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SOD3 suppresses early cellular immune
responses to parasite infection

Qilong Li 1,2,7, Kunying Lv 1,2,7, Ning Jiang 1,2,7, Tong Liu1,2, Nan Hou 3,
Liying Yu 1,2, Yixin Yang 1,2, Anni Feng 1,2, Yiwei Zhang 1,2, Ziwei Su 1,2,
Xiaoyu Sang 1,2, Ying Feng 1,2, Ran Chen 1,2, Wenyue Xu 4, Liwang Cui 5,
Yaming Cao6 & Qijun Chen 1,2

Host immune responses are tightly controlled by various immune factors
during infection, and protozoan parasites alsomanipulate the immune system
to evade surveillance, leading to an evolutionary arms race in host‒pathogen
interactions; however, the underlying mechanisms are not fully understood.
We observed that the level of superoxide dismutase 3 (SOD3) was significantly
elevated in both Plasmodium falciparum malaria patients and mice infected
with four parasite species. SOD3-deficient mice had a substantially longer
survival time and lower parasitemia than control mice after infection, whereas
SOD3-overexpressing mice were much more vulnerable to parasite infection.
We revealed that SOD3, secreted from activated neutrophils, bound to T cells,
suppressed the interleukin-2 expression and concomitant interferon-gamma
responses crucial for parasite clearance. Overall, our findings expose active
fronts in the arms race between the parasites and host immune system and
provide insights into the roles of SOD3 in shaping host innate immune
responses to parasite infection.

Host immune responses are tightly controlled by various immune
factors during infection1,2. Pathogens are known to hijack host factors3

or express an array of virulence factors4–7 that aim to overcome host
immune defenses to achieve successful proliferation and dissemina-
tion. Host genetic and immune factors (HIFs) are the two major types
of factors that are exploited by pathogens during infection8,9. The
reactive oxygen species (ROS) are one types of the innate responses
upon pathogen invasion10. However, ROS is not only detrimental to the
invaded pathogens, but also harmful to the host cells. The host cells
rely on the superoxide dismutases (SODs, including SOD1, SOD2 and
SOD3) to scavenge the extra amount of ROS and the maintenance of

the homeostasis. It is known that Plasmodia increased a substantial
amount of SOD activity from host in the infection11. However, a fun-
damental challenge in studying the HIF-pathogen interactions is to
understand the host derive-redox signaling that facilitates pathogen
evasion of host immune responses. Superoxide dismutase 3 (SOD3) is
the only SOD-like enzyme secreted from the host cells to the extra-
cellular space that scavenges substantial amounts of ROS to protect
the host from oxidative stress during infection12,13. Additionally, SOD1,
primarily functions in the cytoplasm, has been reported to serve as an
indicator of disease severity in individuals with various clinical mani-
festations of vivax malaria14. SOD2, mainly localized in the
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mitochondrial lumen, has been found to be notably upregulated in
pre-asymptomatic malaria patients from Cameroon15. Although the
roles of SOD1 and SOD2 in malaria are well characterized14,15, almost
nothing is known about the contribution of SOD3 to host immune
responses beyond ROS scavenging.

Here, we demonstrated that SOD3mainly secreted by neutrophils
could directly bind T cells and suppress its IL-2 production, and con-
sequently reduced the recruitment of IFN-γ producing T cells in the
responses to invading parasites. Our results revealed an essential role
of SOD3 in responses to parasite invasion and targeting SOD3 may be
an alternative way to enhance host protective responses and reduce
disease severity in acute infection.

Results
The expression of SOD3 was elevated in malaria patients and
protozoa infected mice
We compared the expression of SOD3 in mice infected with lethal
Plasmodium y. yoelii YM at different time points post-infection. Con-
trast to that in uninfected mice, the expression of SOD3 in the sple-
nocytes was significantly elevated when parasites were detectable in
the blood (Fig. 1a and Supplementary Fig. S1a, b). Upregulation of
serum SOD3 in WTmice after infection with P. berghei ANKA (another

rodent malaria parasite that is also lethal to the host, Fig. 1b) and P. y.
yoelii YM (Supplementary Fig. S1c) was also observed, and that eleva-
tion of serum SOD3 was associated with increased parasitemia. We
further quantitatively analyzed SOD3 in the sera of patients infected
with P. falciparum vs. that of healthy donors. The patients with a first
malaria episode had significantly higher levels of SOD3 than either
individual with chronic malaria or healthy donors from nonmalaria
epidemic areas (Fig. 1c).

