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Abstract
This comprehensive literature review explores the transformative impact of artificial intelligence (AI)
predictive analytics on healthcare, particularly in improving patient outcomes regarding disease
progression, treatment response, and recovery rates. AI, encompassing capabilities such as learning,
problem-solving, and decision-making, is leveraged to predict disease progression, optimize treatment
plans, and enhance recovery rates through the analysis of vast datasets, including electronic health records
(EHRs), imaging, and genetic data. The utilization of machine learning (ML) and deep learning (DL)
techniques in predictive analytics enables personalized medicine by facilitating the early detection of
conditions, precision in drug discovery, and the tailoring of treatment to individual patient profiles. Ethical
considerations, including data privacy, bias, and accountability, emerge as vital in the responsible
implementation of AI in healthcare. The findings underscore the potential of AI predictive analytics in
revolutionizing clinical decision-making and healthcare delivery, emphasizing the necessity of ethical
guidelines and continuous model validation to ensure its safe and effective use in augmenting human
judgment in medical practice.
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Introduction And Background
The exponential expansion of healthcare expenses has surpassed the pace of gross domestic product (GDP)
growth, creating a financially unstable situation for health systems worldwide. There was no uncertainty or
confusion on this topic before the outbreak of the 2019 coronavirus illness (COVID-19) and the crisis in
Ukraine. Several causes are fueling this problem, including scarce resources, a growing elderly population,
an increase in chronic diseases, and the strain on healthcare facilities that were already overburdened by the
high demand for their services. In addition, the health systems of other countries, such as Indonesia, Brazil,
and India, are deteriorating because of the COVID-19 pandemic [1].

Health systems depend on evidence-based care strategies and robust disease management pathways to
address demands and regulate behaviors in industrial healthcare delivery services. The term "HRO" refers to
a highly reliable organization, which is characterized by the management of its services via either an
"accountable care organization (ACO)" or a "health maintenance organization (HMO)." However, there has
been an increase in the number of long-term health disorders in the United States. Approximately 60% of
persons have to manage at least one chronic disease, while 40% have to cope with two or more. As a
consequence, the country spends $3.3 trillion annually on healthcare expenses. Moreover, this situation
underwent a significant transformation as a result of the emergence of a new viral disease, formally
designated as COVID-19 by the World Health Organization on February 11, 2020, following its first detection
in Wuhan, China, in 2019. Since then, there has been a significant transformation in healthcare due to the
digital revolution, which will have a profound impact on several fundamental aspects of medical treatment
[2]. This may be attributed to the immense burden that COVID-19 has placed on global healthcare systems,
including its foundational infrastructure, supply chain, and workforce. The epidemic has forced healthcare
stakeholders to use digital technologies. The healthcare sector saw substantial structural changes after the
outbreak. For instance, the increasing popularity of virtual healthcare systems and associated digital
technology has motivated present-day customers, or patients, to actively participate in healthcare-related
decision-making [3]. However, formidable challenges may emerge; developing strategies to overcome them
will clear the path for the advancement into the future of healthcare. Patients and their distinct experiences
and expectations are the primary drivers of healthcare advancements. One of their main objectives is to
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spread patient-centered facilities worldwide via the advancement of technologically facilitated interactions
between physicians and patients while customers may be hesitant to provide personal information [4].

In healthcare, the ability to accurately predict patient outcomes is crucial for providing timely and effective
interventions. Traditional methods of risk assessment often fall short of capturing the complexity and
dynamic nature of patient conditions. However, the emergence of artificial Intelligence (AI) predictive
analytics presents a promising opportunity to enhance prognostic accuracy and improve patient outcomes.
Despite the growing interest in AI applications in healthcare, there remains a need to comprehensively
understand its impact on patient outcomes and identify areas for further improvement [5].

AI predictive analytics leverages advanced algorithms and machine learning (ML) techniques to analyze vast
amounts of patient data, ranging from demographics and medical history to diagnostic tests and treatment
outcomes. By identifying patterns and correlations within these data, AI algorithms can generate predictive
models capable of forecasting patient outcomes with greater precision than traditional methods. Moreover,
AI systems can continuously learn and adapt from new data, enabling them to evolve and improve over time
[6].

While numerous studies have explored the potential of AI predictive analytics in healthcare, there is a
noticeable gap in the literature regarding its direct impact on patient outcomes. Existing research often
focuses on technical aspects such as algorithm development and performance evaluation, overlooking the
real-world implications for clinical practice and patient care. Moreover, few studies have systematically
evaluated the effectiveness of AI predictive models in improving specific patient outcomes across different
medical conditions and care settings. This gap in knowledge limits our understanding of the full potential of
AI in healthcare delivery and hinders the translation of research findings into actionable insights for
clinicians and policymakers [7].

Predictive tools are automated and employ a wide array of sophisticated statistical techniques to predict the
future occurrence of events from historical and current data. Such technologies are the key components in
industries such as industry, health, and education due to their ability to improve the decision-making
processes [8]. Predictive analytics makes use of learning algorithms, various statistical modelling
techniques, and data mining technologies in order to draw inferences from the data and predict trends and
behaviors based on the data [9]. The utilization of these technologies has been groundbreaking, resulting in
the processes of digital transformation that have had sweeping impacts across software testing, educational
management, and business operations [10]. In the medical area, predictive analytics can change the face of
patient care by forecasting infectious disease outbreaks, tailoring treatment plans, and employing hospital
resources with more effectiveness. Considering the fact that machine learning algorithms have the ability to
forecast patient risks for particular ailments, early diagnosis and preventive care are made simple [11].

Various types of predictive analytics platforms are used in healthcare. These include not only health
maintenance organizations but also new integrated networks of care providers designed on patient-centered
healthcare approach. An example is the mentioned platform for the University of California (UC) San Diego
Health System, which implemented a predictive analytics algorithm right into regular healthcare
workflow. They take and analyze electronic health record (EHR) data and use deep learning (DL) models for
the early detection of cases such as sepsis [12].

The PARAllel predictive MOdeling (PARAMO), a healthcare analytics platform, which uses EHRs to prompt
and optimize the entirety of the predictive modelling throughout patient cohorts, is playing a primary role
in the face of a healthcare crisis. Thus, this speedy software has heavily sped up the computational time of
modelling tasks by parallel processing the jobs [13].

Different platforms choose artificial intelligence implementations to study large volumes of patient records
to predict future diseases. These platforms deeply confront vulnerability goals such as data privacy and
algorithmic bias, but they also improve personalized care and the monitoring and management of diseases
at the same [14].

This comprehensive narrative review aims to bridge the gap between AI technology and patient outcomes in
healthcare. By synthesizing existing literature and empirical evidence, this paper will provide a thorough
examination of the influence of AI predictive analytics on various aspects of patient care, including
diagnosis, treatment selection, risk stratification, and prognosis. Furthermore, by critically analyzing the
strengths and limitations of current AI applications, this review will identify key challenges and
opportunities for future research and implementation. Ultimately, this paper seeks to offer valuable insights
to healthcare professionals, researchers, and policymakers seeking to harness the power of AI to improve
patient outcomes and advance the quality of care delivery.

Review
Response prediction by AI
Artificial intelligence has the potential to assist in evaluating how patients react to medical treatment. By
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extracting data from electronic health records, intelligent algorithms can be developed to predict the
outcomes of different treatments. This technology could help anticipate responses to therapy, determine
appropriate drug dosages, and assess a patient's prognosis. Ultimately, it enables the identification of
personalized treatment plans for each individual. These techniques are based on machine learning, a branch
of artificial intelligence that involves recognizing and analyzing patterns in complex datasets [4]. Deep
learning, a subset of machine learning, automatically classifies data without the need for explicit
programming. These learning models may be used in everyday clinical practice to direct the development of
therapeutic treatments and predict results. When implemented correctly, these procedures may significantly
improve accuracy and decrease the time and expense associated with medication development and patient
response evaluation (Figure 1) [5,6].

FIGURE 1: Outcomes of selected and predicted treatment using AI
Created with biorender.com and extracted under premium membership

AI: artificial intelligence

Artificial intelligence techniques in disease diagnosis and prediction
The field of artificial intelligence includes several branches of mathematics and science. The term "artificial
intelligence" may refer to a wide range of computer-generated tasks that are given the impression of
"intelligence" [7]. In order to train AI systems, data representing populations are used [15,16].

A computer can learn on its own with the help of input datasets, experience, and feedback information; this
is the goal of machine learning [17]. The machine learning algorithm learns to maximize its accuracy in a
given task by analyzing the feedback it gets. The end goal is for it to work correctly on both new and old
datasets [18]. One of the most common tools used to gather diagnostic data about patients is an image
source. Nevertheless, this method is vulnerable to increasing resource restrictions and relies on human
interpretation. One effective way to deal with the problems caused by human error due to ignorance or the
lack of training is to apply artificial intelligence, specifically deep learning, in the field of medical imaging.
Artificial intelligence plays a crucial role in image-based illness classification, computer-aided design (CAD),
and disease segmentation. Diagnosing medical imaging procedures requires a training-based approach since
basic equations cannot adequately reproduce images of tissues and organs inside the healthcare system.
Explainable AI (XAI) techniques aim to provide additional information about a model's decision, thereby
improving trust in the model's decisions, as shown in (Figure 2) [19].
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FIGURE 2: XAI helps stakeholders to understand the model's decision
Reproduced under the terms of the Creative Commons CC-BY license from Nazir et al. [19]. Copyright © 2023
The Authors, published by Elsevier Ltd.

