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Abstract
Wolves, akin to their fellow canids, extensively employ chemical signals for various 
aspects of communication, including territory maintenance, reproductive synchroni-
sation and social hierarchy signalling. Pheromone-mediated chemical communication 
operates unconsciously among individuals, serving as an innate sensory modality that 
regulates both their physiology and behaviour. Despite its crucial role in the life of the 
wolf, there is a lacuna in comprehensive research on the neuroanatomical and physi-
ological underpinnings of chemical communication within this species. This study in-
vestigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing 
potential alterations brought about by dog domestication. Our findings demonstrate 
the presence of a fully functional VNS, vital for pheromone-mediated communica-
tion, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf 
and the domestic dog are discernible, notable microscopic differences emerge. These 
distinctions include the presence of neuronal clusters associated with the sensory 
epithelium of the vomeronasal organ (VNO) and a heightened degree of differen-
tiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal 
the expression of the two primary families of vomeronasal receptors (V1R and V2R) 
within the VNO. However, only the V1R family is expressed in the AOB. These find-
ings not only yield profound insights into the VNS of the wolf but also hint at how do-
mestication might have altered neural configurations that underpin species-specific 
behaviours. This understanding holds implications for the development of innovative 
strategies, such as the application of semiochemicals for wolf population manage-
ment, aligning with contemporary conservation goals.
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1  |  INTRODUC TION

After generations of negative interactions between humans and 
wolves, which have resulted in the decline of wolf populations 
across most of Europe, new social attitudes towards wildlife and 
conservation have emerged, leading to the institutionalisation of 
wolf protection measures (Stohr & Coimbra, 2013). Nevertheless, 
wolf population control remains a challenging and contentious en-
deavour. As wolves expand into agricultural regions, human–wolf 
conflicts intensify. Owing to the wolf's prolific reproductive ca-
pacity and tendency to wander, there are few areas where wolves 
can be reintroduced without some form of population control 
(Mech,  1995). While lethal measures have historically been em-
ployed to mitigate the harm wolves pose to livestock and pets, such 
measures are becoming less acceptable. However, until non-lethal 
alternatives become available, lethal methods remain the most ef-
fective means to reduce the damages caused by wolves. (Wielgus 
& Peebles, 2014).

Aversive conditioning (Gustavson & Nicolaus,  1987) has not 
proven successful with wild wolves (Fritts et al., 1992). Meanwhile, 
the use of semiochemicals—either pheromones or kairomones 
(Fortes-Marco et  al.,  2015)—as a potential population control 
method has received limited attention (Petrulis,  2013; Riddell 
et al., 2021; Van Den Berghe et al., 2019). Chemical signals play a 
significant role in intraspecific communication, mediating the sexual 
behaviour of the species and the associated physiological processes 
involved in reproduction. The wolf utilises scent marks to establish 
territory (Barja et al., 2004; Peters & Mech, 1975), synchronise re-
production (Rothman & Mech, 1979) and convey social status (Barja 
et  al.,  2008). Scent marking is primarily observed in mating males 
and females within a pack, with subordinates only resorting to it 
during dominance disputes (Asa et al., 1990). This form of social sup-
pression of reproduction is common among wild canids (Macdonald 
et al., 2019) and extends to rodents like the naked mole-rat, where it 
is mediated by semiochemicals sensed via a functional vomeronasal 
organ (VNO) (Dennis et al., 2020).

Despite being a preeminent symbol among endangered spe-
cies, wolves are among the most extensively studied wild mammals. 
However, beyond territory-related pheromones in urine and faecal 
marks (Barja et al., 2004, 2008; Raymer et al., 1985, 1986; Wirobski 
et al., 2021), there is a surprising lack of research on the neuroana-
tomical and physiological bases of their chemical communication 
systems—both the olfactory and vomeronasal systems responsible 
for processing semiochemicals. To the best of our knowledge, there 
exists no description of the vomeronasal system (VNS) in the wolf, 
and information regarding the main olfactory system (MOS) is con-
fined to comparative morphological and neurochemical investiga-
tions of the main olfactory bulb (MOB) in domestic and wild canids 
(Ortiz-Leal, Torres, López-Callejo, et al., 2022).

The MOS comprises millions of neuroreceptor cells situated in 
the olfactory epithelium covering the olfactory turbinates (Barrios, 
Sanchez Quinteiro, & Salazar, 2014; Bressel et al., 2016). These cells 
are responsible for transmitting olfactory information to the MOB 

(Doucette et  al.,  1983; Su et  al.,  2009). Given its close connec-
tion with the limbic system, the MOS has been linked to memory 
and conscious sensory perception (Slotnick,  2001; Ubeda-Bañon 
et  al.,  2011). In contrast, the VNO, a sensorial component of the 
VNS (Kratzing, 1971; Tomiyasu et al., 2022), contains neurorecep-
tor cells that transmit signals via the vomeronasal nerves (NVN) 
(McCotter,  1912; Smith et  al.,  2015) to the accessory olfactory 
bulb (AOB) (Frahm & Bhatnagar, 1980; Mohrhardt et al., 2018). The 
VNS specialises in detecting pheromones (Kunkhyen et  al.,  2017; 
Powers & Winans,  1975), kairomones (Fortes-Marco et  al.,  2013; 
Isogai et  al.,  2011) and molecules of the major histocompatibility 
complex (Leinders-Zufall et  al.,  2000, 2014). Its functions encom-
pass non-conscious roles in socio-sexual behaviours (Abellán-Álvaro 
et  al.,  2022; Baum & Cherry,  2015), maternal recognition (Kohl 
et al., 2017; Navarro-Moreno et al., 2020), sickness avoidance be-
haviour (Boillat et al., 2015; Bufe et al., 2019) and predator detection 
(Tsunoda et al., 2018).

While extrapolations from other species can be problematic 
when studying the neuroanatomy of the VNS (Salazar & Sánchez-
Quinteiro, 2009), the Rodentia Order has served as a major refer-
ent for VNO research on mammalian species (Salazar et al., 2013). 
Consequently, available neuroanatomical data on the VNS of ca-
nids is predominantly focused on the domestic dog's VNO (Dennis 
et  al.,  2003; Mahdy et  al.,  2019; Salazar et  al.,  2013) and AOB 
(Jawlowski, 1956; Miodonski, 1968; Nakajima et al., 1998; Salazar, 
Cifuentes, Sánchez Quinteiro, & García Caballero,  1994), along 
with their secondary projections to the vomeronasal amygdala. 
Concerning wild canids, until recently, the primary body of research 
was limited to the study of the rhinencephalon in the African wild 
dog Lycaon pictus brain by Chengetanai et al. (2020) and research on 
the vomeronasal amygdala in the fox (Równiak et al., 2022; Równiak 
& Bogus-Nowakowska,  2020). However, a recent comprehensive 
investigation of the VNO, MOB, AOB and olfactory limbus in the 
red fox (Ortiz-Leal et  al.,  2020; Ortiz-Leal, Torres, López-Callejo, 
et al., 2022; Ortiz-Leal, Torres, Villamayor, et al., 2022) has revealed 
significant deviations in neuroanatomical structure compared to that 
observed in the canine VNS. Dogs exhibit noteworthy limitations in 
the development of the VNO epithelium, inadequate differentiation 
of the glomerular and nerve layers of the AOB, the smaller size of the 
VNO and the absence of the characteristic cytoarchitecture found in 
other mammalian species (Meisami & Bhatnagar, 1998). In contrast, 
fox studies report a highly differentiated VNS with unique features 
not documented in the dog, particularly at the VNS level. Likewise, in 
the case of the African wild dog, the level of development observed 
in the AOB suggests heightened sensitivity compared to domestic 
dogs (Chengetanai et  al.,  2020). All these anatomical differences 
lend support to the current hypothesis that the domestication of the 
dog has led to a regression in the detection of pheromones and other 
semiochemicals, mediated by the VNS.

However, it remains an ongoing question whether, over approxi-
mately 10,000 years that separate the wolf and the dog phylogeneti-
cally (Bergström et al., 2022; Graphodatsky et al., 2008), the intense 
selection pressure associated with domestication may have brought 
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about alterations to the configuration of neural structures that sup-
port species-specific behaviours, as is the case with the VNS. As 
such, this study aims to not only address the significant gap in our 
morphological and immunohistochemical understanding of the vom-
eronasal system of the wolf but also shed light on how the domes-
tication process may have impacted the organisation of the central 
nervous system. We employed various tissue dissection and micro-
dissection techniques and computed tomography imaging, followed 
by general and specific histological staining methods, including im-
munohistochemical and lectin histochemical labelling techniques.

Among the array of antibodies used for the immunohistochemical 
analysis of the wolf's VNS, particular attention should be paid to the 
study of the G protein expression pattern in the sensory epithelium 
of the VNO, the vomeronasal nerves and the AOB. The immunohisto-
chemical characterisation of both Gαi2 and Gαo G proteins is widely 
regarded as an excellent phenotypic indicator of the expression of 
the two main families of vomeronasal receptors, V1R and V2R, re-
spectively, within the VNS. The concurrent expression of both G pro-
teins is a feature observed in Rodentia, including mice, rats, octodons 
(Suárez & Mpodozis, 2009), guinea pigs (Takigami, 2004) and capyba-
ras (Suárez, Santibáñez, et al., 2011; Torres et al., 2020); Lagomorpha, 
such as rabbits (Villamayor et al., 2020); Marsupialia, including opos-
sums (Halpern et  al.,  1995) and wallabies (Torres et  al.,  2022); and 
Tenrecidae (Suárez et al., 2009). However, in other mammals, such as 
the dog, cat, sheep and goat, the differential expression of G proteins 
and vomeronasal receptors has not been observed, as these species 
exclusively express the V1R receptor family (Salazar et  al.,  2007, 
2013; Salazar & Sánchez-Quinteiro, 2011; Takigami, 2004). The ab-
sence of V2R receptors has been theorised to result from the do-
mestication process, during which artificial selection may have led 
to an involution of the VNS in canids (Barrios, Sanchez-Quinteiro, 
& Salazar, 2014; Jezierski et al., 2016). Therefore, investigating the 
expression patterns of these receptors and the overall anatomy of 
the VNS in a wild canid with close phylogenetic proximity to the dog, 
such as the wolf, could provide deeper insights into this theory.

2  |  METHODS

In this study, we utilised a sample of five adult male wolves. These 
wolves originated from wildlife recovery centres in the provinces of 
Galicia and were unfortunately involved in fatal traumatic accidents. 
Only those that had died recently and displayed no external or in-
ternal head injuries were included in our research. All samples were 
used with the compulsory permissions by the Galician Environment, 
Territory and Tenement Council (CMATV approval numbers EB-
009/2020 and EB-007/2021).