To determine whether elevated SOD3 expression is a general
phenomenon associated with protozoan infection. We extended the
study by measuring the SOD3 levels in mice infected with either Try-
panosoma brucei brucei Lister 427 or Toxoplasma gondii RH, and it
turned out to be the same as that observed inmice infected by the two
Plasmodium species (Supplementary Fig. S1d, e). Therefore, we hypo-
thesize that SOD3 is essentially associated with host vulnerability to
protozoan infection.

To test this hypothesis, we used SOD3 knockout (SOD3−/−)mice, in
which SOD3 was not detectable in the sera by LC‒MS/MS analysis
(Supplementary Fig. S1f, g). We further compared the vulnerability of
the SOD3−/− mice and their WT littermates to infection of lethal Plas-
modium species. To our surprise, the SOD3−/− mice showed significant
resistance, with substantially extended survival time, to the infection
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Fig. 1 | SOD3 is a host factor associated with host vulnerability to parasite
infection. a Progressively increased expression of SOD3 was observed during P. y.
yoelii YM infection. The mouse illustration was created with http://BioRender.com
(publishing license: CZ26UIGFUP). b Serum SOD3 expression was elevated in mice
after infection with P. berghei ANKA, with peaks observed after 5 days and 9 days.
Five biological replicates were included in the analysis; healthy controls were three
biological replicates. Statistical significance tested by one-way ANOVA, and multi-
ple comparisons to each day were corrected using Dunnet’s method. WT mice of
average survival timewas 9 days from the time of challenge. c SOD3 in the sera of P.
falciparum–infected patients from the China-Myanmar border (endemic areas,
n = 20), other endemic areas (cases were travel-related, n = 24) and healthy donors
(endemic and nonendemic areas, n = 41) as measured by enzyme-linked immuno-
sorbent assay (ELISA). SOD3 levels were significantly elevated in malaria patients
from all areas compared with corresponding healthy donors. Two-tailed student’s t
test was used to test for significant differences between two groups.d SOD3−/−mice

(n = 20) showed significant extended survival time than theWT littermates (n = 20)
after P. y. yoelii YM infection. Survived mice in SOD3−/− group were humanely
euthanized accordingly to the Institutional Animal Care and Use Committee-
approved criteria. e Knockout of SOD3 extended the survival of P. y. yoelii 17XL-
infected mice, n = 10. The survived mice in SOD3−/− group were humanely eutha-
nized accordingly to approved criteria. f Knockout of SOD3 decreased parasitemia
in both seven and eight days after T. b. brucei infection. Two-tailed student’s t test
was used to test for significant differences between two groups. g Knockout of
SOD3extended the survival ofT. gondii-infectedmice. The survivedmice in SOD3−/−

group were humanely euthanized accordingly to approved criteria. Kaplan‒Meier
survival curves were calculatedusing the survival time for eachmouse in all groups,
and significance was determined by the log-rank test. For d-f, n indicates mouse
numbers in graphs. Histograms present themean ± SD. Source data are provided as
a Source Data file.

Article https://doi.org/10.1038/s41467-024-49348-0

Nature Communications |         (2024) 15:4913 2

http://BioRender.com


of either P. y. yoelii YM strain or P. y. yoelii 17XL strain, which are both
lethal to mice (Fig. 1d, e). To further determine whether SOD3 is gen-
erally associatedwith host vulnerability to protozoan infection, SOD3−/−

and WT mice were respectively infected with two other protozoan
parasites, including Trypanosoma brucei brucei Lister 427 and Tox-
oplasma gondii (RH strain). SOD3−/− mice also showed significant
resistance to the two parasite species compared to the WT mice
(Fig. 1f, g). Therefore, these results suggested that SOD3 is essentially
associated with host vulnerability to protozoa infection.

The expression of SOD3 is associated with experimental cere-
bral malaria (ECM)
Cerebral malaria is a severe complication which is caused by the
sequestration on P. falciparum-infected erythrocytes in the cerebral
microvasculature16. Cerebral pathogenesis of P. falciparummalariawas
experimentally modeled with P. berghei ANKA-infected C57BL/6
mice17. Here, we found that the expression of SOD3 was higher in the
brains of P. bergheiANKA-infectedmice than that in the uninfectedWT
mice as illustrated in the immunohistochemistry analysis (Supple-
mentary Fig. S2a). We next investigated whether SOD3 expression is
associated with P. berghei ANKA-induced ECM. We used a transgenic
luciferase-expressing line, P. berghei ANKA (PbA luc), to infect SOD3−/−,
SOD3-overexpressing (SOD3o/e, isogenic toC57BL/6) andWTmice, and
quantified the luminescence via in vivo luminescence imaging. More
severe ECM were observed in the SOD3o/e mice (Fig. 2a). The seques-
tration of infected red blood cells (iRBCs) in the brain of SOD3o/e mice