XAI: explainable AI

Machine learning for image-based illness diagnosis
The versatility of machine learning algorithms makes them useful in many contexts [20-22]. The field of
medical imaging analysis is one that is seeing fast growth and great promise in the study of ML, a subfield of
AI. There are many applications of machine learning in computer vision, CAD, and image processing for
disease diagnosis [23]. Medical imaging has come a long way thanks to the merging of several imaging
modalities, such as multiple-incision computed tomography (CT), positron emission tomography,
tomosynthesis, magnetic resonance imaging (MRI), tomography, and diffuse optical tomography. This has
led to an increase in the need for cutting-edge ML techniques for medical imaging analysis (Figure 3).
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FIGURE 3: Different types of machine learning algorithms
Reproduced under the terms of the Creative Commons CC-BY license from Ahsan et al. [24]. Copyright © 2022
The Authors, licensee Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland

SSL, self-supervised learning; GMIL, Google multi-instance learning

Machine learning is an umbrella term for a group of algorithms that can automatically spot patterns in data
and use those patterns to predict future data or make decisions in uncertain environments. A distinguishing
feature of machine learning is its dependence on data-driven methods, with minimum intervention from
humans in the decision-making process. Input new data causes the software to learn from its training data
and provide predictions [25].

A number of recent machine learning methods have been applied to the problem of disease prediction and
detection [26,27]. In order to extract relevant data that may be used for disease prediction or diagnosis [28],
we provide explainable AI methods such as SHapley Additive exPlanations (SHAP) to help us analyze the
biggest significance [29]. The creation of synthetic medical images has prompted the development of
generative models such as generative adversarial networks. Current data, such as lung sickness, may be
improved with these pictures, and the findings can be performed better [30]. These approaches work well
with one another and may be used to boost the model's efficiency. The specifics of the problem and the data
dictate the methodology to be used [31].

Deep learning for image-based illness detection
One of the most resilient approaches is deep learning, an advanced piece of technology capable of
autonomously learning several characteristics and patterns. Advancements in deep learning have made it
possible to create prediction models that can identify diseases at an early stage. Deep learning algorithms
surpass traditional machine learning approaches owing to their vast data analysis capabilities, automatic
feature extraction, and outstanding accuracy, which scientists use using well-established pattern analysis
methodologies. There is clear evidence that DL algorithms outperform ML when it comes to handling
massive datasets. In addition, deep learning is said to have better anticipated accuracy than humans, which
makes it the best method for dealing with images [32]. The major focus of deep learning is to extract useful
information from images for diagnostic reasons, which has led to considerable interest in the medical area in
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relation to image processing. One typical use of DL algorithms is medical image-based diagnosis. Some
examples of algorithms in this category are recursive neural networks, deep belief networks (DBNs), deep
automatic encoders, deep Boltzmann machines, and deep intense normal machine learning [33].

One deep learning tool used for medical data analysis is the RAGCN, which stands for region aggregation
graph convolutional network. In order to efficiently merge and condense data from different parts of an
image, it makes use of graph convolutional networks (GCN). The program is designed to analyze medical
pictures, including CT and MRI scans, which often show several regions of interest (ROIs) that need separate
analysis. RAGCN uses a graph-based approach to divide the image into separate areas, and then, GCNs are
used to extract features and provide predictions for each area. A method for automatically determining bone
age using convolutional neural network (CNN) and GCN was presented in the work by Li et al. [34]. In feature
extraction, convolutional neural networks were utilized, and for the inference of bone critical locations,
GCNs were used. Combining these two distinct network topologies allowed researchers to build a novel
graph convolutional network capable of analyzing the characteristics of the bone age assessment area. A
deep learning method created with the express goal of detecting and classifying anomalies in medical
imaging is the lesion-attention pyramid network. To efficiently extract important features from photos of
varying sizes, the Local Appearance-based Parts Network (LAPNet) model uses a pyramid-based design.
Additionally, it concentrates on areas of the picture most prone to lesion formation via an attention
mechanism. In order to determine the extent of diabetic retinopathy, the writers in used this technique. In
order to teach LAPNet to detect lesion regions, a large dataset of medical images was used (Table 1) [35].

Factors Identify high-risk patients Early intervention and prevention References

Disease risk
Predict disease progression Tailored treatment plans [36]

Analyze genetic data Personalized medicine approaches [5]

Treatment

Predict drug response More effective treatments and fewer side effects [37]

Real-time patient monitoring Early detection of issues and treatment adjustments [38]

Readmission risk prediction Reduce hospital readmissions [39]

TABLE 1: AI predictive analytics in patient outcomes
AI: artificial intelligence

Artificial intelligence in recovery rate prediction and predicting
complications
A study conducted among patients with acute kidney injury (AKI) in the ICU, for predicting the recovery and
reversibility of renal function, showed that a machine learning algorithm used in the study had a higher
quality in predicting the prognosis of AKI among the ICU patients in comparison with the models of
traditional regression. It was concluded in the study that by using machine learning, we can potentially
improve the prognoses of those critically ill patients by helping and assisting clinicians in providing timely
interventions [40]. In a study about the use of machine learning (ML) in the pediatric population for
estimating the aftereffects of traumatic brain injury (TBI), which is a major cause of fatality and disablement
particularly in children, the conclusion was that machine learning algorithm is highly sensitive and can be
used for counselling the prognosis of pediatric TBIs and can be of great significance as a screening tool in
predicting useful results [41].

Artificial intelligence (AI) was also found to be very useful in evaluating postoperative recovery, which is a
potential element in perioperative care, because it helped in determining an appropriate discharge date and
in detecting complications [42]. As no universal definition exists, postoperative recovery is very challenging
to evaluate and hard to predict. The research paper conducted among perioperative care oncology patients,
assessing data from wearables about machine learning for the purpose of postoperative continuous recovery
score, showed that ML can be an excellent tool for decision support [43].

Another study in patients undergoing major abdominal surgery for predicting surgical complications using
AI concluded that the AI algorithms were very useful [42]. Diabetes is a condition characterized by the
dysfunction of glucose homeostasis and is one of the most deadly and widespread chronic diseases of the
modern era. A study done on diabetes with the help of artificial intelligence-powered tools indicated that AI
techniques are being widely accepted as appropriate for the self-management of diabetes and thus can be
utilized in daily clinical practice. The patient's quality of life was improved by them [44]. Although AI and
ML techniques in cardiovascular medicine require further refinement and evaluation, there is a potential
role of AI in providing clinical risk prediction, automated imaging interpretation and automated data
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extraction, and quality control. For predicting the risk of aortic aneurysm, coarctation, dissection, and
atherosclerotic disease on computed tomography and MRI, multiple ML techniques have shown potential
[45]. The deep learning (DL) algorithm with real-world data (RWD) was used in another study for predicting
the practicability and implementation of total hip replacement (THR). It was shown that for assessing hip
degeneration and speculating the requirement for further THR, the DL algorithm can bring forth a precise
and dependable method. Also, RWD validated the role of DL in saving time and cost and offered alternative
support for the algorithm [46]. Postexercise heart rate recovery (HRR) is a significant marker in assessing
cardiac autonomy function. Any abnormality of HRR could be linked with adverse effects. A study with deep
learning-derived estimates of HRR using resting electrocardiogram tracings was done to recognize
individuals with threatened HRR [47].

Current immunotherapy outcome prediction methods
AI Predicts Immunotherapy Effectiveness From Histopathology

The gold standard for tumor detection is histopathological tissue sections. Their wealth of useful
information may be used to track the course of the disease, choose individualized treatment plans, and
predict the patient's chance of survival. However, traditional histopathology procedures are not up to snuff
when it comes to precision medicine because of how much work experts need to put in to extract data from
complex images [47]. Currently, digital pathology powered by AI has shown to be useful in the field of tumor
diagnosis and treatment [48]. As an example, AI can accurately measure the results of immunohistochemical
labeling and is able to separate and recognize cancer cells on histology slides. Hence, novel ways to predict
tumor immunotherapy efficacy may be found by the use of machine learning techniques grounded on
histopathology analysis [49]. Microsatellite instability, tumor-infiltrating lymphocytes (TIL), tumor-stroma
ratio, and immunohistochemistry analysis are a few of the extensively researched topics.