All the heads were dissected as soon as they arrived at the Faculty 
of Veterinary, unless one head that was frozen and transverse-
sectioned, to compose a macroscopic photographic series. The rest 
of the heads were dissected extracting the whole brains after open-
ing dorsally the cranium and removing the lateral walls of both the 
cranial cavity and the ethmoidal fossa with the help of an electric 

plaster cutter and a gouge clamp. The VNOs were identified after 
removing the nasal bones and the lateral walls of the nasal cavity. 
The bone tissue surrounding the VNO ventrally and medially was 
dissected from all samples, unless one sample which was decalcified 
for 2 weeks to microscopically study the topographic relationship of 
the VNO with the incisive duct. The decalcifying agent used was 
Shandon TBD-1 Decalcifier (Thermo), and it was applied while stir-
ring continuously at room temperature.

All the samples were fixed in Bouin's fluid (BF) for 24 h, then 
transferred to 70% ethanol, embedded in paraffin and cut by a mi-
crotome. The olfactory bulbs were cut transversely and sagittally 
by a microtome with a thickness of 8 μm, whereas the VNO samples 
were sectioned with a thickness of 6–7 μm. The VNO was serially 
transverse-sectioned along its entire length, from caudal to rostral. 
The slides were stained using haematoxylin–eosin, Alcian Blue (AB) 
and Gallego's Trichome stains (Ortiz-Hidalgo,  2011). The staining 
protocols are explained in detail in Salazar et al. (2003) and Torres, 
Ortiz-Leal, Ferreiro, et al. (2023).

2.1  |  Computed tomography scans

Computed tomography of the head was performed in a 16-slice 
helical multidetector scanner (Hitachi Eclos 16), obtaining both bone 
and soft tissue algorithm series in sternal recumbency. For the bone 
series, a 1.25-mm slice thickness every 0.625 mm, while for the soft 
tissue series, a 2.5-mm slice thickness every 1.25 mm was applied. 
Exposure factors were 120 kVp and 200 mA, with 1 s per rotation 
and a pitch of 0.5.

2.2  |  Lectin histochemistry protocol

Lycopersicon esculentum agglutinin (LEA) and the B4 subunit from 
Bandeiraea simplicifolia lectin (BSI-B4) were employed as bioti-
nylated conjugates. Deparaffinised and rehydrated slides were 
incubated in a solution of 3% hydrogen peroxide to quench en-
dogenous peroxidase activity. Following this, the sections were 
incubated in a 2% solution of bovine serum albumin (BSA) in 0.1 M 
phosphate buffer (PB) at pH 7.2 for 30 min. Overnight incuba-
tion was performed with LEA and BSI-B4 lectins, separately, in a 
0.5% BSA mixture. After two brief washes in PB, the slides were 
incubated in avidin–biotin–peroxidase (ABC) complex (Vector 
Laboratories) at room temperature for 90 min. A 0.003% hydro-
gen peroxide and 0.05% 3,3-diaminobenzidine (DAB) solution in a 
0.2 M Tris–HCl buffer were used to visualise the ensuing reaction, 
which resulted in a brown-coloured deposit.

For Ulex europaeus lectin (UEA), the initial two steps mirrored 
those used for LEA and BSI-B4. Slides were subsequently incubated 
for 60 min in a 0.5% BSA–UEA mixture. Then, anti-UEA peroxidase-
conjugated antibody was added, and overnight incubation ensued. 
The reaction was revealed through the application of a DAB solu-
tion, as described for the LEA and BSI-B4 procedure.
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As controls, tests without lectin addition and also pre-absorbed 
lectins with excessive corresponding sugars, were performed.

2.3  |  Immunohistochemistry methodology

The first step involved treating all samples with a 3% hydrogen perox-
ide solution to inhibit endogenous peroxidase. Subsequently, samples 
were immersed in either a 2.5% horse serum solution, compatible 
with the ImmPRESS Anti-Mouse/Anti-Rabbit IgG reagent kit (Vector 
Laboratories), or 2% BSA for half an hour to preclude non-specific 
binding. Samples were incubated overnight at 4°C with the primary 
antibodies (Table 1). The next day, depending on the blocking agent 
used, samples were incubated for 30 min with either the ImmPRESS 
VR Polymer HRP Anti-Rabbit IgG or Anti-mouse IgG reagents, with 
the exception of samples treated with anti-OMP antibodies derived 
from goats, which were first incubated in a biotinylated anti-goat 
IgG and afterwards incubated in ABC reagent for 1.5 h under humid 
conditions. Three sequential 5-min PB washes were carried out be-
tween steps. Prior to the visualisation stage, all samples were rinsed 
for 10 min in 0.2 M Tris–HCl buffer at pH 7.61. DAB chromogen was 
used for visualising, following the same protocol used for lectin histo-
chemical labelling. Negative controls omitted the primary antibodies.

2.4  |  Double immunohistochemical protocol for 
paraffin-embedded tissue

For double immunostaining, a sequential twice-repeated enzyme-
labelled method was employed (Hasui et  al.,  2003; Villamayor 
et al., 2020). Between both immunolabelling, the sections were sub-
jected to treatment with 0.1 M glycine solution (pH 2.2) for 5 min. To 
select the most suitable dye to visualise the immunoreaction, both 
DAB and Vector VIP Peroxidase Substrate Kit (SK-4600, Vector 
Laboratories) were combined exchanging their order.

2.5  |  Image capture

Images were digitally captured using a Karl Zeiss Axiocam MRc5 
camera coupled with a Zeiss Axiophot microscope. Adobe 
Photoshop CS4 was employed for brightness, contrast and balance 
adjustment; however, no enhancements, additions or relocations of 
the image features were made. Additionally, an image-stitching soft-
ware (PTGuiPro) was used for low magnification images composed 
of several photographs.

3  |  RESULTS

The VNS was studied at both the macroscopic and microscopic lev-
els. For each of these levels, detailed descriptions of the vomerona-
sal organ, vomeronasal nerves and AOB are provided.

3.1  |  Macroscopic study of the VNS

3.1.1  |  Vomeronasal organ (Figures 1–5)

As a preliminary step towards dissecting the vomeronasal organ, 
a cross sectional macroscopic anatomical study of the nasal cavity 
was performed on a single specimen (Figure  1a–e). Eight sections 
were selected, spanning from the nasal vestibule to the ethmoid 
turbinates (Figure  1c), with the section corresponding to level 6 
encompassing the central part of the VNO (Figure 1b,d). At higher 
magnification, the VNO corresponds to two tubular structures lo-
cated in the ventral region of the nasal septum, laterally to the vomer 
bone and ventrally to the cartilage of the nasal septum (Figure 1b). 
Enveloping the VNO is a cartilaginous capsule (indicated by arrow-
heads), which fully surrounds the parenchyma of the organ, except 
for its dorsal region. In its central part, the vomeronasal ducts are 
clearly visible (Figure 1d).

The study of the topographic relationships of the vomerona-
sal organ was expanded to computed tomography scans, which 
provided clear images of the head cavities including the nasal 
turbinates, nasal meatuses, teeth, vomer bone and nasal septum. 
Special attention was given to the bony configuration of the vomer 
bone and palatine fissure (Figure 2a), as previous anatomical stud-
ies of the nasal cavity have shown that the VNO is located on the 
lateral surface of the vomer. The results of the study are presented 
in three computed tomography sections: horizontal (Figure  2b), 
sagittal (Figure 2c) and transverse (Figure 2d). In all three planes, 
levels, including the VNO, have been chosen. The vomeronasal 
organ is situated bilaterally on each side of the vomer bone, posi-
tioned at the most rostral and ventral regions of the nasal cavity. 
It occupies a narrow compartment located dorsomedially to the 
palatine fissure, extending to the level of the root of the upper 
canine tooth.

To access the VNO, it was necessary to expose the nasal sep-
tum. First, the lateral wall of the cavity formed by the maxillary 
bone was removed. Then, the large ventral nasal turbinate was 
extracted (Figure 3). In the basal region of the septum, the VNO 
lies, covered by the respiratory mucosa layer. The caudal nasal my-
elinated nerve, which enters the VNO at its most caudal extremity 
(Figure 3a), serves as a reliable indicator of the VNO's location. On 
the mucosal surface of the nasal septum, amyelinic fibres of the 
vomeronasal nerve can be seen running in a caudodorsal direction 
towards the lamina cribrosa of the ethmoid. In their most rostral 
segment, the NVN are in direct contact with the respiratory mu-
cosa, and more caudally, they extend into the olfactory mucosa, 
which is easily distinguished by its yellowish colour (Figure 3b). By 
removing the lateral wall of the cranial cavity, the size of the telen-
cephalon and the location of the olfactory bulb can be determined 
(Figure 3c).

Before the removal of the VNO, the nasal cavity was reduced 
to small blocks, which contain the ventral part of the nasal sep-
tum and the bony floor of the palate. This allowed for a clearer 
verification of the relationship between the VNO and the nasal 
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F I G U R E  1  Macroscopic cross sectional study of the nasal cavity of the wolf. (a) Lateral view of the head of the wolf showing the eight 
consecutive levels chosen for the macroscopic sectional study. (b) The central part of the vomeronasal organ (VNO) is located at level 6 
(yellow line in “a”, enlarged section in “b and d”). The VNO corresponds to two tubular structures located in the ventral part of the nasal 
septum (black arrows), lateral to the vomer bone (asterisk) and ventral to the cartilage of the nasal septum (circle). (c) Transverse sections 
of the nasal cavity ordered from rostral (1) to caudal (8), corresponding to the levels represented in (a). (d) At higher magnification, it can 
be seen how the VNO is enveloped by a cartilaginous capsule (arrowheads). In the central part of the VNO, the vomeronasal ducts can be 
observed. CT, canine tooth; DT, dorsal turbinate; NS, nasal septum; VT, ventral turbinate.