was approximately 1.5-fold more compared to that of WT mice
(Fig. 2b). In contrast, the amount of sequestered iRBCs in the brain of
SOD3−/− mice was significantly lower than that in WT mice (Fig. 2a, b),
and the SOD3−/− mice survived substantially longed after P. berghei
ANKA infection (Fig. 2c), while both SOD3o/e and WT mice succumbed
to death due to ECM at the same time after infection (Fig. 2c, d). Fur-
ther, the malaria-associated pathologies in the SOD3−/− mice was alle-
viated compared toWTmice (Supplementary Fig. S2b, c). Importantly,
intravenously administration of recombinant SOD3 in SOD3−/− mice
reversed their resistance to P. berghei ANKA infection (Fig. 2e). Fur-
thermore, P. berghei ANKA isolated from SOD3−/− mice and WT mice
displayed similar infectivity in naïve mice, suggesting that SOD3 had
no direct effect on the parasites (Supplementary Fig. S3d and e). All
data indicate that SOD3 is an important factor associated with host
vulnerability to protozoa infection.

SOD3 suppresses the function of T cells in parasite infection
To investigate whether SOD3 can directly bind and regulate immune
cells, we conducted cell binding experiments using the recombinant
SOD3 protein (rSOD3). Result showed that the rSOD3 directly bound
to T cells and NK cells (Fig. 3a). Early burst of IFN-γ production is
associated with protection to P. berghei ANKA infection. Intriguingly, a
significant increase of IFN-γ in early stage was detected in the SOD3−/−

mice, indicating a negative correlation between SOD3 and IFN-γ pro-
duction, which was even more significant during early infection
(Fig. 3b). The results of immunohistochemical staining of spleen tissue
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using IFN-γ antibody confirmed the aforementioned findings (Fig. 3c).
It is well known that CD8+T cells and NK cells aremajor sources of IFN-
γ, which play a pivotal role in the control of invadingpathogens18. Here,
the IFN-γ-expressing CD8+T cell subsets were also expanded following
P. berghei (Fig. 3d) or P. y. yoelii (Fig. 3e) infection in SOD3−/− mice,
suggesting that SOD3 may inhibit the activity of T cells and depletion
of SOD3would result in expansion of these IFN-γ-expressing T, NK and
NKT cell subsets (Supplementary Fig. S3a–e). As all three major types
of IFN-γ-producing T, NK and NKT subpopulations express IFN-γ at
steady state (Supplementary Fig. S3f–j), which indicated that SOD3
may be an add-on factor in modulation of IFN-γ expression. Moreover,
IFN-γ depletion led to a significant reduction in survival time of 80%
SOD3−/− mice after infection, confirming that IFN-γ plays a protective
role in SOD3−/− mice (Fig. 3f).

To investigate whether SOD3 can directly inhibit the expansion of
IFN-γ-producing T cell subpopulations, we performed T-cell activation
and differentiation assay in vitro. rSOD3 could directly suppress T cell
activation (Fig. 3g) and inhibited naive T cell differentiation into
effectorT cells (Fig. 3h, i). Importantly, rSOD3 significantly reduced the

proportion of IFN-γ-producing T cells in vitro, suggesting that SOD3
directly inhibited the expansion of IFN-γ-producing T cells (Fig. 3j).