By adhering to programmed cell death protein 1 (PD-1) on T cells, tumor cells expressing programmed
death-ligand 1 (PD-L1) may suppress the immune response. As a method for combating tumors, immune
checkpoint inhibitors (ICIs) work by blocking this contact. Immunotherapy efficacy and clinical outcomes
are positively correlated with PD-L1 expression levels, according to the research. Previous research has
shown that an AI-powered analyzer based on PD-L1 tumor ratio score may predict the success of
immunotherapy better than a pathologist can in diagnosing non-small cell lung cancer. The results of this
analyzer are also objective and reproducible; thus, they are free from the influence of human error. In
addition, somatic genomic mutations accumulate due to a defective DNA mismatch repair (MMR) process
that is spread in the MMR gene by mutations. The immunological checkpoint block response is highly
associated with these mutations. For colorectal malignancies with MMR proficiency, the immune-related
objective response rate was 0%, but for colorectal cancers with MMR deficiency, it was 40%. Based on these
results, the MMR status may be able to predict how patients would react to immune checkpoint inhibitor
therapy. Furthermore, several studies have shown that increased immune checkpoint blockade (ICB) is
associated with higher T-cell infiltration and T-cell numbers [50].

One definition of a "microsatellite" is a small, repeated DNA sequence found within a genome. Microsatellite
instability is a key factor in the development of several malignancies and is intricately related to DNA
mismatch repair. In cancers with increased microsatellite instability, immunotherapy has shown promising
results. Deep learning has potential for accurately and effectively determining if patients are
immunotherapy candidates, according to research. To highlight the spatial organization of different cell
types, it may subsequently use three-dimensional reconstruction. This is an extra factor that might be taken
into account when determining how well immunotherapy works [51].

There is a substantial correlation between immunotherapy and tumor-infiltrating lymphocytes, and models
trained on hematoxylin and eosin (H&E)-stained images may reliably predict where TIL will be found.
Researchers created an immune phenotype classifier that is related to prognosis [52]. Immunotherapy
seemed to work better for phenotype A, which showed higher amounts of ICB. And there is a complete
method for using response or outcome data to train deep learning models. To predict how the immune
system would react to immunotherapy, this method employs graph neural networks or convolutional neural
networks. The trials produced area under the curves (AUCs) for melanoma responder prediction at 0.69 and
lung cancer responder prediction at 0.778 (Figure 4) [53].
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FIGURE 4: (A) Lung cancer immunotherapy prediction methods. The
utilization of AI-based technologies in lung cancer immunotherapy
prediction involves the analysis of various data types such as
radiomics images, pathology images, genetic information, epigenetic
information, microbiology data, hematology values, proteomics data,
and multi-omics data. By leveraging diverse datasets, AI can effectively
predict the benefits of immunotherapy in lung cancer patients. (B) The
prediction of adverse effects on lung cancer immunotherapy
Reproduced under the terms and conditions of the Creative Commons Attribution 4.0 International License from
Gao et al. [54]. Copyright © 2023 The Author(s), published by Springer Nature

AI, artificial intelligence; irAE, immune-related adverse event; NLR, neutrophil-to-lymphocyte ratio; ALB, albumin;
CRP, C-reactive protein; PLR, platelet-to-lymphocyte ratio; TSH, thyroid-stimulating hormone; LDH, lactate
dehydrogenase; ECGO, Eastern Cooperative Group for Oncology

Cancer cells' abundance of non-synonymous single-nucleotide variants (NsSNVs) is known as tumor
mutational burden (TMB). The translation of these NsSNVs into unique antigenic peptides and the
subsequent surface presentation of these peptides on cells may activate T-cells [55]. One predictive
biomarker for lung cancer is elevated TMB levels. Recent research has shown that deep learning algorithms
can predict how the immune system would react. Using H&E-stained photos, the study was able to predict
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TMB status, which was much better than the performance obtained by using solely clinical data [56].

With the use of pathology data, artificial intelligence has come a long way in predicting how tumor
immunotherapy will work. Precision medicine and other medical breakthroughs may be possible as a result
of the algorithm's standardization and the sharing of its results.

AI Predicts Immunotherapy Effectiveness Using Imaging-Omics

Medical pictures' capabilities have been greatly enhanced by the ongoing development of imaging
equipment and technology, allowing them to go beyond the traditional "computer-assisted diagnostics
format." These pictures now include data that can be mined with great throughput but are invisible to the
naked eye. With the application of artificial intelligence, imaging histology is able to analyze and classify
pictures with a degree of detail that surpasses that of individual graphics. This method enables the display of
cellular, molecular, and macroscopic features [57]. In addition, prediction models powered by AI may one
day provide trustworthy non-invasive markers for gauging immunotherapy efficacy. As a biomarker in
immunotherapy, PD-L1 expression has been well-established. By integrating CT radiomics with clinical
variables, a non-invasive evaluation of PD-L1 expression levels may be accomplished. From phase I clinical
trials focusing on PD-1/PD-L1 monotherapy, 135 patients with malignancies localized at diverse locales were
selected for the research [58]. Combining traditional CT scans with RNA sequencing (RNA-Seq) genetic data
collected from tumor biopsy samples allowed for the development of a predictive imaging model [59]. In
order to forecast the possible long-term therapeutic advantages of immunotherapy for these patients, the
researchers developed multiparametric imaging histological signature models. To determine if multisource
models may be more effective than radiomics-only models, more research is required.

There is consensus that TMB is a key indicator of ICI's efficacy. In order to find TMB radiomics indicators,
researchers used deep learning techniques to CT images of patients with advanced non-small cell lung
cancer [60]. Overall survival, progression-free survival, and responsiveness to immune checkpoint inhibitor
treatment are all significantly predicted by these biomarkers. Researchers also used AI methods to look at
pre-treatment-improved CT image analysis of PD-1-treated patients with non-small cell lung cancer and
progressing malignant melanoma. Their research showed that immunotherapy was more likely to be
effective against lesions with more morphological heterogeneity, defined as those with compact margins
and inhomogeneous density.

A bad prognosis is linked with hyperprogression, when cancers develop fast after immunotherapy. However,
there are currently few proven biomarkers to identify those at risk of this [61,62]. An investigation was
carried out using clinical and imaging data from 109 patients with advanced non-small cell lung cancer who
were given PD-1/PD-L1 immunosuppressant monotherapy [63]. The patients were all diagnosed with the
disease. Hyperprogression was seen in 19 of these cases. The researcher retrieved the textural features from
the patients' baseline CT images; these characteristics reveal the texture inside and around the target
lesions. Furthermore, histological characteristics that quantify peri-lesion vascular tortuosity were
retrieved. These characteristics may be able to help determine if a patient may have hyperprogression.

Most studies' radiomics quality scores were in the 11-20 range, with a high of 36 points [64]. The results
raise the possibility that imaging-omics analysis powered by AI might one day shed light on the temporal
and spatial variations present inside malignancies. This approach is very beneficial for predicting
immunotherapy response, biomarker expression, and patient prognosis, especially in situations when
histopathology materials are not accessible. The development of precision medicine, the assessment of
disease risk, and the selection of immunotherapy-eligible individuals could all benefit from more research
into imaging histology.

AI Predicts Genomic Immunotherapy Efficacy

Thanks to developments in sequencing technology, a mountain of cancer genetic data has been amassed,
allowing for more precise recommendations to steer tumor treatment. The development of next-generation
sequencing technology has allowed for the possibility of doing extensive genomic and transcriptome
screening. Because of this, databases can be built to analyze tumor drivers, and cancer cells, stromal cells,
and immune cells inside the tumor microenvironment can be sequenced to find out what therapy impacts
are like. With an estimated three billion base pairs, the human genome is a massive dataset rich with
complex information and many aspects. A comprehensive knowledge of the genome may be achieved by
whole genome sequencing. However, deep learning approaches and artificial intelligence are required for
gene identification and analysis, as well as phenotypic analysis and the inter-regulatory interactions
between these variables [65]. Their approach successfully predicts both "hot" and "cold" immune system
patients. Data from clinical trials were used to evaluate the model for external validation. Both general
health and immunotherapy efficacy were higher in the hyperimmune group. A total of 110 individuals
afflicted with metastatic melanoma were assessed by means of RNA sequencing and whole exome
sequencing. Investigators found a link between cytolytic markers and the response rate to anti-cytotoxic T-
lymphocyte-associated antigen-4 (CTLA-4) and TMB. In triple-negative breast cancer patients, there is a
substantial correlation between levels of platelet-related genes, immunotherapy response, and prognosis
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[66]. The various responses to immune checkpoint inhibitors and the identification of prognostic markers
may now be explored thanks to these studies.

Certain transcriptome components must also be included in genomic analysis for accurate immune response
prediction and drug resistance understanding. A study found immunogenic mutant peptides with major
histocompatibility complex (MHC) specificity by integrating exome and transcriptome sequencing with mass
spectrometry. One possible use of these peptides is in the development of personalized vaccinations. To
further explore tumor immunological interactions, Mo et al. developed a 384-well plate-based high-
throughput screening technology [67]. This was accomplished by co-culturing cancer cells with peripheral
blood mononuclear cells in each well. The goals were to assess cellular viability and to discover phenotypes
related to cell proliferation. Furthermore, various bioactive compounds were tested for their effects, and
three potential antagonists that might improve immune function were identified. The effectiveness of
cellular immunotherapy in patients with B-cell malignancies is influenced by the DNA methylation patterns
of cluster of differentiation 19 (CD19)-targeted chimeric antigen receptor T (CART19) cells, as shown by
epigenetic profiling [68].