F I G U R E  2  Topographical relationship of the wolf VNO. (a) Fronto-dorsal view of the skull skeleton showing the relationship of the lateral 
part of the vomer bone (V) to the palatine fissure. (b–d) Computerised tomography images of the head in the horizontal (b), parasagittal (c) 
and transverse (d) planes. Arrows indicate the location of the VNO. CT, canine tooth; IB, incisive bone; NB, nasal bone; VC, vomeronasal 
cartilage; VT, ventral turbinate.
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septum. At a caudal level, the VNO is located on both sides of 
the base of the nasal septum. It is positioned relatively high, given 
the vomer bone's vertical projection (Figure 4a). At more rostral 
levels, the VNO is perfectly adapted to the lateral curvature of 
the vomer bone, allowing for easy access from a ventral direction. 
By excising the respiratory mucosa laterally overlying the VNO 

within the nasal cavity, its shape and development can be visu-
alised (Figure  4b). Finally, the VNO was dissected from the sur-
rounding bone tissue, where it is held by dense connective tissue. 
To confirm the VNO's identity, a transverse cut was made in the 
sample, revealing the vomeronasal duct and the organ's paren-
chyma (Figure 4c).

F I G U R E  3  Dissection of the nasal and cranial cavities of the wolf. (a). Dorsolateral view of the nasal cavity, showing the projection zone 
of the VNO (arrow) and the myelinated branches forming the caudal nasal nerve (arrowheads) entering the VNO. (b) Enlargement of the inset 
shown in (c) displaying the vomeronasal nerves leaving the VNO (arrowheads) in a caudodorsal direction towards the medial portion of the 
cribriform plate of the ethmoid. RM: Respiratory mucosa. OM: Olfactory mucosa. (c) Lateral view of the nasal and cranial cavities, showing in 
the latter the left-brain hemisphere. The projection area of the VNO (arrow), the vomeronasal nerves in a caudodorsal direction (inset), the 
caudal nasal nerve (open arrowhead) and the olfactory bulb (arrowhead) are also indicated. FS, Frontal sinus. Scale bar = 1.5 cm.

F I G U R E  4  Wolf VNO after its full extraction in association to the vomer bone. (a) Transverse cross section of the nasal septum 
corresponding to the level 9 shown in Figure 1. From a caudodorsal viewpoint, the VNOs (arrows) are visualised on both sides of the base 
of the nasal septum (NS) over the thin vertical projection of the vomer bone (V). (b) On a more rostral level, corresponding to level 3 of 
Figure 1, a ventral view of the vomer bone shows both VNOs with its distinctive rounded and elongated shape (arrows). The lancet points 
to the lifted respiratory mucosa of the nasal cavity that covers the VNO. (c) Dissected out and partially transversely sectioned VNO (black 
arrows) showing the crescent shape vomeronasal duct (white arrows). a and b, fresh samples; (c), BF-fixed sample. Scale bars: (a–b) = 0.5 cm, 
(c) = 0.2 cm.
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To complete the anatomical study of the VNO, we examined its 
means of communication with the external environment. This com-
munication is essential for the chemical messenger molecules to 
reach the neurosensory epithelium (Figure 5). The wolf establishes 
this link indirectly via the incisive duct (ID), which acts as a conduit 

linking the nasal and oral cavities (Figure 5b). The vomeronasal duct 
is situated between the two. The incisive papilla connects the ID to 
the oral cavity (Figure 5c). Microscopic evaluation will be performed 
to ascertain whether the vomeronasal duct enters the ID, as this 
cannot be observed macroscopically.

F I G U R E  5  Ventral view of the palate of the wolf after removal of the mandible. (a) The mucosa of the roof of the oral cavity is observed, 
and in its most anterior part, the location of the incisive papilla (IP) and palatine rugae (PR) are indicated. (b) Skeleton of the corresponding 
area where the palatine fissures (PF) are observed on both sides of the midline. PB: Palatine bone. (c) Superposition of images analogous to 
“a and b” to show the exact location of the PF on the mucosa of the palate. The IP is also shown (arrow). Scale bar: (a) 1 cm, (b–c) 1.5 cm.

F I G U R E  6  Encephalon and olfactory bulb of the wolf. (a–d) Dorsal, ventral, lateral and medial views of BF-fixed encephalon. The white 
box highlights the dorsal, ventral, lateral and medial views of the olfactory bulb (OB) respectively. (e) Lateral view of the right olfactory bulb, 
separated from a formalin-fixed brain. (f) Medial view of the left MOB separated from the BF-fixed brain. (g) Dorsocaudal view of the left 
OB, BF fixed. The area where the accessory olfactory bulb is presumptively located is indicated by the broken red circle. Bs, brain stem; Cb, 
cerebellum; Cc, corpus callosum; Cd, caudal; d, dorsal; FL, frontal lobe; Ia, interthalamic adhesion; l, lateral; LOT, lateral olfactory tract; m, 
medial; nII, optical nerve; nIII, oculomotor nerve; OP, olfactory peduncle; Pi, piriform lobe; Po, Pons; R, rostral. Scale bar = 1 cm.
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3.1.2  |  AOB (Figure 6)

The macroscopic investigation of the wolf's brain reveals well-
developed olfactory bulbs that are conspicuous from both the lateral 
and medial views of the hemiencephalon (Figure 6a–d). Particularly 
remarkable is the well-developed rhinencephalon, characterised 
by large olfactory pedunculi (Figure 6e) and broad, convex piriform 
lobes (Figure 6b).

The main objective of the macroscopic study was to identify the 
AOB in situ. However, in none of the studied specimens were we able 
to achieve this identification owing to its reduced dimension and the 
usual presence of blood clots in the ethmoid fossa. The anatomical 
tracing of the vomeronasal nerves consistently pointed to an area lo-
cated in the caudomedial part of the MOB, which was the focus of 
special attention in the sagittal histologic series of the bulb (Figure 6g).

3.2  |  Microscopic study of the VNO (Figures 7–14)

As a preliminary microscopic approximation, the VNO comprises 
a vomeronasal capsule and a vomeronasal duct, surrounded by 
parenchyma that contains blood vessels, nerves and vomeronasal 

glands (Figure  7). The capsule, comprising hyaline cartilage and 
adopting a ‘U’ shape, encases the parenchyma and prevents the 
lumen from collapsing. The lumen is typically elliptical and lined 
by pseudostratified epithelium. The epithelium's lateral portion 
exhibits a respiratory nature, while the medial portion is neuro-
sensory in type, with both portions appearing to be of comparable 
size and development.

The parenchyma of the organ primarily comprises blood vessels, 
which are evenly distributed around its circumference. However, 
they are particularly prominent in the dorsal and lateral regions, 
where numerous large and muscular veins are present. Arteries, 
meanwhile, are scarce and relatively small. The medial veins are in-
terspersed with numerous branches of the vomeronasal nerves. In 
the lateral parenchyma, the nerves are of smaller calibre and corre-
spond to branches of the caudal nasal nerve. The glandular compo-
nent is not very abundant, with the glands concentrated near the 
ventral and especially dorsal commissures. The dorsal glands extend 
into the parenchyma of the respiratory mucosa, which itself features 
profuse irrigation, abundant glandular tissue and diffuse lymphoid 
tissue. The parenchyma of the VNO is rich in connective tissue.

The histological study encompassed sections from both the 
rostral and caudal thirds of the VNO (Figure 8). In both segments, 
the overall organisational pattern of the organ remains consistent. 
Within the anterior third (Figure 8a), the cartilage is more open dor-
sally, the venous vessels possess larger calibres but thinner walls, 
and the nerve branches are less abundant. The distinction between 
the two epithelia becomes evident. Gallego's trichrome staining re-
veals the remarkable development of connective tissue. In a more 

F I G U R E  7  Histological transverse section of the wolf 
vomeronasal organ in its central portion, stained with 
haematoxylin–eosin. This central level exemplifies the major 
histological features of the VNO. VC, vomeronasal cartilage. In its 
central portion, it forms an incomplete ring which opens dorsally. 
Arrowhead, artery; Co, connective tissue; D, dorsal; l, lateral; 
LT, Lymphoid tissue; m, medial; NCd, caudal nasal nerve; NVN, 
vomeronasal nerves; RE, respiratory epithelium; RM, respiratory 
mucosa; SE, neurosensory epithelium; v, ventral; VD, vomeronasal 
duct; VG, vomeronasal glands; Vv, vomeronasal veins. Scale 
bar = 500 μm.

F I G U R E  8  Transverse sections of the wolf VNO at two selected 
levels. (a) Rostral level. (b) Caudal level. Co, connective tissue; Gls. 
vomeronasal glands; NCd, caudal nasal nerve; NVN, vomeronasal 
nerve; RM, respiratory mucosa; SE, Sensory epithelium; VG, 
vomeronasal glands; VC, vomeronasal cartilage; VD, vomeronasal 
duct; and Vv, vomeronasal veins. Staining: Gallego's trichrome (a) 
and haematoxylin–eosin (b). d, dorsal; l, lateral; m, medial; and v, 
ventral. Scale bar = 500 μm.
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caudal section (Figure 8b), the medial branch of the cartilage shows 
increased development, assuming a ‘J’ shape. At this level, the vom-
eronasal nerves exit the parenchyma from their dorsal extremity, 
forming large nerve trunks.

The histological examination of the two epithelia lining the vom-
eronasal duct (Figure  9) was performed using Gallego's trichrome 
(Figure  9a–c,f–I) and haematoxylin–eosin stains (Figure  9d,e). 
The broad lamina propria associated with the neuroreceptor 

F I G U R E  9  Histological study of the epithelia of the wolf vomeronasal duct. (a) Medial parenchyma of the organ stained with Gallego's 
trichrome. The overlying sensory neuroepithelium (SE), enlarged in (b, c), shows a large lamina propria with veins (Vv), vomeronasal nerves 
(NVN) and connective tissue. (b) Two large clusters of cells similar in appearance to neuroreceptor cells (arrowheads) are observed in the 
lamina propria. (c) Cellular components of the neuroepithelium: 1, basal cells; 2, neuroreceptor cells (open arrowheads); 3, sustentacular cells; 
4, cell processes layer; and 5, mucomicrovillar complex. (d) Neurosensory epithelium and lamina propria, stained with haematoxylin–eosin. 
(e) Enlargement of the area is shown in “d” showing the five components of the sensory neuroepithelium. Open arrowheads: neurosensory 
cells. (f) Enlargement of the area of respiratory epithelium (RE) is shown in (g), stained with Gallego's trichrome. Note the presence of cilia 
(white arrowhead), chemosensory cells (black arrowheads) and goblet cells (*). (g) Respiratory epithelium stained with Gallego's trichrome. 
(h) Enlargement of the Figure “c”, displaying the luminal surface of the SE, covered by the microvillar complex. (i) Enlargement of the luminal 
surface of the RE, showing the ciliated covering. Scale bars: (a, d, g) = 100 μm; (b, c, e, f) = 50 μm; (h, i) = 10 μm.