To further elucidate the molecular mechanism of T cell inhibition
by SOD3, we prescreened and compared the expression of the sixteen
proteins that regulate IFN-γ signaling in splenic cells in SOD3−/− andWT
mice (Supplementary Fig. S4a). Elevated expression of nuclear factor
kappa B (NF-κB), the signal transducer and activator of transcription
5 A (STAT5a) and c-Jun N-terminal Kinase (JNK) was identified in spleen
from SOD3−/− mice compare to WT mice after infection, whereas
reduction of NAD-dependent deacetylase sirtuin-1 (SIRT1) and
mitogen-activated protein (MAP) kinases/P38 expression was
observed in SOD3−/− mice compare to WTmice. The expression of five
toll-like receptors, STAT5b and protein kinase B (PKB, or Akt) was
relatively stable in the two experimental groups (Supplementary
Fig. S5a). Importantly, an increased expression of JNK was observed in
purified T cells in SOD3−/− mice after infection (Fig. 3k, l), and JNK has
been known to control activation of NF-kb and STAT5a, we thus
focusedon its involvement in the regulationof IFN-γ expressingT cells.
Inhibition JNK activity with a specific inhibitor SP600125 impaired
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T cells was significantly lower in WT mice than that in the SOD3−/− mice. Repre-
sentative immunoblot using antibodies against β-actin and JNK1/2/3 (n = 3).
m Treatment with SP600125, a selective JNK inhibitor, led to a decrease in the
proportion of IFN-γ-expressing CD8+ T cells (n = 3). t-test two-sided was used to
compare change in (b, d, e, g–j, l, m). Histograms present the mean ± SD. Source
data are provided as a Source Data file.
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proliferation of IFN-γ-producing T cells (Fig. 3m). Taking together,
SOD3 was found to inhibit the expression of JNK in T cells and JNK
activation is crucial for IFN-γ-mediated T-cell toxicity.

SOD3 suppressed IL-2 expression by T cells
IL-2 is a major T cell growth factor which promotes the expansion of
IFN-γ expressing T cells19. Here, we observed a time-dependent
increase in the serum IL-2 in SOD3−/− mice after parasite infection,
but not IL-10, TNF-α, compared to that of WT mice (Fig. 4a, Supple-
mentary Fig. S5a, b). Further, higher percentages of IL-2+ CD4+ T cells
and IL-2+ CD8+ T cells in SOD3−/− mice than in WT mice persisted until
late infection (Fig. 4b–e). Moreover, an increased proportion of IL-2-
producing CD4+ T cells and CD8+ T cells was also observed in SOD3−/−

mice after P. y. yoelii infection (Fig. 4f–h). Importantly, IL-2 depletion
by infusion of IL-2-specific antibodies in vivo significantly increases
susceptibility to Plasmodium infection (Fig. 4i, j). And intravenous
injection of recombinant IL-2 rescued resistance to infection by sig-
nificantly reduced parasitemia inWTmice (Fig. 4k), confirming that IL-
2 plays a protective role in resistance to Plasmodium infection in
SOD3−/− mice.

As SOD3 binds CD4+ T cells and CD8+ T cells (Fig. 3a), we
therefore tested whether SOD3 inhibits T cells to generate IL-2.
Addition of SOD3 into the splenic lymphocytes significantly reduced
the proportion of IL-2-producing CD4+ T cells and CD8+ T cells,
suggesting that SOD3 can directly regulate the expansion of IL-2-
expressing T cells (Fig. 5a, b). To investigate whether the inhibition of
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IL-2-expressing T cells by SOD3 is causally related to JNK activation,
we assessed the proportion of IL-2-producing T cells under JNK-
deficient conditions. Inhibition of JNK activity led to the reduction of
IL-2-producing CD4+ and CD8+ T cells (Fig. 5c, d). These data indicate
that SOD3 can directly suppress the expansion of IL-2-producing
CD4+ and CD8+ T cells, which may require JNK activation. SOD3
deficiency significantly increased the proportion of IFN-γ expressing
CD122+ (IL-2 receptor) T cells without altering the proportion of
CD122+ T cells (Fig. 5e, f). Furthermore, neutralization with IL-2-
specific antibody resulted in a striking reduction of IFN-γ levels in the
sera (Fig. 5g). Overall, our data suggest that SOD3 suppresses T cells
by inhibition of IL-2 autocrine pathways, thereby benefits parasites in
evading host immune surveillance.

Neutrophils are the main cellular sources of SOD3
To identify the source of splenic SOD3, we analyzed available single-
cell transcriptomedata (MouseCell Atlas, https://bis.zju.edu.cn/MCA/)
from healthy mice and the data indicated that SOD3 was primarily
expressed in splenic macrophages and neutrophils. Correspondingly,
we found, in WT mice, the proportions of CD11bhi macrophages
(Fig. 6a) and neutrophils (Fig. 6b) after infection doubled compared to
uninfected controls, while other subpopulations decreased (Fig. 6c, d).
We thus sorted splenic macrophages and neutrophils at different time
points post-infection using fluorescence-activated cell sorting and
examined the expression of SOD3 in these cells. The results of
RT–qPCR, immunofluorescence and Western blotting illustrated that
only neutrophils showed a significant increase in SOD3 mRNA tran-
scription (Fig. 6e, f) and protein expression after infection (Fig. 6g, h).
In agreement with the above results, the adoptive transfer of neu-
trophils, but not macrophages, from WT mice into SOD3−/− mice sig-
nificantly reduced the survival time of SOD3−/− mice after parasite
infection (Fig. 6i, j). These data strongly suggest that the parasites
evaded immune surveillance by inducing SOD3 secretion from neu-
trophils, which suppress IL-2 and IFN-γ-mediated host immune
responses to protozoa infection.