Extra resources
Numerous studies have explored the potential of artificial intelligence in tumor immunotherapy, with a
range of applications [69]. The current liquid biopsy technology detects DNA from circulating tumor cells,
making it a more practical and versatile way to diagnose and treat cancers [70]. To predict how well immune
checkpoint inhibitors will work, immunotherapy researchers are developing liquid genetic indicators.
Artificial intelligence can detect and evaluate molecular biological data in liquid samples automatically [71].
Furthermore, several biomarkers may be utilized to rule out pseudoprogressive or hyperprogressive illness
following immunotherapy [72]. These include interleukins, plasma cytokines, and DNA from circulating
tumor cells [73].

Along with genomes and imaging, proteomics has been the subject of much research as a potential
biomarker for tumor immunotherapy effectiveness evaluation [74]. Patients with metastatic melanoma may
now benefit from an AI-powered blood proteomics test model that can anticipate their reaction to immune
checkpoint inhibitors [75]. There is a lot of promise in using AI models grounded on multi-omics to forecast
tumor treatment responses. By integrating data from several sources, such as genomes, transcriptomics,
epigenomics, proteomics, and radiomics, multi-omics may construct a more complete picture of a disease.
To better anticipate the next 90 days for patients with non-small cell lung cancer, researchers use deep
learning [76]. In order to distinguish between patients who responded to immunotherapy and those who did
not, the AI model was utilized [77,78].

In addition, tumorlike organs may generate immune-tumor interactions in vitro and closely mimic the
tumor microenvironment, making them a suitable screening model for immunotherapy. To solve the
problems with safety and personalization that come with conventional prediction approaches, artificial
intelligence is being integrated into organoids. The goal of this integration is to provide a streamlined
platform for many applications, such as tumor in vitro culture, growth analysis, drug screening, and tissue
collecting [79]. By analyzing cell necroptosis index, as well as antigen presentation pathways, AI may be able
to forecast immunological checkpoint block reactions [80,81]. The next section will discuss the use of
prediction analytics tools in surgery applications.

Surgery applications
Hepatobiliary and Colorectal Surgery

Researchers created a model to predict the occurrence of complications in patients who had undergone
colorectal, hepatic, and pancreatic surgeries using data from the National Surgical Quality Improvement
Program (NSQIP). A total of 15,657 patients were included in the training dataset. Values of 0.76 for surgical
site infection prediction and 0.98 for stroke prediction were attained using the model's area under the curve.
When compared to the American Society of Anesthesiologists (ASA) and American College of Surgeons
Surgical Risk Calculator (ACS-SRC), the ML models performed better, according to the researchers. In order
to anticipate difficulties in patients undergoing pelvic exoneration for locally advanced or recurring
colorectal cancer, prior research has used deep learning algorithms. A dataset with 1,147 patients was used
to train an artificial neural network model. The AUCs that were calculated ranged from 0.61 to 0.79. The
researchers found that their deep learning model outperformed logistic regression in predicting a result
utilizing a complicated mix of patient and procedure-related variables [82].

Cardiothoracic Surgery

In order to predict the likelihood of major complications after coronary artery bypass graft and/or valve
surgery, researchers used machine learning algorithms. With an area under the curve of 0.72, the random
forest model outperformed the other models while testing data from 3,700 patients. To predict
cardiopulmonary complications in patients following lung resection, a machine learning method was
developed. With an area under the curve of 0.75 and an accuracy rate of 70%, the extreme gradient boosting
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model outperformed its predecessors using a dataset of 1,360 patients. Based on their investigation of
patient-specific data, the researchers concluded that machine learning algorithms provide individualized
predictions. Personalized postoperative care recommendations, preoperative regimen optimization for high-
risk patients, and care quality assessment are other ways these models help with surgical decision-making
[83].

Plastic and Reconstructive Surgery

Problems with implant-based breast reconstruction have been anticipated with the use of machine learning
techniques. Predictions about periprosthetic infection and the need for device explantation were made using
machine learning models trained on perioperative data collected from 481 patients. In terms of predicting
infection (AUC, 0.73; accuracy, 83%) and the need for device explantation (AUC, 0.78; accuracy, 84%), our
results show that the machine learning models performed quite well. Furthermore, when it came to
identifying pertinent risk factors including device implantation plane, acellular dermal matrix type, and
adjuvant therapy, machine learning models outperformed traditional multivariable logistic regression.
Machine learning found nine infection predictors when given the same data as multivariable logistic
regression, which only found two. By using these algorithms, surgeons may be able to make more educated
decisions and provide patients with more accurate and unbiased information about their reconstructive
alternatives and the risks and benefits of each. By projecting the benefits and drawbacks of a procedure,
patients may be better able to get informed consent via the use of models. To further improve the patient's
suitability for the treatment, these models may also reveal variables that can be changed prior to
reconstruction [82,83].

Neurological Surgery

In order to foretell complications in patients undergoing brain tumor surgery, researchers developed the
extreme gradient boosting model. The model demonstrated a 70% accuracy rate and an AUC value of 0.74
using a dataset consisting of 668 cases. In particular, its prediction power was higher than that of a
conventional statistical model. In order to foretell complications after deep brain stimulation surgery,
researchers performed further studies using machine learning approaches. The supervised models
performed very well in differentiating between a number of issues, such as infection (AUC: 0.97),
complications within 12 months (AUC: 0.91), the need for a second surgical procedure (AUC: 0.88), and any
problem (AUC: 0.86). Neurosurgery patients may benefit from better risk assessment, preoperative informed
consent, and treatment planning with the use of machine learning, according to the study's authors [84].

General Surgery

Machine learning approaches that can predict the efficacy of abdominal wall repair have recently been
developed by our team. Seven hundred twenty-five patients' data were used to generate an ensemble of nine
supervised ML models. To improve the accuracy of the predictions, our ensemble made use of a multitude of
ML techniques. Over the course of 30 days, the ensemble using the majority rule forecasted hernia
recurrence, surgical site occurrences (SSO), and readmissions. The machine learning models showed
excellent predictive accuracy over a lengthy three-year follow-up period in predicting issues such as hernia
recurrence (accuracy, 85%; AUC, 0.71). Others excelled on 30-day readmission (accuracy, 84%; AUC, 0.73)
and SSO prediction (accuracy, 72%; AUC, 0.75). Model analysis also allowed us to see factors linked to
negative outcomes that were hidden by more conventional statistical methods such as logistic regression.
This study looked at a variety of factors, including the amount of wound contamination, the frequency of
previous abdominal operations, and the types of surgical procedures. Using the same datasets, ML analysis
found 12 predictors for single sign-ons, whereas multivariate logistic regression analyses found five drivers.
In order to enhance surgical planning, preoperative optimization, and collaborative decision-making, ML
models may provide valuable information [81-84].

Risk calculators
Medical professionals may provide real-time risk assessments using machine learning to determine whether
a patient is in an ideal condition for surgical intervention. For the purpose of anticipating serious problems
after surgery, two ML-driven risk calculators have just become accessible. The 51,457 patients who had
undergone significant inpatient surgery were used to create and verify the MySurgeryRisk model. The eight
primary postoperative complications that were expected to be predicted were acute renal damage, sepsis,
venous thromboembolism, wound complications, neurological and cardiovascular difficulties, mechanical
ventilation after 48 hours, and admission to intensive care after 48 hours. A further goal of the model was to
predict mortality rates during the first two years after surgery. In terms of area under the curve, the model
produced results between 0.77 and 0.94. Research evaluated the validity and reliability of the MySurgeryRisk
calculator in comparison to physicians' clinical judgment. The study found that MySurgeryRisk was more
accurate in predicting postoperative problems than doctors' initial risk assessments. Also, the risk
assessments made by the doctors improved significantly when they started using the machine learning
model [85]. An independent group of scholars created the POTTER risk calculator. A decision tree machine
learning dataset of 382,960 NSQIP patients served as the basis for the model's training. The POTTER risk
calculator outperformed the ASA, Emergency Surgery Score, and NSQIP in terms of predicting mortality and
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morbidity [86]. The next section will discuss the ethical considerations and challenges in the use of
prediction analytics tools.

Ethical considerations and challenges
Ethical questions and data privacy problems constitute the main obstacles to AI implementation in
healthcare, especially when you consider predictive analytics applications. Given that the use of AI in
healthcare is rising, personal data protection, patient injustice, and accountability are among the noticeable
worries. As AI inhabits patient data processing, data privacy is an imperative element when it comes to trust
and to abide by regulations. Patient data security encompasses implementing robust measures for data
protection against unauthorized access to patients' sensitive information, maintaining secure data storage,
and putting into place data management processes that are clear and concise [87]. The health data of
patients must be kept secure through the application of data protection regulation such as the Health
Insurance Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR) to
ensure that the system gets to stay within the rules and also the patients can trust it. Departmental implicit
bias is yet another ethical issue when AI is applied. It involves the belief that a machine can substitute a
doctor and make medical and ethical decisions. It can be that AI software, while unintended, creates biases,
which, in turn, leads to inequality and, as a result, disparities in care and outcomes for some patient
populations [88]. However, to succeed in this, AI innovation must give top priority to fairness and equity in
algorithmic design so that AI systems are used for the benefit of all and do not widen the existing healthcare
gaps. The fact that accountability is also a very crucial ethical concern in the implementation of artificial
intelligence is something to be noted. Pinning the point of responsibility for AI-associated mistakes or
downsides can be hard, considering that AI systems are likely to be combined with input by human expertise
and decision-making systems [89]. The practical implementation of AI as a caregiver, therefore, requires that
certain mechanisms are put in place to ascertain its safe use. Among others, clear lines of accountability and
robust error detection and correction mechanisms are needed to attain this. Hence, by including these
ethical concerns, providers of healthcare can better the quality of care and efficacy of healthcare delivery
through AI-given predictive analytics while preserving patient autonomy and privacy [90].