F I G U R E  1 0  Vomeronasal glands of the wolf. The VNO parenchyma presents an abundant number of glands, which are more developed 
in its dorsal area. (a, b) The arrowheads delimit the glandular areas of interest. Both Gallego's trichrome (a) and haematoxylin–eosin (b) 
stainings show the serous tubuloalveolar nature of the wolf vomeronasal glands. (c) Alcian blue staining shows the positivity of these acini to 
this stain. VD, vomeronasal duct; Vv, vomeronasal veins; (*) Respiratory mucosa. Scale bar = 250 μm.



    |  119ORTIZ-­LEAL et al.

epithelium contains abundant connective tissue, with blood vessels 
and branches of the vomeronasal nerves interwoven within its fibres 
(Figure 9a). The most striking feature is the presence—in a subepi-
thelial position within the lamina propria—of conspicuous clusters 
of densely packed cells that traverse the basal cell layer, maintaining 
a direct relationship with the neuroreceptor cells (Figure 9b). While 
these cluster-forming cells lack visible processes, their nuclei re-
semble in shape, content and staining to those of the neuroreceptor 
cells. To the best of our knowledge, this species stands as the sole 
example presenting such cellular organisation in the vomeronasal 
epithelium. Positioned more superficially are the cellular compo-
nents of the vomeronasal neuroepithelium (Figure 9c,h).

They are organised in a columnar, pseudostratified and non-
ciliated epithelium. From basal to luminal, its components are basal 
cells, neuroreceptor cells, sustentacular cells, the cell processes layer 
and the superficial mucomicrovillar complex. The neuroreceptor 

cells are ellipsoidal and not densely packed, allowing for the visu-
alisation of their fine axonal and dendritic processes. Their nuclei 
are rounded and contain visible nucleoli. The sustentacular cells 
have densely packed nuclei in the apical position and are elon-
gated. Haematoxylin–eosin staining confirmed these observations 
(Figure  9d,e). The respiratory epithelium (Figure  9f,g,i) is a pseu-
dostratified columnar epithelium that presents cilia on its surface. It 
consists of sustentacular, chemosensory and goblet cells (Figure 9f).

The VNO parenchyma of the wolf contains numerous glands, 
with more pronounced development in its dorsal region (Figure 10). 
Both Gallego's trichrome (Figure  10a) and haematoxylin–eosin 
(Figure 10b) staining reveal the serous tubuloalveolar nature of the 
vomeronasal glands. Alcian blue staining demonstrates that the acini 
secrete an Alcian Blue-positive material (Figure 10c).

The information concerning blood vessels is summarised in 
Figure  11. These vessels form a large vascular network, providing 
the organ with erectile tissue functionality. In the anterior portion of 
the VNO, veins form a complete vascular ring encircling the vomero-
nasal duct (Figure 11a). In the central area of the VNO, large venous 
sinuses run along the lateral portion of the parenchyma (Figure 11d). 
Conversely, in the caudal area of the VNO, where the glove-fingered 
termination of the vomeronasal duct appears, numerous medium-
sized veins predominate (Figure 11c). In contrast, arteries within the 
VNO are small and sparse (Figure 11b,c).

The innervation of the VNO consists of two types of nerves 
classified according to their myelination (Figure 12). The sensory 
component comprises unmyelinated branches of the vomeronasal 
nerves (Figures 7 and 8). These nerves occupy the medial paren-
chyma of the VNO, characterised by their homogeneous appear-
ance and densely packed nerve bundles (Figure 12a). Meanwhile, 

F I G U R E  11  Vasculature of the wolf VNO. (a) Image of the 
anterior portion of the VNO is shown in Figure 8a exemplifies 
the presence of a profuse venous ring (Vv) surrounding the 
vomeronasal duct (VD). The arteries (arrowheads) are small and 
sparse. (b) Arteries indicated in A showed at higher magnification. 
(c) Caudal section of the VNO showing the glove-fingered 
termination of the vomeronasal duct (VD). Numerous veins (Vv) 
and small arterial trunks (arrowhead) predominate at this level. (d) 
In a central section of the VNO, large venous sinuses (Vv) run along 
the lateral portion of the parenchyma. NCd, caudal nasal nerve. 
Staining: (a, b d) Gallego's trichrome; (c) haematoxylin–eosin. Scale 
bars: (a, d) = 250 μm; (c) = 100 μm; (b) = 50 μm.

F I G U R E  1 2  Histological study of the wolf vomeronasal organ 
innervation. (a). Unmyelinated branches of the vomeronasal nerves 
(*). They are characterised by their homogeneous appearance, 
with densely packed nerve bundles. (b). The lateral part of the 
parenchyma contains myelinated nerve branches originating from 
the caudal nasal nerve (*). Their structure is looser and the void 
spaces corresponding to the myelin sheaths are visible. Staining: 
Haematoxylin–eosin. Scale bar = 100 μm.
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the lateral portion of the parenchyma contains myelinated nerve 
branches originating from the caudal nasal nerve (Figures  7, 8b 
and 11d). These branches exhibit a more loosely structured ap-
pearance, and the empty spaces corresponding to the myelin 
sheaths can be seen (Figure 12b).

Our microscopic investigation of the VNO was complemented 
by an examination of decalcified histological sections from the 

rostral part of the nasal septum. These sections illustrate the 
topographical relationship of the rostral VNO with the vomer 
bone (Figure 13). At this level, the vomeronasal cartilage assumes 
an elongated morphology that aligns with the shape of the vomer 
bone, featuring a notable lateral gap. Further examination of more 
rostral decalcified samples confirmed, microscopically, the func-
tional communication of the vomeronasal duct with the external 
environment via the ID. The latter runs laterally to the VNO, facil-
itating direct communication between the vomeronasal duct and 
both the oral and nasal cavities. It achieves this by opening ven-
trally into the aperture present in the elevated mucosa, forming 
the incisive papilla, and dorsally into the meatus located on the 
floor of the nasal cavity (Figure 14).

3.3  |  Lectin histochemical study of the VNO 
(Figure 15)

Both the neuroreceptor cells of the sensory epithelium and the vome-
ronasal nerves of the VNO show positive histochemical labelling for 
both UEA and LEA lectins (Figure 15). However, when considering the 
neuroepithelial cell clusters located in the basal region of the neuroepi-
thelium, both lectins exhibit contrasting labelling patterns.

While LEA produces positive labelling of neuronal clusters 
(Figure 15a), UEA lectin does not label these cells (Figure 15d,e). LEA 
labelling is slightly more pronounced in the apical processes of the 
epithelium (Figure 15a,b), while UEA produces more intense labelling 
in the basal regions of the epithelium (Figure  15d,e), excluding the 
unlabelled clusters. Regarding the respiratory epithelium, it exhibits 
diffuse labelling from both lectins, albeit with distinct patterns. LEA 
positivity is primarily concentrated in most of the apical processes of 

F I G U R E  1 3  Decalcified cross section of the anterior portion of 
the wolf nasal septum, stained with Gallego's trichrome, showing 
the topographical relationship of the VNO with the vomer bone. 
The vomeronasal cartilage (VC) presents an elongated morphology, 
accompanying the shape of the vomer bone (V) and opens laterally. 
d, dorsal; l, lateral; LP, lamina propria; m, medial; NCd, caudal 
nasal nerve; PL, palate; RM, respiratory mucosa; v, ventral; VD, 
vomeronasal duct. Scale bar = 250 μm.

F I G U R E  14  Opening of the vomeronasal duct into the incisive 
duct of the wolf. The vomeronasal duct (1) establishes a direct 
communication with the incisive duct (2). Anatomically, the latter 
runs laterally to the organ, allowing a double direct communication 
between the oral and nasal cavities. Staining: haematoxylin–eosin. 
VC, vomeronasal cartilage; and V, vomer bone. Scale bar = 500 μm.
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the epithelium (Figure 15c), while UEA presents a few strongly labelled 
cells scattered along the epithelium. Within the mucociliary complex, 
labelling is stronger with UEA compared to LEA (Figure 15f).

3.4  |  Immunohistochemical study of the VNO 
(Figures 16 and 17)

The anti-Gαo antibody, which specifically labels the αo subunit of the 
G protein transduction cascade associated with the V2R receptor, la-
bels a subpopulation of neurons predominantly located in the basal 
layers of the neuroepithelium. This arrangement is more evident in 
those areas of the epithelium with a greater number of layers of neu-
roreceptor cells. These neurons extend their axons towards the adja-
cent vomeronasal nerves (Figure  16a,b). The labelling encompasses 
the entire length of the immunopositive neuroreceptor cells, spanning 
from the apical dendrite to the soma. Furthermore, immunopositive 
neuroreceptor cells embrace the intra-epithelial capillaries of the 

VNO (Figure 16c). The anti-Gαi2 antibody, which labels the αi2 subu-
nit of the G protein transduction cascade linked to the V1R receptors, 
labels neuroreceptor cells predominantly present in the central region 
of the epithelium and within the vomeronasal nerves (Figure 16d,e). In 
contrast to Gαo, no immunopositive neurons are identified in proxim-
ity to the intra-epithelial capillaries. Neither anti-Gαo nor anti-Gαi2 
immunolabel the entirety of the dendritic processes that constitute 
the apical surface of the epithelium, suggesting the complementarity 
of both immunolabelling. Additionally, the dendritic knobs, immuno-
labelled with anti-Gαi2, while less numerous than those labelled by 
anti-Gαo, exhibit a more dilated morphology (Figure 16e). The deep 
neuronal clusters remain immunonegative.

To accurately verify the complementarity of both neurorecep-
tor cell subpopulations based on their immunostaining against G 
proteins subunits, we performed a double immunohistochemical 
labelling against both G proteins. This technique revealed the pres-
ence of both cellular subpopulations, differentiated by the immu-
nostaining at the level of both neuronal somas and dendritic buttons 

F I G U R E  1 5  Lectin histochemical labelling of the vomeronasal epithelium. (a–c) LEA lectin labelling: The neuroreceptor epithelium (SE) 
shows intense labelling throughout all its components including neuroepithelial clusters (black arrowheads) and nerve bundles in the lamina 
propria (white arrowheads) (a). This labelling extends to the vomeronasal nerves (NVN) (b). (c) The respiratory epithelium shows a diffuse 
LEA positivity, concentrated mainly in the most apical part of the epithelium, while the basal cells remain unlabelled (asterisk). (d–f) UEA 
lectin: Positivity is demonstrated across the sensory epithelium of the VNO excluding the neuronal clusters (arrowheads) which are not 
labelled (d). At higher magnification, an intensity gradient increasing with depth can be discerned (e). The unlabelled neuronal clusters are 
shown (arrowhead). (f) The respiratory epithelium exhibits fainter labelling, with few positive cells scattered along the epithelium (*). UEA 
labelling is also markedly concentrated in the mucociliary layer. Scale bar: (a–d, f) = 100 μm; (e) = 50 μm.