Discussion
Pathogen infection triggers oxidative stress by generating an imbal-
ance between the oxidant and antioxidant systems. SOD3, a member
of the superoxide dismutase family, has been primarily recognized as
an enzyme for scavenging ROS in extracellular spaces. In this study, we
revealed a function of SOD3, which was upregulated during protozoan
infection. However, the overexpression of SOD3 was surprisingly
found to dysregulate the host innate immune response to invading
parasites. SOD3, primarily expressed by neutrophils, can directly bind
and suppress the expansion of IL-2-expressing T cells, concomitantly
reducing the expansion of IFN-γ-expressing T cells, possibly by inhi-
biting the JNK pathway. This eventually results in significantly wea-
kened host immune resistance to parasite infection (Figs. 1–6,
Supplementary Fig. S6). Overall, our results revealed an unexpected
link between invading parasites and host neutrophils, highlighting that
SOD3 could be a target for mitigation of inflammation and hyperten-
sion in the context of infectious diseases.

An essential pathophysiological role of SOD3 has been noticed in
inflammatory diseases and autoimmune disorders20–22. However, there
have been no systemic investigations on the relevance between SOD3
and parasite infection. Here, we systematically scrutinized the invol-
vement of SOD3 in the suppression of early innate immune reaction
after parasite infection and deciphered the underlying mechanism.
The data suggest that SOD3 acted as an immune dysregulatory factor
in the infections, which is supported by the fact that SOD3−/−micewere
significantly more resistant than their WT littermates to infection with
either lethal or nonlethal parasite species (Figs. 1 and 2). IL-2 derived
from CD4+ T cell seemed to play a critical role in the SOD3−/− mice, as
neutralization of IL-2 with specific antibodies significantly reduced the
survival time of the mice compared with the controls after parasite
infection. Furthermore, the fact that the preferential binding of SOD3
to T cells and inhibition of the expansion of IL-2 expressing or IFN-γ-
producing T cells and downstream IFN-γ production also strongly
indicated SOD3 played an important regulation in immune responses
to protozoa infection.
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Studies have strongly suggested that an early burst of IFN-γ pro-
duction is associated with protection to P. falciparum and P. berghei
ANKA infection23,24. Parasite-related HIFs have been reported to facil-
itate immune evasion by inhibiting IFN-γ-mediated pathogen
clearance3,25–28. Here, we showed that IFN-γ responses in SOD3−/− mice
were augmented and neutralization of IFN-γ in SOD3−/− mice at early
infection resulted in reduced survival time in 80% of SOD3−/− mice.
Moreover, neutralization of IL-2 at early time also led to decreased IFN-
γ production in SOD3−/− mice in response to parasite infection. Thus,
the protective effect of SOD3 deficiency is mediated by early produc-
tion of IFN-γ. The observations in this study demonstrate important
differences in baseline immunity between SOD3 null mice and theirWT
control, suggesting that SOD3 efficiently targets IFN-γ and IL-2
producing T cells. These data support the conclusion that SOD3 is a
pivotal immune factor in modulation of host innate immune responses
to parasite infection by controlling the production of IL-2 and IFN-γ.

While we believe that these results presented in this study is an
advance in understanding the interaction between the invade proto-
zoan parasites and host immune system, the exact mechanism
underlies the possible regulation of SOD3 on the T cells remains fur-
ther investigation. The reason is that, even though the active SOD3
protein showed direct inhibition on T cell function in both in vitro and

in vivo conditions, other functions of SOD3 may mediate the effects
independent of its enzymatic activity and affinity to the immune cells.
Further, a significant increase in JNK expression was indeed observed
in T cells sorted from SOD3−/− mice after infection, there may be an
unknown link between SOD3 and the kinase activity of the JNK protein.

Overall, this study expands our understandings of how
neutrophil-derived SOD3 can modulate immune responses and argue
for the importance in keeping the balance between the antioxidant
activities and the potent immune responses to invading pathogens.