Conclusions
In the current era of technology, innovation is crucial, and the healthcare industry is keeping up with the
trend. This paper examines several research that demonstrate the use of artificial intelligence (AI) and
related technologies in predicting various aspects of a patient's trip. AI algorithms have a remarkable ability
to serve as an excellent tool for enhancing personalized healthcare and boosting prognosis. Deep learning
(DL) and machine learning (ML) have significantly transformed the field of detecting and forecasting
disorders. Nevertheless, similar to every groundbreaking advancement, AI will inevitably bring about
unintended repercussions and probable ramifications for the delivery of healthcare and existing hazards for
patients. Over time, it is crucial to continuously improve the methods of collecting and validating data, as
well as the ability to revise them as technology advances. Once implemented, constant monitoring is
necessary to assess and modify the AI algorithm. This will also contribute to addressing ethical concerns.
Artificial intelligence has the potential to greatly impact the healthcare industry by revolutionizing its
practices, controlling costs effectively, and improving the experience of patients. Additionally, AI may assist
physicians by providing them with data-driven insights and predictive analytics, enabling them to make
more informed decisions.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Hina Sattar, Diny Dixon, Natalia Moros, Srija Reddy Kesireddy, Huma Ahsan, Mohit
Lakkimsetti, Dhruvi Doshi, Madiha Fatima, Kanwarpreet Sadhu, Muhammad Junaid Hassan

Acquisition, analysis, or interpretation of data:  Hina Sattar, Diny Dixon, Natalia Moros, Srija Reddy
Kesireddy, Huma Ahsan, Mohit Lakkimsetti, Dhruvi Doshi, Madiha Fatima, Kanwarpreet Sadhu

Drafting of the manuscript:  Hina Sattar, Diny Dixon, Natalia Moros, Srija Reddy Kesireddy, Huma Ahsan

Critical review of the manuscript for important intellectual content:  Hina Sattar, Diny Dixon, Natalia
Moros, Srija Reddy Kesireddy, Huma Ahsan, Mohit Lakkimsetti, Dhruvi Doshi, Madiha Fatima, Kanwarpreet
Sadhu, Muhammad Junaid Hassan

Supervision:  Muhammad Junaid Hassan

Disclosures

2024 Dixon et al. Cureus 16(5): e59954. DOI 10.7759/cureus.59954 12 of 16

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

References
1. Williams OD: COVID-19 and private health: market and governance failure . Development (Rome). 2020,

63:181-90. 10.1057/s41301-020-00273-x
2. Tabriz AA, Nouri E, Vu HT, Nghiem VT, Bettilyon B, Gholamhoseyni P, Kiapour N: What should accountable

care organizations learn from the failure of health maintenance organizations? A theory based systematic
review of the literature. Soc Determ Health. 2017, 3:222-47. 10.22037/sdh.v3i4.20919

3. Gurusamy A, Mohamed IA: The role of AI and machine learning in full stack development for healthcare
applications. J Knowl Learn Sci Technol. 2021, 1:116-23. 10.60087/jklst.vol1.n1.p123

4. Bonkhoff AK, Grefkes C: Precision medicine in stroke: towards personalized outcome predictions using
artificial intelligence. Brain. 2022, 145:457-75. 10.1093/brain/awab439

5. Parikh RB, Obermeyer Z, Navathe AS: Regulation of predictive analytics in medicine . Science. 2019,
363:810-2. 10.1126/science.aaw0029

6. Acs B, Rantalainen M, Hartman J: Artificial intelligence as the next step towards precision pathology . J
Intern Med. 2020, 288:62-81. 10.1111/joim.13030

7. Chen Z, Liu X, Hogan W, Shenkman E, Bian J: Applications of artificial intelligence in drug development
using real-world data. Drug Discov Today. 2021, 26:1256-64. 10.1016/j.drudis.2020.12.013

8. Cariceo OE, Nair M, Bokhari W: Predictive analytics and big data. Encyclopedia Soc Work. 2021,
10.1093/acrefore/9780199975839.013.1424

9. Sarro F: Predictive analytics for software testing: keynote paper . Assoc Comput Machine. 2018, 1.
10.1145/3194718.3194730

10. Rajni J, Malaya DB: Predictive analytics in a higher education context . IT Prof. 2015, 17:24-33.
10.1109/MITP.2015.68

11. Souza J, Leung CK, Cuzzocrea A: An innovative big data predictive analytics framework over hybrid big data
sources with an application for disease analytics. Advanced Info Networking Applications. 2020, 1151:669-
80. 10.1007/978-3-030-44041-1_59

12. Safa M, Pandian A, Gururaj H, Ravi V, Krichen M: Real time health care big data analytics model for
improved QoS in cardiac disease prediction with IoT devices. Health Technol. 2023, 13:473-83.
10.1007/s12553-023-00747-1

13. Boukenze B: Disease forecasting and patient monitoring: the great role of medical data analytics . 2023 IEEE
ICNSC. 2023, 1:1-6. 10.1109/ICNSC58704.2023.10319039

14. Trivedi NK: Predictive analytics in healthcare using machine learning . 2023 14th ICCCNT. 2023, 1-5.
10.1109/ICCCNT56998.2023.10306782

15. Kumar Y, Mahajan M: 5. Recent advancement of machine learning and deep learning in the field of
healthcare system. Computational Intelligence for machine learning and Healthcare Informatics. Srivastava
R, Mallick PK, Rautaray SS, Pandey M (ed): De Gruyter, Berlin, Germany; 2020. 77-98.
10.1515/9783110648195-005

16. Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G: Deep-COVID: predicting COVID-19 from chest
X-ray images using deep transfer learning. Med Image Anal. 2020, 65:101794. 10.1016/j.media.2020.101794

17. Nasteski V: An overview of the supervised machine learning methods . Horizons. 2017, 4:56.
10.20544/HORIZONS.B.04.1.17.P05

18. Ghazal TM, Hasan MK, Alshurideh MT, et al.: IoT for smart cities: machine learning approaches in smart
healthcare—a review. Future Internet. 2021, 13:218. 10.3390/fi13080218

19. Nazir S, Dickson DM, Akram MU: Survey of explainable artificial intelligence techniques for biomedical
imaging with deep neural networks. Comput Biol Med. 2023, 156:106668.
10.1016/j.compbiomed.2023.106668

20. Sajedian A, Ebrahimi M, Jamialahmadi M: Two-phase inflow performance relationship prediction using two
artificial intelligence techniques: multi-layer perceptron versus genetic programming. Pet Sci Technol.
2012, 30:1725-36. 10.1080/10916466.2010.509074

21. Ghafari M, Mailman D, Hatami P, Peyton T, Yang L, Dang W, Qin H: A comparison of YOLO and mask-
RCNN for detecting cells from microfluidic Images. 2022 ICAIIC. 2022, 204-9.
10.1109/ICAIIC54071.2022.9722616

22. Tran TV, Khaleghian S, Zhao J, Sartipi M: SIMCal: a high-performance toolkit for calibrating traffic
simulation. 2022 IEEE International Conference on Big Data (Big Data). 2022, 2895-902.
10.1109/BigData55660.2022.10021057

23. Ghaffar Nia N, Kaplanoglu E, Nasab A: Evaluation of artificial intelligence techniques in disease diagnosis
and prediction. Discov Artif Intel. 2023, 3:5. 10.1007/s44163-023-00049-5

24. Ahsan MM, Luna SA, Siddique Z: Machine-learning-based disease diagnosis: a comprehensive review .
Healthcare (Basel). 2022, 10:541. 10.3390/healthcare10030541

25. Cao R, Mohammadian Bajgiran A, Afshari Mirak S, et al.: Joint prostate cancer detection and Gleason score
prediction in mp-MRI via FocalNet. IEEE Trans Med Imaging. 2019, 38:2496-506.
10.1109/TMI.2019.2901928

26. Marwa EG, Moustafa HE, Khalifa F, Khater H, AbdElhalim E: An MRI-based deep learning approach for
accurate detection of Alzheimer’s disease. Alex Eng J. 2023, 63:211-21. 10.1016/j.aej.2022.07.062

27. Bhosale YH, Patnaik KS: PulDi-COVID: chronic obstructive pulmonary (lung) diseases with COVID-19
classification using ensemble deep convolutional neural network from chest X-ray images to minimize
severity and mortality rates. Biomed Signal Process Control. 2023, 81:104445. 10.1016/j.bspc.2022.104445

