
Article https://doi.org/10.1038/s41467-024-49104-4

Ultra-high-granularity detector simulation
with intra-event awaregenerative adversarial
network and self-supervised relational
reasoning

Baran Hashemi1 , Nikolai Hartmann2, Sahand Sharifzadeh3, James Kahn4,5 &
Thomas Kuhr 2

Simulating high-resolution detector responses is a computationally intensive
process that has longbeen challenging in Particle Physics. Despite the ability of
generative models to streamline it, full ultra-high-granularity detector simu-
lation still proves to be difficult as it contains correlated and fine-grained
information. To overcome these limitations, we propose Intra-Event Aware
Generative Adversarial Network (IEA-GAN). IEA-GAN presents a Transformer-
based Relational Reasoning Module that approximates an event in detector
simulation, generating contextualized high-resolution full detector responses
with a proper relational inductive bias. IEA-GAN also introduces a Self-
Supervised intra-event aware loss and Uniformity loss, significantly enhancing
sample fidelity and diversity. We demonstrate IEA-GAN’s application in gen-
erating sensor-dependent images for the ultra-high-granularity Pixel Vertex
Detector (PXD), with more than 7.5 M information channels at the Belle II
Experiment. Applications of this work span from Foundation Models for high-
granularity detector simulation, such as at the HL-LHC (High Luminosity LHC),
to simulation-based inference and fine-grained density estimation.

The Efficient and Fast Simulation1–8 campaign in particle physics
sparked the search for faster and more storage-efficient simulation
methods for collider physics experiments. Simulations play a vital role
in various downstream tasks, including optimizing detector geome-
tries, designing physics analyses, and searching for new phenomena
beyond the Standard Model (SM). Efficient detector simulation has
been revolutionized by the introduction of the Generative Adversarial
Network (GAN)9 for image data.

DeepGenerativeModels have beenwidely used in particle physics
to achieve detector simulation for the LHC2–4,8,10–15, mainly targeting
calorimeter simulation or collision event generation16–21. Previouswork
on generating high spatial resolution detector responses includes the

Prior-Embedding GAN (PE-GAN) by Hashemi et al.7, which utilizes an
end-to-end embedding of global prior information about the detector
sensors, and the work by Srebre et al.6 in which a Wasserstein GAN22

with gradient penalty23 was used as a proof of concept to generate
high-resolution images without conditioning. For mid-granularity
calorimeter simulation, the recent approaches8,12, experiment with
several GAN-like and Flow-based24 architectures with <30k simulated
channels, and3DGAN11 for high granularity calorimeter simulationwith
only 65k pixel channels. Nonetheless, these studies barely scratch the
surface of the profound challenges posed by future detector simula-
tions. Take, for instance, the impending High Granularity Calorimeter
(HGCAL) - a component of the High Luminosity Large Hadron Collider
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(HL-LHC)25 upgrade program at the Compact Muon Solenoid (CMS)
experiment26. With an estimated 6.5 million detector channels dis-
tributed across 50 layers, the HGCAL’s complexity far surpasses the
capacity of existing methods, pointing to the urgency of developing
more advanced simulation approaches.

The task of learning to generate ultra-high-resolution detector
responses has several challenges. First, in general, we are dealing with
spatially asymmetric high-frequency hitmaps. With current state-of-
the-art (SOTA) GAN setups for high-resolution image generation can-
didates, when the discriminator becomes much stronger than the
generator, the fake images are easily separated from real ones, thus
reaching a point where gradients from the discriminator vanish. This
happensmore frequentlywith asymmetric high-resolution images due
to the difficulty of generating imbalanced high-frequency details. On
the other hand, a less powerful discriminator results in a mode col-
lapse, where the generator greedily optimizes its loss function, pro-
ducing only a few modes to deceive the discriminator.