Methods
Ethics
The animal experiments were conducted according to the animal
husbandry guidelines of Shenyang Agricultural University (permit no.
SYXK<Liao>2021-0010). Human sera samples were obtained under
approved protocols of the Ethical Committee of the Chinese Academy
of Medical Sciences (approval no. IPB-2016-2) and Institutional Review
Board (no. PRAMS0034319) of the Pennsylvania State University.

Animals
Female and male C57BL/6 mice were obtained from Liaoning Chang-
sheng Biological Technology Company (Liaoning, China). C57BL/6-
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Fig. 6 | Neutrophils are the main cell sources of SOD3 in response to parasite
infection. a–d Statistical analysis of CD11bhiF4/80+ monocyte-derived macro-
phages (a), neutrophils (b), monocytes (c), and CD11blowF4/80+ macrophages (d)
fromWTmice at different time points after P. berghei ANKA infection. n = 7-8 (a-d)
Multiple comparisons test corrected for Tukey was used to test for significant
differences between uninfected and infected groups. e, f Transcription of the gene
coding for SOD3 was determined by RT–qPCR in neutrophils (e) andmacrophages
(f) after parasite infection (n = 3). An ~10-fold increase in gene transcription was
observed in neutrophils but not in macrophages. Statistical significance tested by
one-way ANOVA, and multiple comparisons to the uninfected control were cor-
rected using Dunnet’s method. Three biological replicates were included in the
experiment. g Representative high-magnification images of spleen sections of WT
mice analyzed with double immunofluorescence for SOD3 (red) and myeloperox-
idase (MPO, green). Significant augment of SOD3 expression in the splenic tissue of
infected mice was observed. Arrow heads indicate representative cells with strong

colocalization. Three biological replicates were included in the experiment. Scale
bar =20 µm. h Comparable Western blotting analysis of SOD3 expression in neu-
trophils sorted from uninfected or infected mice. SOD3 expression in neutrophils
of infected mice was significantly more than that from uninfected mice. Three
biological replicates were included in the experiment. Each experiment was repe-
ated three times independentlywith similar results. Theneutrophils illustrationwas
created with http://BioRender.com (publishing license: TB26UIITUU). i Schematic
representation of the procedure for adoptive transfer. The illustration was created
with http://BioRender.com (publishing license: NC26UIHFCR). j Adoptive transfer
of WT neutrophils into SOD3−/− mice resulted in early death of SOD3−/− mice after P.
berghei ANKA infection. Five biological replicates were included in the analysis.
Kaplan‒Meier survival curves were calculated using the survival time for each
mouse in all groups, and significance was determined by the log-rank test. Histo-
grams present the mean ± SD. Source data are provided as a Source Data file.
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Sod3tm1cyagen (SOD3−/−) mouse strains (Serial Number: KOCMP-
22050-Sod3) were purchased from Cyagen Biosciences (Suzhou,
China). Miceweremaintained under the following housing conditions:
ambient temperature 22 °C, humidity control 50%, 12 h light/12 h dark
cycle. Littermates used in the tests were of the same sex and similar
bodyweights as the SOD3−/− mice. SOD3 transgenicmice (Global SOD3
overexpression) were constructed with the help from GRENSTER Co.,
Ltd. (Liaoning, China) and achieved by breeding a CAG-SOD3-IRES-
ZsGreen1 mouse to transgenic mice, which globally overexpressed
SOD3, with an average protein expression level ~1.4-fold higher than
normal in serum. In this study, wehave used humane endpoints for the
infected animals. To determine when the animals should be eutha-
nized, we used the specific signs such as weight loss, inability to rise or
ambulate, or dehydration. In Kaplan-Meier survival analysis, mice that
are euthanized in humane endpoints are considered “censored” data
to distinguish them from mice where death actually occurred.

Sera from P. falciparum malaria patients and healthy donors
All procedures performed on human samples were carried out in
accordance with the tenets of the World Medical Association’s
Declaration of Helsinki. A total of 20 patients (tenmale and ten female)
suffering from falciparum malaria were recruited from a malaria-
endemic area, all patients provided with written informed consent as
previously described28. Another serum samples were collected from P.
falciparum–infected patients (24male)29 with a recent history of travel
to malaria-endemic African countries, and P. falciparum infection was
clinically confirmed by a microscopy. The inclusion criteria were no
history of P. falciparum infection. Healthy control sera were collected
from healthy volunteers with informed consent. The information of all
individuals involved was anonymized. Written consent for the pub-
lication of this study was obtained from all individuals.