2024 Dixon et al. Cureus 16(5): e59954. DOI 10.7759/cureus.59954 13 of 16

https://dx.doi.org/10.1057/s41301-020-00273-x
https://dx.doi.org/10.1057/s41301-020-00273-x
https://dx.doi.org/10.22037/sdh.v3i4.20919
https://dx.doi.org/10.22037/sdh.v3i4.20919
https://dx.doi.org/10.60087/jklst.vol1.n1.p123
https://dx.doi.org/10.60087/jklst.vol1.n1.p123
https://dx.doi.org/10.1093/brain/awab439
https://dx.doi.org/10.1093/brain/awab439
https://dx.doi.org/10.1126/science.aaw0029
https://dx.doi.org/10.1126/science.aaw0029
https://dx.doi.org/10.1111/joim.13030
https://dx.doi.org/10.1111/joim.13030
https://dx.doi.org/10.1016/j.drudis.2020.12.013
https://dx.doi.org/10.1016/j.drudis.2020.12.013
https://dx.doi.org/10.1093/acrefore/9780199975839.013.1424
https://dx.doi.org/10.1093/acrefore/9780199975839.013.1424
https://dx.doi.org/10.1145/3194718.3194730
https://dx.doi.org/10.1145/3194718.3194730
https://dx.doi.org/10.1109/MITP.2015.68
https://dx.doi.org/10.1109/MITP.2015.68
https://dx.doi.org/10.1007/978-3-030-44041-1_59
https://dx.doi.org/10.1007/978-3-030-44041-1_59
https://dx.doi.org/10.1007/s12553-023-00747-1
https://dx.doi.org/10.1007/s12553-023-00747-1
https://dx.doi.org/10.1109/ICNSC58704.2023.10319039
https://dx.doi.org/10.1109/ICNSC58704.2023.10319039
https://dx.doi.org/10.1109/ICCCNT56998.2023.10306782
https://dx.doi.org/10.1109/ICCCNT56998.2023.10306782
https://dx.doi.org/10.1515/9783110648195-005
https://dx.doi.org/10.1515/9783110648195-005
https://dx.doi.org/10.1016/j.media.2020.101794
https://dx.doi.org/10.1016/j.media.2020.101794
https://dx.doi.org/10.20544/HORIZONS.B.04.1.17.P05
https://dx.doi.org/10.20544/HORIZONS.B.04.1.17.P05
https://dx.doi.org/10.3390/fi13080218
https://dx.doi.org/10.3390/fi13080218
https://dx.doi.org/10.1016/j.compbiomed.2023.106668
https://dx.doi.org/10.1016/j.compbiomed.2023.106668
https://dx.doi.org/10.1080/10916466.2010.509074
https://dx.doi.org/10.1080/10916466.2010.509074
https://dx.doi.org/10.1109/ICAIIC54071.2022.9722616
https://dx.doi.org/10.1109/ICAIIC54071.2022.9722616
https://dx.doi.org/10.1109/BigData55660.2022.10021057
https://dx.doi.org/10.1109/BigData55660.2022.10021057
https://dx.doi.org/10.1007/s44163-023-00049-5
https://dx.doi.org/10.1007/s44163-023-00049-5
https://dx.doi.org/10.3390/healthcare10030541
https://dx.doi.org/10.3390/healthcare10030541
https://dx.doi.org/10.1109/TMI.2019.2901928
https://dx.doi.org/10.1109/TMI.2019.2901928
https://dx.doi.org/10.1016/j.aej.2022.07.062
https://dx.doi.org/10.1016/j.aej.2022.07.062
https://dx.doi.org/10.1016/j.bspc.2022.104445
https://dx.doi.org/10.1016/j.bspc.2022.104445


28. Li C, Zhang Y, Weng Y, Wang B, Li Z: Natural language processing applications for computer-aided
diagnosis in oncology. Diagnostics (Basel). 2023, 13:286. 10.3390/diagnostics13020286

29. Nordin N, Zainol Z, Mohd Noor MH, Chan LF: An explainable predictive model for suicide attempt risk using
an ensemble learning and Shapley Additive Explanations (SHAP) approach. Asian J Psychiatr. 2023,
79:103316. 10.1016/j.ajp.2022.103316

30. Chen Y, Lin Y, Xu X, et al.: Multi-domain medical image translation generation for lung image classification
based on generative adversarial networks. Comput Methods Programs Biomed. 2023, 229:107200.
10.1016/j.cmpb.2022.107200

31. Pagano TP, Loureiro RB, Lisboa FV, et al.: Bias and unfairness in machine learning models: a systematic
review on datasets, tools, fairness metrics, and identification and mitigation methods. Big Data Cogn
Comput. 2023, 7:15. 10.3390/bdcc7010015

32. Chee CG, Kim Y, Kang Y, et al.: Performance of a deep learning algorithm in detecting osteonecrosis of the
femoral head on digital radiography: a comparison with assessments by radiologists. AJR Am J Roentgenol.
2019, 213:155-62. 10.2214/AJR.18.20817

33. Aggarwal CC: Neural networks and deep learning. Springer, Cham, Switzerland; 2018. 10.1007/978-3-319-
94463-0

34. Li X, Jiang Y, Liu Y, Zhang J, Yin S, Luo H: RAGCN: region aggregation graph convolutional network for
bone age assessment from X-ray images. IEEE Trans Instrum Meas. 2022, 71:1-12.
10.1109/TIM.2022.3190025

35. Li X, Jiang Y, Zhang J, Li M, Luo H, Yin S: Lesion-attention pyramid network for diabetic retinopathy
grading. Artif Intell Med. 2022, 126:102259. 10.1016/j.artmed.2022.102259

36. Choudhury A, Asan O: Role of artificial intelligence in patient safety outcomes: systematic literature
review. JMIR Med Inform. 2020, 8:e18599. 10.2196/18599

37. Van Calster B, Wynants L, Timmerman D, Steyerberg EW, Collins GS: Predictive analytics in health care:
how can we know it works?. J Am Med Inform Assoc. 2019, 26:1651-4. 10.1093/jamia/ocz130

38. Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V: Artificial intelligence transforms the future of health care.
Am J Med. 2019, 132:795-801. 10.1016/j.amjmed.2019.01.017

39. Johnson KB, Wei WQ, Weeraratne D, et al.: Precision medicine, AI, and the future of personalized health
care. Clin Transl Sci. 2021, 14:86-93. 10.1111/cts.12884

40. Zhao X, Lu Y, Li S, et al.: Predicting renal function recovery and short-term reversibility among acute kidney
injury patients in the ICU: comparison of machine learning methods and conventional regression. Ren Fail.
2022, 44:1326-37. 10.1080/0886022X.2022.2107542

41. Tunthanathip T, Oearsakul T: Application of machine learning to predict the outcome of pediatric traumatic
brain injury. Chin J Traumatol. 2021, 24:350-5. 10.1016/j.cjtee.2021.06.003

42. Yin J, Ngiam KY, Teo HH: Role of artificial intelligence applications in real-life clinical practice: systematic
review. J Med Internet Res. 2021, 23:e25759. 10.2196/25759

43. Sheu YH, Magdamo C, Miller M, Das S, Blacker D, Smoller JW: AI-assisted prediction of differential response
to antidepressant classes using electronic health records. NPJ Digit Med. 2023, 6:73. 10.1038/s41746-023-
00817-8

44. Contreras I, Vehi J: Artificial intelligence for diabetes management and decision support: literature review . J
Med Internet Res. 2018, 20:e10775. 10.2196/10775

45. Zargarzadeh A, Javanshir E, Ghaffari A, Mosharkesh E, Anari B: Artificial intelligence in cardiovascular
medicine: an updated review of the literature. J Cardiovasc Thorac Res. 2023, 15:204-9.
10.34172/jcvtr.2023.33031

46. Bhinder B, Gilvary C, Madhukar NS, Elemento O: Artificial intelligence in cancer research and precision
medicine. Cancer Discov. 2021, 11:900-15. 10.1158/2159-8290.CD-21-0090

47. van der Laak J, Litjens G, Ciompi F: Deep learning in histopathology: the path to the clinic . Nat Med. 2021,
27:775-84. 10.1038/s41591-021-01343-4

48. Lancellotti C, Cancian P, Savevski V, Kotha SR, Fraggetta F, Graziano P, Di Tommaso L: Artificial
intelligence & tissue biomarkers: advantages, risks and perspectives for pathology. Cells. 2021, 10:787.
10.3390/cells10040787

49. Martins J, Magalhães C, Rocha M, Osório NS: Machine learning-enhanced T cell neoepitope discovery for
immunotherapy design. Cancer Inform. 2019, 18:1176935119852081. 10.1177/1176935119852081

50. Choi S, Cho SI, Ma M, et al.: Artificial intelligence-powered programmed death ligand 1 analyser reduces
interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of
immunotherapy response. Eur J Cancer. 2022, 170:17-26. 10.1016/j.ejca.2022.04.011

51. Li K, Luo H, Huang L, Luo H, Zhu X: Microsatellite instability: a review of what the oncologist should know .
Cancer Cell Int. 2020, 20:16. 10.1186/s12935-019-1091-8