122  |    ORTIZ-­LEAL et al.

(Figure 16f). The projection of both subpopulations to the vomero-
nasal nerve fibres in the parenchyma of the VNO in most cases was 
not differential, as the nerve branches showed a mixture of both 
immunolabelling, but in some cases, some nerves showed a differ-
ential staining being mostly either Gaio or Gai2 immunopositive 
(Figure 16g).

The anti-calbindin antibody generates a uniform immunolabeling 
pattern across the neuroreceptor cell layer, encompassing the vom-
eronasal nerves (Figure 17a). These immunopositive cells constitute 
a regularly aligned subpopulation situated in an intermediate area 
between the basal and apical layers. However, the terminal knobs 
are poorly labelled, and there is an absence of immunopositivity in 
the basal clusters (Figure 17b). In contrast, the anti-calretinin anti-
body demonstrates strong immunopositivity in the basal neuronal 
clusters (Figure 17c). In addition, a subpopulation of neuroreceptor 
cells whose dendrites show dilated terminal knobs can be identified. 
Vomeronasal nerves are also stained.

Anti-OMP, which binds to OMP (a protein serving as a marker of 
neuronal maturation), produces diffuse labelling throughout the ep-
ithelium, including the basal clusters (Figure 18d). Conversely, anti-
GAP-43, which binds to GAP43, a protein associated with neuronal 
axonal growth, presents a similar pattern but lacks labelling of the 
neuronal clusters (Figure 18e).

3.5  |  Histological study of the nasal septum 
mucosa (Figure 18)

To trace the pathway of the vomeronasal nerves through the nasal 
septum, we carried out immunohistochemical labelling after dis-
secting the nasal mucosa, employing antibodies against the G alpha 
subunit proteins (Figure 18).

While the Gαi2 subunit yielded distinct and specific labelling of the 
vomeronasal nerves (Figure 18a, a' and a"), the antibody targeting Gαo 

F I G U R E  1 6  Immunohistochemical study of the wolf VNO. Gαo (a–c): Immunolabelling with anti-Gαo shows a pattern of neuronal 
labelling predominantly concentrated in the neuroreceptor cells present in the basal layers of the neuroepithelium (a and b) and extending 
to the adjacent vomeronasal nerves (arrowheads). At higher magnification (c: enlarged area of the blue box in image b), it is appreciated how 
the labelling extends along the entire length of the immunopositive neuroreceptor cells, from the apical dendrite (open arrowhead) to the 
soma. Immunopositive neuroreceptor cells embrace the intraepithelial capillaries of the VNO. Gαi2 (d, e): The labelling is predominantly 
concentrated in the neuroreceptor cells mainly located in the central zone of the epithelium (asterisk) and the vomeronasal nerves 
(arrowhead). Unlike Gαo, no immunopositive neurons are identified around the intraepithelial capillaries (black double arrow). The dendritic 
knobs are less numerous than in Gαo but more dilated (open arrowhead). The deep neuronal clusters are immunonegative (open double 
arrows). (f–g): f Double immunostaining for Gαi2 and Gαo confirms the presence of two subpopulations of vomeronasal neuroreceptor cells. 
Anti-Gαi2 (brown) immunostains a subpopulation of cells predominantly located in the central zones, which have thick dendritic knobs (open 
arrowheads). Anti-Gαo (red) stains a cell subpopulation mainly located in a more basal zone (black arrowheads). (g) In some cases, as the one 
shown, the vomeronasal nerves in the parenchyma are predominantly composed either of Gαi2 type fibres (red) or Gαo type fibres (brown). 
Scale bars: (a, d and g) = 100 μm; (b, c, e and f) = 50 μm.
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not only stained the vomeronasal nerves but also the olfactory nerves 
coursing through the mucosa of the nasal cavity and the olfactory neu-
roepithelium from which these axons originate (Figure 18b, b' and b″).

3.6  |  Histological analysis of the AOB (Figure 19)

We examined the histological structure of the AOB using hae-
matoxylin and eosin staining (Figure  19a–c,f) and Nissl staining 
(Figure 19d,e,g,h), both performed on serial sagittal sections. Both 
stains revealed a significant development of this structure, par-
ticularly in relation to its two superficial layers: the nerve layer and 
the glomerular layer (Figure  19a–e). The nerve layer represents 
the arrival point for the vomeronasal nerves (Figure 19f,g), while 
the glomerular layer consists of well-defined, broad and rounded 
glomeruli that are clearly visible with both stains (Figure  19f,g). 
The mitral cells are diffusely distributed in a wide zone located 
between the glomerular layer and the granular layer, thereby pre-
cluding the distinction between true plexiform and mitral layers. 
As a result, the term ‘mitral-plexiform layer’ (MPL) is employed 
to describe this region (Figure 19e,h). The granular layer contains 

clusters of small, rounded cells interspersed within the white mat-
ter (Figure 19h).

3.7  |  Immunohistochemical study of the AOB 
(Figure 20)

The immunohistochemical examination of the wolf AOB using anti-
bodies targeting G protein subunits produced complementary label-
ling patterns for both Gαi2 and Gαo subunits. Anti-Gαi2 presented 
uniform and intense immunostaining in the superficial nervous and 
glomerular layers of the AOB layers (Figure 20a). In contrast, anti-
Gαo produced a reverse pattern, with strong immunopositivity 
observed in the neuropil surrounding the AOB's superficial layers. 
Both the mitral-plexiform and granular layers of the AOB were im-
munostained with anti-Gαo. However, the superficial layers were 
immunonegative, although some immunopositive punctae areas 
were observed (Figure 20b). These immunolabeling patterns corre-
spond to the dendritic projections of mitral cells within the glomeru-
lar layer. Furthermore, calcium-binding proteins such as calbindin 
(Figure 20c) and calretinin (Figure 20d), as well as OMP (Figure 20e), 

F I G U R E  17  Immunohistochemical study of the wolf VNO. Calbindin (CB) (a–b): At low magnification (f) uniform labelling is observed 
throughout the neuroreceptor cell layer, extending into the vomeronasal nerves (black arrowheads). No immunopositivity is observed 
in the clusters (double arrows). At higher magnification (g: magnification of the blue box in f) how the immunopositive cells correspond 
to a regularly aligned subpopulation in an intermediate zone between the basal and apical layers is appreciated. The terminal knobs are 
poorly labelled. Calretinin (CR) (c): A strong immunopositivity to the neuronal clusters is observed (arrows). In addition, a subpopulation 
of neuroreceptor cells whose dendrites show dilated terminal knobs can be identified (white arrowheads). Vomeronasal nerves (black 
arrowhead). OMP (d): Anti-OMP produces a diffuse labelling throughout the epithelium, including the basal clusters (arrows). GAP-43 (e): 
Pattern similar to (i) but without labelling the neuronal clusters (arrows). Arrowhead: vomeronasal nerves. SE: Neurosensory epithelium. VC: 
Vomeronasal cartilage. Scale bars: (a) = 250 μm; (d and e) = 100 μm; (b and c) = 50 μm.



124  |    ORTIZ-­LEAL et al.

showed an identical labelling pattern to that obtained with anti-
Gαi2, with the immunolabeling concentrated in both the superficial 
layers, contrasting with an immunonegative neuropil.

The use of anti-GFAP, a specific marker for glial cells, resulted in a 
trabecular labelling pattern in the nerve and glomerular layers, which 
corresponded to the ensheathing glia accompanying the vomeronasal 
nerve endings (Figure 20f). Occasionally, cell bodies belonging to these 
glial cells were visible (Figure 20i). Meanwhile, anti-MAP2, a reliable 
marker for the somata and dendritic projections of the principal cells in 
the olfactory bulb, exhibited strong labelling within an irregular band 
corresponding to the MPL layer (Figure 20g). MAP-2 immunopositive 
prolongations originating from the MPL could be observed running be-
tween the glomeruli of the AOB (Figure 20h).

3.8  |  Lectin histochemical study of the AOB 
(Figure 21)

Both lectins employed labelled the AOB. On the one hand, UEA lec-
tin specifically labelled the superficial layers of the AOB (Figure 21a), 

while the entire surrounding neuropil remained negative. On the other 
hand, LEA lectin produced a labelling pattern similar to UEA, with 
strong labelling in the AOB's superficial layers, making it challenging to 
differentiate between the nervous and glomerular layers (Figure 21b). 
The surrounding neuropil showed a diffuse labelling pattern.

4  |  DISCUSSION

Chemical communication, facilitated by pheromones, has long been 
recognised as an essential component of social and sexual interac-
tions among canids. These complex chemical signals are detected 
and processed by the VNS, serving a range of functions from mate 
selection and social hierarchy establishment to territory marking. 
They are also integral to the reproductive physiology of these ani-
mals (Gorman & Trowbridge, 1989).

In this study, we aimed to contribute to the ongoing research on 
the neuroanatomical and neurochemical aspects of the VNS in ca-
nids. Specifically, we focus on the Iberian wolf (Canis lupus signatus), 
an emblematic species of great ecological importance and cultural 

F I G U R E  1 8  Immunolabelling of the VNO nasal septum mucosa with anti-G proteins subunits. (a) Anti-Gαi2 exclusively stains 
the vomeronasal nerves as they run through the mucosa of the nasal septum (a"). Therefore, anti-Gαi2 does not produce positive 
immunolabelling of the olfactory nerves, which run in the upper part of the olfactory mucosa (a'). (b) Anti-Gαo (b) stains both the 
vomeronasal nerves (b″) and the olfactory nerves in the mucosa (b′, red arrows). (c) Haematoxylin–eosin adjacent section. d, Dorsal; l, lateral; 
m, medial; and v, ventral. Scale bars: (a–c) = 500 μm; (a'–c′ and a"–c″) = 100 μm.
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significance, with a crucial role in ecosystem dynamics. Surprisingly, 
up to this point, there has been limited exploration of the neuro-
anatomical features of its VNS. Notably, research on VNS in do-
mestic dogs has witnessed substantial growth in the past decade, 
highlighting its crucial role in shaping the socio-sexual behaviours 
of domestic canines (Muñiz-de Miguel et al., 2023), as well as its po-
tential involvement in pathological conditions leading to significant 
behavioural changes (Asproni et al., 2016). Consequently, clinical in-
terest in this sensory system has considerably increased (Dzięcioł 
et al., 2020; Pageat & Gaultier, 2003).

