplification for the potential
state preparation. Specifically, this required modifications to the
potential state preparation, additional kinetic energy preparation
analysis, and new LCU 1-norm values. We expect that these
modifications can serve as the basis for other mixed non-
BO simulations in first quantization. For the product formula
analysis, we introduced an optimized eighth-order formula based
on the numerical protocol described in ref. 95 and greatly
improved the algorithmic implementation for computing the

inverse square root, the most expensive step of the propagator
construction. Here we have improved this step by using QROM
function approximation from ref. 91 followed by a single step of
Newton–Raphson iteration. In order to analyze the overall effect
of these subroutine improvements, we derived the total number
of product formula steps required for fixed precision and analyzed
constant factors by numerically computing the spectral norm of
the difference between the product formula and the exact unitary
through an adapted power-iteration algorithm. This worst-case
bound indicated two orders of magnitude reduction in the Toffoli
complexity for time evolution.

To complete our cost estimates for the stopping power
we explored two different projectile kinetic energy estimation
strategies. One involved sampling the kinetic energy of the
projectile via Monte Carlo mean estimation and the second
involved a Heisenberg scaling algorithm, developed in ref. 81,
with a quadratic improvement over generic sampling. For the
Monte Carlo sampling strategy, we utilized classical TDDFT to
numerically determine an error bound, and required number
of samples, for low-Z projectiles. In the KO-algorithm case,
we provided a constant factor analysis of the algorithm’s
core primitives leveraging Cirq-FT’s (94) resource estimation
functionality. While stopping power for ICF targets turns out
to only require standard limit Monte Carlo mean estimation
there are a number of other settings where stopping power
estimation with different accuracy parameters can be useful. In
those cases, additional constant factor analysis would be required
to analyze the additional classical reduction and state preparation
overheads.

This work adds to the body of literature seeking to articulate
specific real-world problems of high value where quantum
computing might have a large impact and to quantify the
magnitude of advantages offered by fault-tolerant quantum
computers. As previous work in this area has shown, it is not
always straightforward to identify scientific problems amenable
to large quantum speedups (3). However, recent work suggests
that when one is interested in exact electron dynamics—perhaps
the most natural simulation problem for quantum computers—
asymptotic speedups are possible over even computationally
efficient mean-field classical strategies (96). These speedups are
even more pronounced at finite temperature. Thus, materials
properties in the preignition phase of ICF and other applications
in the WDM regime are examples from a particularly rich area
for exploration. Adding to this argument is the considerable
difficulty in simulating flagship scale problems classically. For
WDM there are no efficient, systematically improvable classical
methods for first-principles electron dynamics. This work has
shown that while quantum dynamics on quantum computers are
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a promising area, large constant factors for systems of practical
interest continue to encourage further investigation into problem
representation, observable estimation, classical benchmarking,
and classical determination of scaling factors.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. Additional software can be found in the following
github repository https://github.com/ncrubin/mec-sandia (97).
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