52. Zheng S, Zou Y, Xie X, et al.: Development and validation of a stromal immune phenotype classifier for
predicting immune activity and prognosis in triple-negative breast cancer. Int J Cancer. 2020, 147:542-53.
10.1002/ijc.33009

53. Hu J, Cui C, Yang W, Huang L, Yu R, Liu S, Kong Y: Using deep learning to predict anti-PD-1 response in
melanoma and lung cancer patients from histopathology images. Transl Oncol. 2021, 14:100921.
10.1016/j.tranon.2020.100921

54. Gao Q, Yang L, Lu M, Jin R, Ye H, Ma T: The artificial intelligence and machine learning in lung cancer
immunotherapy. J Hematol Oncol. 2023, 16:55. 10.1186/s13045-023-01456-y

55. Ushio R, Murakami S, Saito H: Predictive markers for immune checkpoint inhibitors in non-small cell lung
cancer. J Clin Med. 2022, 11:1855. 10.3390/jcm11071855

56. Sadhwani A, Chang HW, Behrooz A, et al.: Comparative analysis of machine learning approaches to classify
tumor mutation burden in lung adenocarcinoma using histopathology images. Sci Rep. 2021, 11:16605.
10.1038/s41598-021-95747-4

57. Su X, Chen N, Sun H, et al.: Automated machine learning based on radiomics features predicts H3 K27M
mutation in midline gliomas of the brain. Neuro Oncol. 2020, 22:393-401. 10.1093/neuonc/noz184

58. Wang C, Ma J, Shao J, et al.: Non-invasive measurement using deep learning algorithm based on multi-

2024 Dixon et al. Cureus 16(5): e59954. DOI 10.7759/cureus.59954 14 of 16

https://dx.doi.org/10.3390/diagnostics13020286
https://dx.doi.org/10.3390/diagnostics13020286
https://dx.doi.org/10.1016/j.ajp.2022.103316
https://dx.doi.org/10.1016/j.ajp.2022.103316
https://dx.doi.org/10.1016/j.cmpb.2022.107200
https://dx.doi.org/10.1016/j.cmpb.2022.107200
https://dx.doi.org/10.3390/bdcc7010015
https://dx.doi.org/10.3390/bdcc7010015
https://dx.doi.org/10.2214/AJR.18.20817
https://dx.doi.org/10.2214/AJR.18.20817
https://dx.doi.org/10.1007/978-3-319-94463-0
https://dx.doi.org/10.1007/978-3-319-94463-0
https://dx.doi.org/10.1109/TIM.2022.3190025
https://dx.doi.org/10.1109/TIM.2022.3190025
https://dx.doi.org/10.1016/j.artmed.2022.102259
https://dx.doi.org/10.1016/j.artmed.2022.102259
https://dx.doi.org/10.2196/18599
https://dx.doi.org/10.2196/18599
https://dx.doi.org/10.1093/jamia/ocz130
https://dx.doi.org/10.1093/jamia/ocz130
https://dx.doi.org/10.1016/j.amjmed.2019.01.017
https://dx.doi.org/10.1016/j.amjmed.2019.01.017
https://dx.doi.org/10.1111/cts.12884
https://dx.doi.org/10.1111/cts.12884
https://dx.doi.org/10.1080/0886022X.2022.2107542
https://dx.doi.org/10.1080/0886022X.2022.2107542
https://dx.doi.org/10.1016/j.cjtee.2021.06.003
https://dx.doi.org/10.1016/j.cjtee.2021.06.003
https://dx.doi.org/10.2196/25759
https://dx.doi.org/10.2196/25759
https://dx.doi.org/10.1038/s41746-023-00817-8
https://dx.doi.org/10.1038/s41746-023-00817-8
https://dx.doi.org/10.2196/10775
https://dx.doi.org/10.2196/10775
https://dx.doi.org/10.34172/jcvtr.2023.33031
https://dx.doi.org/10.34172/jcvtr.2023.33031
https://dx.doi.org/10.1158/2159-8290.CD-21-0090
https://dx.doi.org/10.1158/2159-8290.CD-21-0090
https://dx.doi.org/10.1038/s41591-021-01343-4
https://dx.doi.org/10.1038/s41591-021-01343-4
https://dx.doi.org/10.3390/cells10040787
https://dx.doi.org/10.3390/cells10040787
https://dx.doi.org/10.1177/1176935119852081
https://dx.doi.org/10.1177/1176935119852081
https://dx.doi.org/10.1016/j.ejca.2022.04.011
https://dx.doi.org/10.1016/j.ejca.2022.04.011
https://dx.doi.org/10.1186/s12935-019-1091-8
https://dx.doi.org/10.1186/s12935-019-1091-8
https://dx.doi.org/10.1002/ijc.33009
https://dx.doi.org/10.1002/ijc.33009
https://dx.doi.org/10.1016/j.tranon.2020.100921
https://dx.doi.org/10.1016/j.tranon.2020.100921
https://dx.doi.org/10.1186/s13045-023-01456-y
https://dx.doi.org/10.1186/s13045-023-01456-y
https://dx.doi.org/10.3390/jcm11071855
https://dx.doi.org/10.3390/jcm11071855
https://dx.doi.org/10.1038/s41598-021-95747-4
https://dx.doi.org/10.1038/s41598-021-95747-4
https://dx.doi.org/10.1093/neuonc/noz184
https://dx.doi.org/10.1093/neuonc/noz184
https://dx.doi.org/10.3389/fimmu.2022.828560


source features fusion to predict PD-L1 expression and survival in NSCLC. Front Immunol. 2022, 13:828560.
10.3389/fimmu.2022.828560

59. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ: Radiomics of (18)F-FDG PET/CT images predicts
clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol
Imaging. 2020, 47:1168-82. 10.1007/s00259-019-04625-9

60. He B, Dong D, She Y, et al.: Predicting response to immunotherapy in advanced non-small-cell lung cancer
using tumor mutational burden radiomic biomarker. J Immunother Cancer. 2020, 8:e000550. 10.1136/jitc-
2020-000550

61. Matos I, Garralda E: Clarification of definitions of hyperprogressive disease during immunotherapy . JAMA
Oncol. 2021, 7:136-7. 10.1001/jamaoncol.2020.5582

62. Frelaut M, Le Tourneau C, Borcoman E: Hyperprogression under immunotherapy. Int J Mol Sci. 2019,
20:2674. 10.3390/ijms20112674

63. Vaidya P, Bera K, Patil PD, et al.: Novel, non-invasive imaging approach to identify patients with advanced
non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J
Immunother Cancer. 2020, 8:e001343. 10.1136/jitc-2020-001343

64. Dercle L, McGale J, Sun S, et al.: Artificial intelligence and radiomics: fundamentals, applications, and
challenges in immunotherapy. J Immunother Cancer. 2022, 10:e005292. 10.1136/jitc-2022-005292

65. Xie F, Zhang J, Wang J, et al.: Multifactorial deep learning reveals pan-cancer genomic tumor clusters with
distinct immunogenomic landscape and response to immunotherapy. Clin Cancer Res. 2020, 26:2908-20.
10.1158/1078-0432.CCR-19-1744

66. Xie J, Zou Y, Ye F, et al.: A novel platelet-related gene signature for predicting the prognosis of triple-
negative breast cancer. Front Cell Dev Biol. 2021, 9:795600. 10.3389/fcell.2021.795600

67. Mo X, Tang C, Niu Q, Ma T, Du Y, Fu H: HTiP: high-throughput immunomodulator phenotypic screening
platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem Biol. 2019, 26:331-9.e3.
10.1016/j.chembiol.2018.11.011

68. Garcia-Prieto CA, Villanueva L, Bueno-Costa A, et al.: Epigenetic profiling and response to CD19 chimeric
antigen receptor T-cell therapy in B-cell malignancies. J Natl Cancer Inst. 2022, 114:436-45.
10.1093/jnci/djab194

69. Ginghina O, Hudita A, Zamfir M, et al.: Liquid biopsy and artificial intelligence as tools to detect signatures
of colorectal malignancies: a modern approach in patient’s stratification. Front Oncol. 2022, 12:856575.
10.3389/fonc.2022.856575

70. Wadden J, Ravi K, John V, Babila CM, Koschmann C: Cell-free tumor DNA (cf-tDNA) liquid biopsy: current
methods and use in brain tumor immunotherapy. Front Immunol. 2022, 13:882452.
10.3389/fimmu.2022.882452

71. Maravelia P, Silva DN, Rovesti G, Chrobok M, Stål P, Lu YC, Pasetto A: Liquid biopsy in hepatocellular
carcinoma: opportunities and challenges for immunotherapy. Cancers (Basel). 2021, 13:4334.
10.3390/cancers13174334

72. Xie J, Luo X, Deng X, et al.: Advances in artificial intelligence to predict cancer immunotherapy efficacy .
Front Immunol. 2022, 13:1076883. 10.3389/fimmu.2022.1076883

73. Yan Y, Chen X, Wei J, Gong Z, Xu Z: Immunotherapy combinations in patients with small cell lung cancers . J
Thorac Oncol. 2019, 14:e244-5. 10.1016/j.jtho.2019.05.021

74. Park Y, Kim MJ, Choi Y, et al.: Role of mass spectrometry-based serum proteomics signatures in predicting
clinical outcomes and toxicity in patients with cancer treated with immunotherapy. J Immunother Cancer.
2022, 10:e003566. 10.1136/jitc-2021-003566

75. Bojar D, Lisacek F: Glycoinformatics in the artificial intelligence era . Chem Rev. 2022, 122:15971-88.
10.1021/acs.chemrev.2c00110

76. Yang Y, Yang J, Shen L, et al.: A multi-omics-based serial deep learning approach to predict clinical
outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer.
Am J Transl Res. 2021, 13:743-56.