Conversely, a primary limitation in the existing literature is the 
paucity of research pertaining to wild or feral canids. There are 
only a few notable exceptions, such as the study by Chengetanai 
et  al.  (2020), who investigated the neuroanatomy of the African 
wild dog's AOB as part of their broader investigation of the olfac-
tory system in this species. Recent studies on foxes have unveiled 
considerable anatomical and functional differences when compar-
ing these wild foxes to their domestic counterparts. Remarkably, 
these fox studies have identified specific features in the structure 
and neurochemistry of the VNO (Ortiz-Leal et  al.,  2020), AOB 
(Ortiz-Leal, Torres, Villamayor, et  al.,  2022) and the transitional 
zone commonly referred to as the olfactory limbus (Ortiz-Leal 
et al., 2023).

In the subsequent sections, we focus on the key findings of 
our research, with a specific focus on the unique neuroanatomical 
features of the VNS in wolves and its evolutionary implications. To 
achieve this, we not only compare our data with the extensively re-
searched VNS of the domestic dog but also incorporate available 
data on other wild canid species. Additionally, our goal is to contex-
tualise our results within the larger framework of carnivorous taxa, 
with a particular emphasis on felids, mustelids and ursids. This ap-
proach will help elucidate the adaptive, evolutionary or potentially 
convergent characteristics of these chemosensory systems. In es-
sence, this study seeks to provide a neuroanatomical basis for guid-
ing future investigations into the chemical ecology of not only wild 
canids but also other carnivorous taxa.

4.1  |  VNO macroscopic study

We employed both cross sectional macroscopic anatomy and CT 
scans to meticulously delineate the topographic relationships and 
macroscopic features of the wolf's VNO. The use of CT scans to 
characterise VNO anatomy has been relatively limited, with only 
a small number of studies dedicated to this specific area. Previous 
research has been largely restricted to goats (Moawad et al., 2017), 

F I G U R E  19  Histological study of the wolf accessory olfactory bulb stained with haematoxylin–eosin and Nissl staining. (a–c). A 
general view of the AOB can be seen at three selected sagittal levels stained with HE. They show the elongated shape of this structure 
and the predominance of the nervous (NL) and glomerular layers (GlL). (d, e) Sagittal Nissl-stained sections at low magnification allows to 
appreciate the development of the AOB. (f) At higher magnification (corresponding to box in b), two glomerular formations clearly defined 
by periglomerular cells (arrowheads) are appreciated. (g) The magnification of the superficial area of the AOB (box in d) allows to discriminate 
the presence of a mitral-plexiform layer (MPL). (h) Enlargement of the deep area of the AOB (corresponding to box in e) shows mitral 
cells (black arrowhead) in the MPL as well as granular cells (open arrowhead) in the deeper granular layer (GrL). Scale bars: (a–e) = 500 μm; 
(f–h) = 100 μm.
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camels (Alsafy et al., 2014), bats (Yohe et al., 2018) and mice (Levy 
et al., 2020; Mucignat, 2004). In the case of mice, researchers have 
employed high-resolution magnetic resonance and micro-CT tech-
niques in their studies. Our results corroborate the bilateral posi-
tioning of the wolf's VNO in the most rostral and ventral regions of 
the nasal cavity. It is situated laterally to the vomer bone and ven-
trally to the cartilage of the nasal septum, predominantly occupying 
the internal side of the palatine fissure. Our serial anatomical sec-
tions illustrate how the VNO is highly adapted to the contours of 
the nasal cavity, reinforcing the notion that its strategic placement 
may optimise its functional efficacy. This positioning facilitates com-
munication through the ID, connecting the organ to the external en-
vironment through both the nasal and oral cavities. This suggests a 
complex interplay between these two cavities, potentially enabling a 
multi-modal sensory input for the wolf.

Given its intricate location and the complete covering of the 
cartilaginous capsule of the VNO by the nasal cavity's respiratory 
mucosa, visualising the organ proves challenging both in  vivo and 
post-mortem. The presence of the caudal nasal myelinated nerve at 
the most caudal extremity of the VNO serves as a reliable indica-
tor of its location. Additionally, the vomeronasal nerve fibres were 
observed to run in a caudodorsal direction, indicating an integrated 
neuroanatomical pathway with the MOS. The cartilaginous capsule 
almost entirely envelopes the parenchyma of the VNO, except for 
its dorsolateral part. This pattern is similar to those described in 
other carnivores such as dogs (Salazar et al., 2013), foxes (Ortiz-Leal 
et al., 2020), ferrets (Kelliher et al., 2001), minks (Salazar, Cifuentes, 
Quinteiro, & Caballero,  1994) and bears (Tomiyasu et  al.,  2017). 
However, it is somewhat less extensive compared to the complete 
encapsulation observed in felines (Salazar et  al.,  1995). While our 

F I G U R E  2 0  Immunohistochemical study of wolf AOB. (a) Anti-Gαi2 uniformly and intensely label the superficial layers of the AOB 
(nervous and glomerular layers). The entire surrounding neuropil is negative. (b) Anti-Gαo produces a reverse pattern to the one shown in 
A, where the neuropil surrounding the superficial layers is strongly immunopositive, including the mitral-plexiform and granular layers of 
the AOB. However, the superficial layer is clearly negative, although immunopositive punctae areas are observed. (c–e) The calcium binding 
proteins, calbindin (c) and calretinin (d), as well as OMP (e) show an identical labelling pattern to that obtained with anti-Gαi2, concentrated 
in both the nerve and glomerular layers and immunonegative for the neuropil. (f) Anti-GFAP (f and enlarged area in i) produces a trabecular 
labelling pattern in the nerve and glomerular layers, which corresponds to the ensheathing glia accompanying the vomeronasal nerve 
endings. Occasionally, cell bodies belonging to these glial cells are visible (arrowhead). The cell body is magnified in the bottom left-hand box. 
(g) Anti-MAP-2 immunolabelling does not produce immunopositive labelling in the superficial layers (nervous and glomerular), but it strongly 
labels an irregular band corresponding to the MPL layer. (h) MAP-2-immunopositive prolongations originating from the MPL can be observed 
running between the glomeruli of the AOB. (h: enlargement of the box in g). The cell body of an immunopositive interneuron (arrowhead) is 
shown in an enlarged view in the box at the bottom left. Scale bars: (a–g) = 500 μm; (h–i) = 50 μm.
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macroscopic study primarily had an anatomical focus, our observa-
tions have functional implications. For instance, the VNO's location 
adjacent to the root of the upper canine tooth suggests a poten-
tially critical role in sensing pheromones during aggressive or mating 
behaviours.

4.2  |  VNO's histological features

Our histological analysis of the VNO reveals a complex micro-
anatomy essential for understanding its potential physiological 
and behavioural functions. The U-shaped cartilaginous structure 
that encapsulates the soft tissue serves a crucial role: It prevents 
the soft tissue from collapsing under the negative pressure gener-
ated by the vomeronasal pumping mechanism designed to intake 
pheromones (Meredith,  1994; Meredith et  al.,  1980; Meredith 
& O'Connell, 1979). The presence of a complex venous network 
within the wolf VNO is a noteworthy finding. Notably, our exami-
nation reveals a complex venous network within the wolf's VNO. 
Although this feature is also characteristic of the VNO in dogs and 
cats, as reported by Salazar et al. (1997, 2013), all the wolf speci-
mens we studied presented a more advanced development of the 
vascular component. This is particularly evident in the predomi-
nance of large, muscular veins located in the dorsal and lateral 
regions of the organ. This venous preponderance plays a crucial 
role in the functioning of the vascular pump. When these vascu-
lar structures within the soft tissue contract, the lumen of the 
vomeronasal duct expands, creating a vacuum effect that draws in 
chemical molecules. Conversely, vascular dilation causes the duct 

to constrict, leading to the expulsion of its contents, as described 
by Eccles (1982).

The limited presence and reduced size of arteries in the VNO 
may suggest that the organ does not require a high supply of oxy-
genated blood for its primary function of chemoreception. This could 
imply an energy-efficient mechanism, where the organ operates op-
timally without needing substantial blood flow, possibly reflecting 
evolutionary adaptations that prioritise efficiency in sensory organs 
(Niven & Laughlin, 2008).

Further, our observations of blood capillaries in the neuroep-
ithelium of the organ suggest the presence of mechanisms that 
enhance the efficiency of nutrient and gas supply to the VNO. 
Interestingly, these capillaries are in direct contact with the neu-
roreceptor layer, raising speculation about the possibility of hae-
matogenic olfaction (Bednar & Langfelder,  1930). Although this 
olfactory paradigm is not definitively proven, recent findings in-
dicating that the VNO serves as a critical sensor for haemoglobin 
in rodents (Osakada et  al.,  2022) support this hypothesis. Intra-
epithelial capillaries have previously been characterised in rats 
(Breipohl et al., 1981), a species with a notably thick epithelium re-
quiring substantial blood supply. In contrast, intra-epithelial blood 
vessels have not been reported in species with neuroepithelium 
composed of only a few cell rows, such as lemurs (Smith et al., 2007, 
2015), tree shrews, slow lorises (Loo & Kanagasunteram,  1972), 
certain primates (Smith, Garrett, et al., 2011) and bats (Bhatnagar 
& Meisami, 1998; Bhatnagar & Smith, 2007). The presence of these 
intra-epithelial capillaries in wolves, a species with significantly 
fewer neuroreceptor cells compared to rodents, is quite striking. 
To our current understanding, no descriptions of the dog VNO 
refer to the presence of such intra-epithelial capillaries (Dennis 
et  al.,  2003; Salazar et  al.,  2013). This could represent a signifi-
cant morphological distinction that may have implications for the 
functional capabilities of the VNO in these closely related species.

The interaction of the vomeronasal duct with the external envi-
ronment demonstrates notable similarities between our findings on 
decalcified histological series in wolves and what has been described 
in dogs (Adams & Wiekamp, 1984; Salazar et al., 2013). This indirect 
interaction involving the ID is also evident in other carnivores such 
as foxes (Ortiz-Leal et al., 2020), minks (Salazar, Cifuentes, Quinteiro, 
& Caballero, 1994) and bears (Tomiyasu et al., 2017), as well as in 
mammals from other orders including cows (Jacobs et  al.,  1981), 
moose (Vedin et al., 2010) and hedgehogs (Kondoh et al., 2021). One 
end of the ID communicates with the vomeronasal duct through the 
ventral recess of the nasal cavity, while its other end connects to the 
oral cavity via the incisive papilla. This distinct anatomical configu-
ration distinguishes these species from rodents and lagomorphs. In 
the latter group, the vomeronasal duct directly opens into the nasal 
cavity, and the ID serves as an independent link between both cavi-
ties (Vaccarezza et al., 1981; Villamayor et al., 2018).