Experimental malaria models
Plasmodium species lethal to rodents, including P. y. yoelii YM, P. y.
yoelii 17XL and P. berghei ANKA, were donated by Dr. Yaming Cao and
propagated by passage in C57BL/6 male mice of 7–8weeks old; a
transgenic P. berghei ANKA parasite strain expressing luciferase under
the control of the ef1a promoter (PbA luc)28 was provided by Dr.
Wenyue Xu (Army Medical University, China) and propagated by
passage in mice.

Preliminary ECM experiments in mice were performed to opti-
mise the infection dose. Of the four doses tested (102, 103, 104, 105

iRBCs), the minimum infection dose of 103P. berghei ANKA parasites
was collected and injected intraperitoneally into 7–8-week-old male
C57BL/6 naïve mice to initiate ECM experiments, minimizing pain and
distress to the mice. Humane endpoints were defined as serious neu-
rological signs or immobility. Parasitemia was determined by exam-
ination of Giemsa-stained thin blood smears by lightmicroscopy every
other day after infection.

Detection of the accumulation ofmalaria parasites in themouse
brains by in vivo imaging
Upon P. berghei–luc infection, the accumulation of parasites in the
brain and in the body was assessed in SOD3o/e mice as well as SOD3−/−

mice and WT mice with an AniView600 multimode in vivo animal
imaging system (Guangzhou Biolight Biotechnology Co., Ltd., China)
after intraperitoneal injection of D-Luciferin (High Purity, Biyuntian,
China, Cat# ST198). At least three mice were used in each group.

T. brucei cultivation and infection
The T. brucei Lister 427 strain30 was donated by Dr. Zhaorong Lun (Sun
Yat-sen University, China) and maintained in our laboratory. The
bloodstream form of T. brucei was proliferated in Hirumi’s modified
Iscove’s-9 medium and propagated by passage in mice. SOD3−/− mice
and WT mice were inoculated intraperitoneally with 50T. brucei

parasites. Parasitemia was determined by evaluating tail blood by light
microscopy with a hemocytometer each day after infection.

T. gondii RH cultivation and infection
The T. gondiiRH strain wasmaintained in our laboratory. The parasites
were expanded in Vero cells and propagated by passage in mice. T.
gondii RH strain tachyzoites were grown under the indicated condi-
tions and collected by filtration as previously reported31. SOD3−/− mice
andWTmicewere inoculated intraperitoneallywith 1 × 104 tachyzoites.

In vivo IFN-γ and IL-2 depletion
For in vivo depletion of IFN-γ and IL-2, SOD3−/− mice were injected
through the tail vein with anti–IFN-γ monoclonal antibody (mAb)
(CloneR4-6A2, SelleckChemicals, USA) and anti–IL-2mAb (Clone JES6-
1A12, Leinco Technologies, St. Louis, MO, every other day). SOD3−/−

mice in the control group were injected intraperitoneally with the
corresponding isotype control IgG. Parasitemia was determined by
examination of Giemsa-stained thin blood smears by light microscopy
every other day after infection. The parasitemia was quitted after the
total death of the animals in the control group.

SOD3 rescue experiment
For rescue experiments, SOD3−/− mice were injected with recombinant
mouse active SOD3 protein every other day from day 0–10 after
P. berghei infection (Cat# APA117Mu01, Cloud clone crop, China, pur-
ity> 95%). The injected concentrations of SOD3 corresponded to that
of SOD3 inWTmice after infection. SOD3 has a long half-life of ~ 20 h,
and the endotoxin level was determined by the limulus amoebocyte
lysate method. The specific activity of recombinant mouse SOD3 is
273.8 U/mg. SOD3−/− mice in the control groupwere administered with
the same volume of saline buffer via tail vein injection.

Adoptive transfer of neutrophils and macrophages from WT
mice to SOD3−/− mice
Splenic neutrophils and macrophages were positively selected as
before32. The purity of sorted cells, as verified by FACS analysis, was
more than 95%, which separated intact live cells from dead cells and
enucleated cellular debris. The proportion of dead cells was deter-
mined by using a hemocytometer to count the cells stained with trypan
blue and was lower than 5%. Fifteen SOD3−/− mice were randomly allo-
cated to three groups with five animals in each group. In the SOD3−/−

+WT macrophage group, SOD3−/− mice (recipients) received 1.5 × 106

macrophages fromWTmice i.v. (SOD3+macrophages→SOD3−/− host). In
the SOD3−/− mice + WT neutrophils group, SOD3−/− mice (recipients)
received only 1.5 × 106 neutrophils from WT mice i.v. (SOD3+

neutrophils→SOD3−/− host). SOD3−/− mice and WT mice in the control
group received the same volume of saline buffer. Meanwhile,mice in all
groups were inoculated intraperitoneally with iRBCs.