77. Hopp L, Löffler-Wirth H, Galle J, Binder H: Combined SOM-portrayal of gene expression and DNA
methylation landscapes disentangles modes of epigenetic regulation in glioblastoma. Epigenomics. 2018,
10:745-64. 10.2217/epi-2017-0140

78. Song P, Cui X, Bai L, et al.: Molecular characterization of clinical responses to PD-1/PD-L1 inhibitors in
non-small cell lung cancer: predictive value of multidimensional immunomarker detection for the efficacy
of PD-1 inhibitors in Chinese patients. Thorac Cancer. 2019, 10:1303-9. 10.1111/1759-7714.13078

79. Drost J, Clevers H: Organoids in cancer research. Nat Rev Cancer. 2018, 18:407-18. 10.1038/s41568-018-
0007-6

80. Huemer F, Leisch M, Geisberger R, Melchardt T, Rinnerthaler G, Zaborsky N, Greil R: Combination strategies
for immune-checkpoint blockade and response prediction by artificial intelligence. Int J Mol Sci. 2020,
21:2856. 10.3390/ijms21082856

81. Xie J, Tian W, Tang Y, et al.: Establishment of a cell necroptosis index to predict prognosis and drug
sensitivity for patients with triple-negative breast cancer. Front Mol Biosci. 2022, 9:834593.
10.3389/fmolb.2022.834593

82. Merath K, Hyer JM, Mehta R, et al.: Use of machine learning for prediction of patient risk of postoperative
complications after liver, pancreatic, and colorectal surgery. J Gastrointest Surg. 2020, 24:1843-51.
10.1007/s11605-019-04338-2

83. Salati M, Migliorelli L, Moccia S, et al.: A machine learning approach for postoperative outcome prediction:
surgical data science application in a thoracic surgery setting. World J Surg. 2021, 45:1585-94.
10.1007/s00268-020-05948-7

84. Farrokhi F, Buchlak QD, Sikora M, et al.: Investigating risk factors and predicting complications in deep
brain stimulation surgery with machine learning algorithms. World Neurosurg. 2020, 134:e325-38.
10.1016/j.wneu.2019.10.063

85. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, et al.: MySurgeryRisk: development and validation of a machine-
learning risk algorithm for major complications and death after surgery. Ann Surg. 2019, 269:652-62.

2024 Dixon et al. Cureus 16(5): e59954. DOI 10.7759/cureus.59954 15 of 16

https://dx.doi.org/10.3389/fimmu.2022.828560
https://dx.doi.org/10.1007/s00259-019-04625-9
https://dx.doi.org/10.1007/s00259-019-04625-9
https://dx.doi.org/10.1136/jitc-2020-000550
https://dx.doi.org/10.1136/jitc-2020-000550
https://dx.doi.org/10.1001/jamaoncol.2020.5582
https://dx.doi.org/10.1001/jamaoncol.2020.5582
https://dx.doi.org/10.3390/ijms20112674
https://dx.doi.org/10.3390/ijms20112674
https://dx.doi.org/10.1136/jitc-2020-001343
https://dx.doi.org/10.1136/jitc-2020-001343
https://dx.doi.org/10.1136/jitc-2022-005292
https://dx.doi.org/10.1136/jitc-2022-005292
https://dx.doi.org/10.1158/1078-0432.CCR-19-1744
https://dx.doi.org/10.1158/1078-0432.CCR-19-1744
https://dx.doi.org/10.3389/fcell.2021.795600
https://dx.doi.org/10.3389/fcell.2021.795600
https://dx.doi.org/10.1016/j.chembiol.2018.11.011
https://dx.doi.org/10.1016/j.chembiol.2018.11.011
https://dx.doi.org/10.1093/jnci/djab194
https://dx.doi.org/10.1093/jnci/djab194
https://dx.doi.org/10.3389/fonc.2022.856575
https://dx.doi.org/10.3389/fonc.2022.856575
https://dx.doi.org/10.3389/fimmu.2022.882452
https://dx.doi.org/10.3389/fimmu.2022.882452
https://dx.doi.org/10.3390/cancers13174334
https://dx.doi.org/10.3390/cancers13174334
https://dx.doi.org/10.3389/fimmu.2022.1076883
https://dx.doi.org/10.3389/fimmu.2022.1076883
https://dx.doi.org/10.1016/j.jtho.2019.05.021
https://dx.doi.org/10.1016/j.jtho.2019.05.021
https://dx.doi.org/10.1136/jitc-2021-003566
https://dx.doi.org/10.1136/jitc-2021-003566
https://dx.doi.org/10.1021/acs.chemrev.2c00110
https://dx.doi.org/10.1021/acs.chemrev.2c00110
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868825/
https://dx.doi.org/10.2217/epi-2017-0140
https://dx.doi.org/10.2217/epi-2017-0140
https://dx.doi.org/10.1111/1759-7714.13078
https://dx.doi.org/10.1111/1759-7714.13078
https://dx.doi.org/10.1038/s41568-018-0007-6
https://dx.doi.org/10.1038/s41568-018-0007-6
https://dx.doi.org/10.3390/ijms21082856
https://dx.doi.org/10.3390/ijms21082856
https://dx.doi.org/10.3389/fmolb.2022.834593
https://dx.doi.org/10.3389/fmolb.2022.834593
https://dx.doi.org/10.1007/s11605-019-04338-2
https://dx.doi.org/10.1007/s11605-019-04338-2
https://dx.doi.org/10.1007/s00268-020-05948-7
https://dx.doi.org/10.1007/s00268-020-05948-7
https://dx.doi.org/10.1016/j.wneu.2019.10.063
https://dx.doi.org/10.1016/j.wneu.2019.10.063
https://dx.doi.org/10.1097/SLA.0000000000002706


10.1097/SLA.0000000000002706
86. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HM: Surgical risk is not linear: derivation and validation of a

novel, user-friendly, and machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk
(POTTER) calculator. Ann Surg. 2018, 268:574-83. 10.1097/SLA.0000000000002956

87. Hirsch DD: From individual control to social protection: new paradigms for privacy law in the age of
predictive analytics. Md L Rev. 2020, 79:439.

88. Nong P: Predictive technologies in healthcare: public perspectives and health system governance in the
context of structural inequity. University of Michigan Library, Ann Arbor, MI; 2023. 10.7302/8304

89. Sehanobis T: Artificial intelligence, big data and health privacy: need for democratization and regulation in
health data processing system. Indian J Law Justice. 2022, 13:255-82.

90. Obasa AE: The ethics of artificial intelligence in healthcare settings . Stellenbosch University, Stellenbosch,
South Africa; 2023.

2024 Dixon et al. Cureus 16(5): e59954. DOI 10.7759/cureus.59954 16 of 16

https://dx.doi.org/10.1097/SLA.0000000000002706
https://dx.doi.org/10.1097/SLA.0000000000002956
https://dx.doi.org/10.1097/SLA.0000000000002956
http://digitalcommons.law.umaryland.edu/mlr/vol79/iss2/4
https://dx.doi.org/10.7302/8304
https://dx.doi.org/10.7302/8304
http://ir.nbu.ac.in/handle/123456789/4608
https://scholar.sun.ac.za/handle/10019.1/128904

	Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review
	Abstract
	Introduction And Background
	Review
	Response prediction by AI
	FIGURE 1: Outcomes of selected and predicted treatment using AI

	Artificial intelligence techniques in disease diagnosis and prediction
	FIGURE 2: XAI helps stakeholders to understand the model's decision

	Machine learning for image-based illness diagnosis
	FIGURE 3: Different types of machine learning algorithms

	Deep learning for image-based illness detection
	TABLE 1: AI predictive analytics in patient outcomes

	Artificial intelligence in recovery rate prediction and predicting complications
	Current immunotherapy outcome prediction methods
	FIGURE 4: (A) Lung cancer immunotherapy prediction methods. The utilization of AI-based technologies in lung cancer immunotherapy prediction involves the analysis of various data types such as radiomics images, pathology images, genetic information, epigenetic information, microbiology data, hematology values, proteomics data, and multi-omics data. By leveraging diverse datasets, AI can effectively predict the benefits of immunotherapy in lung cancer patients. (B) The prediction of adverse effects on lung cancer immunotherapy

	Extra resources
	Surgery applications
	Risk calculators
	Ethical considerations and challenges

	Conclusions
	Additional Information
	Author Contributions
	Disclosures

	References