The relatively sparse glandular tissue, concentrated near the 
ventral and particularly the dorsal commissures, appears to play a 
specialised role in either secretion or absorption, thereby maintain-
ing a continuous mucous environment within the vomeronasal duct 

F I G U R E  2 1  Lectin histochemical study of the wolf AOB. (a) 
UEA lectin labels uniformly and strongly the superficial layers of 
the AOB (nervous and glomerular layers). The entire surrounding 
neuropil is negative. (b) LEA-lectin produces a similar labelling to 
UEA but with higher intensity in the AOB superficial layers and a 
diffuse pattern in the surrounding neuropil. Scale bar = 500 μm.
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(Halpern & Martínez-Marcos, 2003). In wolves, as in dogs (Kondoh 
et al., 2020) and foxes (Ortiz-Leal et al., 2020), a few glands are ob-
served in the central and medial portions of the organ, with their 
numbers increasing progressively towards the caudal portions. 
Using Alcian Blue stain, we were able to characterise the nature of 
the glandular secretions in the wolf's VNO as AB-positive. The pres-
ence of AB-positive vomeronasal glands has also been observed in 
foxes (Ortiz-Leal et al., 2020). In contrast, Kondoh et al.  (2020) re-
ported that vomeronasal glands in dogs were solely PAS-positive. 
In the case of other carnivore species, Tomiyasu et al. (2018) identi-
fied both PAS- and AB-positive glands in bears. Meanwhile Salazar 
et al.  (1996) and Kondoh et al.  (2020) identified only PAS-positive 
glands in cats and dogs respectively. These variations may be at-
tributed to the specific region of the VNO under examination, as 
most studies have primarily focused on its central region, where we 
have observed a lower glandular tissue density. Future investiga-
tions that examine the nature of vomeronasal gland secretion along 
the entire axis of the dog's VNO are expected to provide further 
insights into this matter.

The organisation of the vomeronasal, sensory and respiratory 
epithelia essentially follows the pattern described in other ca-
nids such as dogs (Salazar, Cifuentes, Sánchez Quinteiro, & García 
Caballero, 1994) and foxes (Ortiz-Leal et al., 2020), except for the 
notable presence of conspicuous cellular clusters in a basal position 
(Figure 9b). These cellular accumulations, due to their density and 
the size of the cells composing them, are clearly distinct from the 
layer of basal cells and the neuroreceptor cells. Moreover, as will be 
discussed later in the text, the immunohistochemical study shows 
that they present a unique pattern of immunostaining. Other histo-
logical features of the wolf's VNO closely resemble the information 
available on dogs. Specifically, the abundant connective tissue found 
throughout the wolf's VNO likely plays a vital role in maintaining 
structural integrity. This tissue acts as a scaffold, preserving the in-
tricate microanatomy essential for the specialised functions of the 
VNO (Takami, 2002). Additionally, the identification of two distinct 
types of nerve fibres in the VNO—myelinated and unmyelinated—is 
a shared feature between both species. These fibre types are, re-
spectively, related to sensory perception and the autonomic control 
of blood vessels and glands (Iwanaga & Nio-Kobayashi, 2020).

4.3  |  VNO's immunohistochemical features

The immunohistochemical characterisation of the wolf VNO re-
veals distinctive expression patterns for various G protein subu-
nits and neural markers, including calbindin, calretinin, OMP and 
GAP-43. These markers serve as indicators for various functional 
roles and developmental stages within the VNO's neuroreceptor 
cells.

Of particular importance is the immunohistochemical analy-
sis employing specific antibodies targeting the alpha subunits of 
Gi2 and Go proteins. This significance is reinforced by both neu-
rochemical (Shinohara et  al.,  1992) and genomic studies (Dulac & 

Axel, 1995; Herrada & Dulac, 1997; Matsunami & Buck, 1997; Ryba 
& Tirindelli, 1997) in rodents, which consistently associate the Gαi2 
protein with the expression of the V1Rs receptor family in the VNS, 
whereas the Gαo protein is linked to the V2Rs family. Subsequent 
research has revealed the absence of the Gαo pathway in vari-
ous mammals, including both Laurasiatheria and Primates (Suárez, 
Fernández-Aburto, et al., 2011; Takigami et al., 2000). Nevertheless, 
studies focusing on G protein expression in the VNS of Carnivora 
have been a point of debate.

Initially, Dennis et al. (2003) reported immunopositive labelling 
in the dog VNO neurosensory epithelium using both anti-Gαi2 and 
anti-Gαo antibodies, suggesting an unintended consequence of 
the antigen retrieval process. This theory gained further credence 
in a later study by Salazar et al. (2013), who reported immunoneg-
ative labelling using the anti-Gαo antibody when antigen retrieval 
was not applied. However, more recent discoveries confirmed 
the presence of Gαo protein immunoreactivity in the fox's VNO 
neuroepithelium (Ortiz-Leal et  al.,  2020) and the vomeronasal 
nerves in the nasal mucosa and cribriform plate (Ortiz-Leal, Torres, 
Villamayor, et  al.,  2022). This unexpected expression pattern in 
the fox has now also been confirmed in another wild canid, the 
wolf. Specifically, the anti-Gαo antibody predominantly labelled 
neurons located in the basal layers of the vomeronasal neuroep-
ithelium. These marked cells were in proximity to intra-epithelial 
capillaries, suggesting their potential involvement in vascular 
interactions or haematogenic olfaction. In contrast, the cells la-
belled by the anti-Gαi2 antibody were situated in the central zone 
of the epithelium and exhibited no discernible association with 
intra-epithelial capillaries. The performance of double immuno-
histochemical labelling against both G proteins subunits allowed 
for an accurate verification of the presence of both neuroreceptor 
cells subpopulations, as both markers enabled a clear differen-
tiation of two cell subpopulations, both at the level of neuronal 
somas and dendritic buttons. This differentiation in some cases 
extended to the branches of vomeronasal bundles in the paren-
chyma of the VNO.

While the immunohistochemical identification of Gαo is often 
regarded as a reliable marker for V2R expression in the VNO, this 
notion is not fully corroborated by existing genomic studies. These 
studies suggest that functional V2R genes have become vestigial in 
numerous mammalian groups, including carnivores, through acceler-
ated pseudogenisation (Young & Trask, 2007). However, translating 
genomic findings into neuroanatomical facts presents challenges be-
cause of the mismatch between genetic and morphological aspects 
in chemosensory systems. To bridge this gap, further morphologi-
cal investigation is essential, particularly focusing on the associated 
brain regions, glands and ducts (Yohe & Krell, 2023). The prevalence 
of pseudogenes among vomeronasal receptors prompts inquiries 
and may explain the discrepancy between sequencing data and an-
atomical observations. This complexity is exemplified by an olfac-
tory receptor gene that, despite having a premature stop codon, 
encodes a functional protein through efficient translational read-
through (Prieto-Godino et al., 2016; Stensmyr, 2016). Additionally, 
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transcriptomic studies have identified the expression of vomero-
nasal pseudogenes within the mouse's VNO (Dietschi et al., 2022; 
Oboti et al., 2015).

The notion that the Gαo protein may play a role in cell-to-cell 
signalling within the wolf neuroepithelium remains a possibility. 
However, such a role in the mammalian vomeronasal neuroepithe-
lium has not been confirmed. Moreover, this hypothesis does not 
align with the Gαo immunolabeling pattern in the wolf's VNO, which 
extend through dendritic processes, cell bodies and axons forming 
the vomeronasal nerves—a pattern that is consistent with both G 
proteins being involved in transduction mechanisms (Mohrhardt 
et al., 2018).

The presence of both Gαi2 and Gαo proteins in the sensory 
epithelia of the wolf's and fox's VNO diverges from the isolated 
expression of Gαi2 protein in other carnivores like dogs and cats 
(Salazar et  al.,  2013; Salazar & Sánchez-Quinteiro,  2011). This 
raises intriguing questions about the impact of domestication. 
The absence of Gαo protein expression in the VNS of domes-
tic animals, such as goats (Takigami et  al.,  2000), sheep (Salazar 
et  al.,  2007), dogs (Salazar et  al.,  2013) and cats (Salazar & 
Sánchez-Quinteiro,  2011) has led to the hypothesis that domes-
tication may have contributed to the degeneration of the VNS 
(Jezierski et al., 2016).

A range of supplementary antibodies, including anti-CB, anti-CR, 
anti-GAP-43 and anti-OMP, were employed for the immunohisto-
chemical examination of the VNO. The anti-CB and anti-CR anti-
bodies are frequently used to characterise neuronal subpopulations, 
revealing unique expression profiles in the VNS across diverse spe-
cies (Bastianelli & Pochet, 1995; Briñón et al., 2001; Malz et al., 2000). 
In the case of wolves, the anti-CB antibody demonstrated a distinct 
immunolabeling pattern within the sensory epithelium, highlighting 
a subset of neuroreceptor cells predominantly located in the deeper 
layers of the epithelium. The labelling was the most concentrated in 
the cell bodies and less so in the dendritic extensions. Conversely, 
the anti-CR antibody produced labelling that complemented that of 
the anti-CB antibody, targeting somata located more superficially 
within the epithelial layer. Notably, the dendritic buttons on these 
neurons appeared bulb-shaped and were strongly stained.

The anti-GAP43 antibody, employed to identify neurons under-
going axonal development and synaptogenesis (Gispen et al., 1991; 
Ramakers et al., 1992; Verhaagen et al., 1989), showed an intense 
and widespread labelling pattern. This pattern remained consistent 
with findings observed in both foxes (Ortiz-Leal et  al.,  2020) and 
dogs (Dennis et  al., 2003), suggesting an active process of neuro-
nal regeneration within the canine vomeronasal sensory epithelium. 
This ongoing plasticity could be in response to the VNO's frequent 
exposure to various environmental substances with the potential 
to cause cellular damage (Ogura et  al.,  2010). These observations 
underscore the significance of the vomeronasal sensory system in 
canids.