Immunofluorescence and immunohistochemical analysis of
SOD3 expression in splenic and brain tissues of WT and
SOD3−/− mice
For immunofluorescence analysis, mice were sacrificed at day seven
after P. y. yoelii YM infection, and the spleens were fixed in 4% paraf-
ormaldehyde, embedded in paraffin, and sectioned. In brief, spleen
sections were blocked with 10% FBS in PBS, incubated with anti-SOD3
antibodies (Affinity Biosciences, China, Cat# DF7753) and anti-
myeloperoxidase primary antibodies (MPO, Abcam, UK, Cat#
ab208670) in 5% FBS in PBS for 1 h at 37 °C, washed five timeswith PBS,
and incubated with the corresponding secondary antibodies accord-
ing to the IF staining procedure. The same procedure was performed
to stain healthy spleen sections.

For immunohistochemical analysis, P. berghei ANKA-infected
mice were sacrificed and the brain and spleen were fixed in 4% paraf-
ormaldehyde, embedded in paraffin, and sectioned. Brain sections
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were blocked with 10% FBS in PBS, incubated with anti-SOD3 anti-
bodies (Affinity Biosciences, Cat# DF7753, RRID: AB2841219), incu-
batedwith a corresponding secondary antibody, and then stainedwith
3,3-diaminobenzidine. Spleen sections were incubated with a rabbit
anti-IFN gamma antibody (Bioss, Beijing, China, Cat# bs-0480R). The
same procedure was performed to stain healthy brain and spleen
sections.

Detection of SOD3 in the sera of both parasite-infectedmice and
humans using enzyme-linked immunosorbent assay (ELISA)
The concentrations of SOD3 in the sera of WT mice at different time
points post-infection were detected using a mouse SOD3 ELISA kit
(CLOUD-CLONE CORP., Cat# SEA117Mu) according to the manu-
facturer’s instructions. Serum samples require about a 100-fold dilu-
tion. Three healthy mice were used as controls. Briefly, 100 µL of
different concentrations of standards and samples were added to each
well. Thewells were then coveredwith an adhesive strip and incubated
for 2 hours at 37 °C. After removing the liquid from eachwell, 100 µL of
biotin antibody (1x) was added to each well after three washes with
PBS. The wells were covered with a adhesive strip and incubated for
1 hour at 37 °C. Next, each well was aspirated and washed three times.
After washing, 100 µL of HRP-avidin (1x) was added to each well and
incubated for 1 hour at 37 °C, followed by five washes. Finally, after the
addition of TMB substrate, the optical density (OD) at 450nm was
measured. Theminimumdetectable dose of SOD3 is typically less than
1.27 ng/mL.

The concentrations of SOD3 in the sera of healthy volunteers and
P. falciparum–infected patients were detected using a Human SOD3
ELISA kit (Elabscience, Wuhan, China, Cat# E-EL-H2382) according to
the manufacturer’s instructions. Same experimental process was fol-
lowed as explained above.

LC‒MS/MS analysis of serum SOD3
Serum proteins were extracted from WT and SOD3−/− mice, and the
high-abundance proteins in the sera were removed using the Proteo-
Miner protein enrichment kit (Bio-Rad, USA), followed by enzymatic
digestion, enrichment of informative peptides, and LC‒MS/MS (Orbi-
trap Exploris 480) for separation and detection. The search para-
meters were set as follows: mass tolerance for precursor ion was 10
ppm, and mass tolerance for product ion was 0.02Da. SOD3 protein
levels were calculated using Proteome Discoverer 2.4 (Thermo). The
identified SOD3 protein contains at least 1 unique peptide.

Statistics and reproducibility
Student’s t-test was used to calculate significance between two groups
and ANOVA test was used to calculate differences for more than two
groups. All data are shown as mean values and errors bars represent
standard deviation. Each replicate was biologically independent. The
sample size and number of replicates were determined based on
previous studies.

Pearson correlation and regression analyses were used for the
correlation studies. Correlation analysis was performed using the
function “cor” of the base R package by applying Pearson’s method,
using default parameters unless otherwise specified. R (version 4.0.3)
and Graph Pad Prism (version 9) was used for all statistical analyses.
Uncropped blots are found in Supplementary Fig. 7. The gating strat-
egy is given in Supplementary Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
paper. Source data are provided with this paper.
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