Finally, the anti-OMP antibody targeted the olfactory marker pro-
tein, which is expressed in mature neurons within both the MOS and 
the VNS (Farbman & Margolis, 1980). It has shown immunopositive 

labelling in a range of species, including rats (Rodewald et al., 2016), 
mice (Mechin et al., 2021), mole rats (Dennis et al., 2020) and pri-
mates (Smith, Dennis, et al., 2011). The ubiquitous presence of OMP 
within the wolf's VNO suggests a uniform stage of neuronal matura-
tion throughout the epithelium.

Beyond the intricate neurochemical pattern observed in the 
sensory neuroepithelium of the wolf's VNO—an indication of the 
complex interplay of molecular and cellular communication and sig-
nal transduction mechanisms involved in pheromonal information 
processing—our immunohistochemical study has identified a strik-
ing, distinctive feature of the wolf's VNO. This feature consists of 
abundant clusters of neuronal cells situated in the most basal part of 
the sensory neuroepithelium (Figure 9b). These clusters extend for 
several hundred micrometres immediately beneath the basal layer 
of neuroreceptor cells (Figures  15a,d,e and 17c–e). They comprise 
oval-shaped cells with large spherical nuclei, densely packed and 
seemingly devoid of processes. While their morphology may super-
ficially resemble that of the neuroreceptor cells in the neuroepithe-
lium, these cells display a specific neurochemical pattern. On the one 
hand, these cells are OMP-positive, reinforcing their role in olfactory 
signal transduction. On the other hand, they are immunonegative 
for GAP-43, suggesting a state of higher differentiation compared to 
the highly GAP-43-positive neuroreceptor cells. These observations 
do not align with the notion that these are undifferentiated cells 
serving to renew the epithelium, akin to typical basal cells. Regarding 
calcium-binding proteins, these clusters are calretinin-positive and 
calbindin-negative, which could initially establish a link between 
them and the calretinin-positive cell subpopulation.

The presence of these clusters is seemingly specific to the 
wolf's VNO. Our comprehensive study of the fox VNO (Ortiz-Leal 
et  al.,  2020), using similar markers and protocols, did not reveal a 
similar neuroepithelial organisation. Furthermore, studies on other 
carnivores such as dogs, minks, ferrets and bears have not yielded 
comparable findings. Despite decades of research on the VNO in a 
diverse array of mammals, this unique neuroepithelial organisation 
has neither been encountered by us in our studies (Torres, Ortiz-
Leal, & Sanchez-Quinteiro, 2023) nor, to the best of our knowledge, 
has it been reported by other researchers. This suggests that such 
an organisation may represent a specialised evolutionary adaptation 
unique to this species, the wolf.

Hypothetically, clusters of neurons beneath the vomeronasal 
epithelium in the lamina propria, distinct from the vomeronasal 
neuroreceptor cells, could serve various functions. Its position in 
the lamina propria would enable the rapid detection of molecules 
in the surrounding blood vessels, facilitating the response of the 
epithelium to these changes. The clusters might as well modulate 
pheromonal signals, regulating signal intensity or quality before 
reaching central processing areas. Alternatively, they might respond 
to specific non-pheromonal stimuli, playing a role in alert or defen-
sive functions. Additionally, these clusters might be linked to tissue 
homeostasis, detecting and responding to environmental changes 
in the local surroundings. Lastly, they could act as relay stations, 
transmitting signals to specific brain areas beyond the vomeronasal 
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epithelium. These hypotheses are speculative and would require fur-
ther research for validation.

Therefore, further specialised research into these cell clusters, 
employing additional markers, or even genomic approaches such as 
RNAscope or single-cell technology, is imperative to more compre-
hensively characterise this distinctive cell population. This approach 
will enhance our understanding of its functional role and signifi-
cance within the VNO.

4.4  |  VNO lectin histochemical labelling

Our lectin histochemical investigation reveals subtle differences in 
the labelling patterns of UEA and LEA lectins within the VNO sen-
sory epithelium and vomeronasal nerves. Both lectins produce posi-
tive labelling in neuroreceptor cells and the vomeronasal nerves; yet, 
they diverge significantly when it comes to the basal neuroepithelial 
cell clusters. LEA labels these neuronal clusters, whereas UEA does 
not, suggesting distinct molecular interactions between these lec-
tins and the cellular components of the clusters. Furthermore, LEA 
shows stronger labelling in the apical processes, while UEA is more 
concentrated in basal areas of the epithelium, although it never la-
bels the basal clusters.

In the respiratory epithelium, both lectins manifest diffuse but 
specific labelling patterns. LEA primarily targets the apical processes, 
whereas UEA labelling is sparser, with a few strongly labelled cells dis-
persed throughout the epithelium. Within the mucociliary complex, 
UEA shows stronger labelling compared to LEA. These distinct label-
ling patterns suggest that the glycoconjugates recognised by these 
lectins possess specialised molecular functions within the VNO.

4.5  |  AOB macroscopic and microscopic anatomy

To the best of our knowledge, this study represents a pioneering 
morphological investigation of the wolf's AOB. Similar to other stud-
ied canids, such as the dog (Nakajima et al., 1998; Salazar & Sánchez-
Quinteiro,  2011), the African wild dog (Chengetanai et  al.,  2020) 
and the fox (Ortiz-Leal, Torres, Villamayor, et al., 2022), the wolf's 
AOB is considerably smaller in size compared to the MOB, render-
ing its macroscopic identification challenging. Accurate localisation 
of this structure necessitates the use of serial histological sections. 
The study of the cytoarchitecture of the wolf's AOB is particularly 
pertinent, given the historical debate surrounding the moderate de-
velopment, and even the very existence, of the AOB in dogs. This 
controversy was only resolved in the 1990s with the advent of lec-
tin histochemical staining techniques (Salazar et  al., 1992; Salazar, 
Cifuentes, Sánchez Quinteiro, & García Caballero, 1994).

Our research confirms the existence of an AOB in the wolf, with 
dimensions comparable to those found in domestic dogs. However, 
the wolf's AOB exhibits a more pronounced laminar organisation. 
Notably, there is substantial development in the superficial nervous 
and glomerular layers of the AOB, along with a higher number of 

mitral cells, a principal cell type rarely observed in histological sec-
tions of the dog's AOB. As a result, the wolf's AOB can be described 
as possessing a well-defined mitral-plexiform layer. Our findings are 
in keeping with those of a comprehensive study of the African wild 
dog's olfactory system, which included an examination of the AOB 
(Chengetanai et al., 2020). While the size and development of the 
AOB in wild canids may appear limited, it remains more differenti-
ated than in other groups of carnivores. Specifically, Mustelidae such 
as the mink (Salazar et al., 1998) and ferret (Kelliher et al., 2001), as 
well as Herpestidae like the meerkat (Torres et al., 2021), possess 
poorly differentiated AOBs. Altogether, this morphological research 
corroborates the presence of distinct lamination patterns in the 
AOB across wild canid populations and supports the theory that the 
selection pressure linked to domestication may have regressed the 
degree of differentiation in the dog's vomeronasal system, a sensory 
pathway crucial for survival in the wild.

4.6  |  AOB immunohistochemistry and lectin 
histochemistry

The neurochemical profile of the wolf's AOB in its superficial, nerv-
ous and glomerular layers mirrors what is observed in the VNO. 
Proteins, such as Gαi2, CB, CR and OMP, expressed in the vomero-
nasal neuroepithelium and vomeronasal nerves both in the VNO and 
the nasal mucosa, are also detected in the superficial layers of the 
AOB, where they produce immunopositive labelling. However, the 
superficial layers are Gαo negative. This implies that Gαo-positive 
vomeronasal neuroreceptors project their information to different 
areas of the olfactory bulb, a pattern identical to that observed in 
the VNS of the fox (Ortiz-Leal, Torres, Villamayor, et  al.,  2022). A 
recent study on the fox suggested that Gαo vomeronasal affer-
ents project to the olfactory limbus, a transition zone (Ortiz-Leal 
et al., 2023). The existence of a similar olfactory limbus in the wolf 
is a subject warranting investigation, as it lies beyond the scope of 
this study. Of all the markers described in our study, Chengetanai 
et al.'s  (2020) study of the African wild dog's AOB only employed 
anti-CR, obtaining a pattern similar to the one described by us in the 
wolf. Similar to the African wild dog, in the wolf, there is no discrimi-
nation of calretinin-positive neuronal cells, which contrasts with 
what is observed in species such as the fox, the mouse or the rabbit, 
where neuronal staining occurs in the glomerular, mitral-plexiform 
and granular layers (Jia & Halpern,  2004; Ortiz-Leal et  al.,  2023; 
Villamayor et al., 2020). Furthermore, our study of the wolf's AOB 
used antibodies against MAP-2 and GFAP proteins, enabling us to 
characterise the remarkable development of the dendritic tree in the 
mitral-plexiform layer and the glial component, both at the level of 
the enveloping glia and astrocytes.

Both UEA lectin and LEA produce immunopositivity in the su-
perficial areas of the AOB, but while the former is specific to the 
AOB, the latter stains both the AOB and the MOB. This pattern is 
consistent with observations in the dog (Salazar et al., 1992, 2013) 
and the fox (Ortiz-Leal, Torres, Villamayor, et al., 2022), confirming 
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the usefulness of UEA as a marker for the VNS of canids and LEA as 
a general marker for the VNS and MOS in the same family. It is note-
worthy, however, that the BSI-B4 lectin, specific to the VNS of the 
rat (Ichikawa et al., 1992), remains negative in the case of the wolf, 
demonstrating the remarkably high specificity of glycoconjugate ex-
pression across different mammalian groups.

In conclusion, this comprehensive study of the wolf's VNS, en-
compassing the VNO, vomeronasal nerves and AOB, has provided 
the first detailed characterisation of its macroscopic anatomy, his-
tology and neurochemical and histochemical profiles. Our findings 
highlight significant differences between the wolf (Canis lupus sig-
natus) and its domestic counterpart, Canis lupus familiaris, in terms 
of both structural and neurochemical aspects. These findings sup-
port the hypothesis that the domestication of the dog's ancestor 
has led to the regression of specific molecular and neurochemical 
features within the VNS. Beyond its evolutionary implications, it is 
noteworthy that the wolf's VNS exhibits unique characteristics. It 
aligns with other animal models presenting the dual expression of G 
protein subunits in their VNO, a finding of great interest. Particularly 
remarkable is the presence of extensive neural clusters in the VNO 
neuroepithelium, previously undocumented in other canid species 
or any other mammals. This adds new depth to our comparative un-
derstanding of the mammalian VNS. Future molecular and genomic 
investigations are expected to shed light on the significance of these 
structural and neurochemical features.
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