Furthermore, the detector responses in an event, a single readout
window after the collision of particles, share both statistical and
semantic similarities27 with each other. For example, the sparsity
(occupancy) of each image within a class, defined as the fraction of
pixels with a non-zero value, shows statistical similarities between
detector components (see the Supplementary Figs in supplementary
note). Moreover, as the detector response images show extreme
resemblance at the semantic and visual levels27, they can be classified
as fine-grained images. When generating fine-grained images, the
objective is to create visual objects from subordinate categories. A
similar scenario in computer vision is generating images of different
dog breeds or carmodels. The small inter-class and considerable intra-
class variation inherent to fine-grained image analysis make it a chal-
lenging problem28. The current state-of-the-art conditional GAN
models focus on class and intra-class level image similarity, in which
intra-image29, data-to-class30, and data-to-data31 relations are con-
sidered. However, in the case of detector simulation, classes become
hierarchical and fine-grained, and the discrimination between gener-
ated classes that are semantically and visually similar becomes harder.
Therefore, the aforementioned models show extensive class
confusion32,33 at the inter-class level. In addition, since the information
in an event comes from a single readout window of the detector, the
processes happening in this window affect all sensors simultaneously,
leading to a correlation among them (see “Results” section). In this
paper, we demonstrate how this fine-grain intra-event correlation
plays a pivotal role in the downstream Physics analysis.

To overcome all these challenges with ultra-high-resolution
detector simulation, we introduce the Intra-Event Aware GAN (IEA-
GAN), a novel deep generative model to generate sensor/layer-
dependent detector response images with the highest fidelity while
satisfying all relevant metrics. Since we are dealing with a fine-grained
and contextualized (by each event) set of images that share informa-
tion. First, we introduce a Relational Reasoning Module (RRM) for the
discriminator and generator to capture inter-class relations. Then, we
propose a loss function for the generator to imitate the discriminator’s
knowledge of dyadic class-to-class correspondence34. Finally, we
introduce anauxiliary loss function for thediscriminator to leverage its
reasoning codomain by imposing an information uniformity
condition35 to alleviate the mode-collapse issue and increase the gen-
eralization of the model. IEA-GAN captures not only statistical-level
and semantic-level information but also a correlation among samples
in a fine-grained image generation task.

We demonstrate the IEA-GAN’s application on the ultra-high
dimensional data of the Pixel Vertex Detector (PXD)36 at Belle II37 with
more than 7.5M pixel channels- the highest spatial resolution detector
simulation dataset ever analyzed with deep generative models. Then,
we investigate several evaluation metrics and show that in all of them,
IEA-GAN is in much better agreement with the target distribution than

other SOTA deep generative models for high-dimensional image
generation. We also perform an ablation study and exploration of
hyperparameters to provide insight into the model.

It is crucial to highlight that our approach extends beyond the
scope of the existing models in calorimeter simulations that try to
capture layer-by-layer correlations38. While these existing models do
consider observables that depend on more than one layer simulta-
neously, they are restricted to simulating particle showers originating
froma single particle sourcewithin a confined and localized area of the
shower. In contrast, our approach embraces the complexity of an
entire event with multiple-particle origins, encompassing the full
detector simulation. This perspective offers to capture correlations
between detector sensors across various angles and layers. By doing
so, it approximates the intricate and dynamic interplay of sensors
throughout the entire detector, surpassing the limitations of simula-
tions focused solely on localized particle showers.

In this paper, we study the most challenging detector simulation
problem with the highest spatial resolution dataset coming from the
Pixel Vertex Detector (PXD)36, shown in Fig. 1, the innermost tracking
sub-detector of Belle II37. The configuration of the PXD consists of
40 sensors within two detector layers, as shown in Fig. 1. The inner
layer has 16 sensors, and the outer layer comprises 24 sensors. Thus,
each event includes 40 gray-scale images, each with a resolution of
250× 768 pixels, resulting in more than 7.5 million pixel channels per
event as shown in Fig. 1. The recorded background signatures by PXD
that comprise the majority of the PXD hits in each event come from
various processes in the detector that do not originate from the phy-
sics processes of interest, called signal processes. These background
processes can be categorized into beam-induced and luminosity-
dependent processes. The beam-induced processes come from the
synchrotron radiation and collisions of beam particles with residual
gas in the beampipe, bending magnets, or particles within a bunch. In
contrast, luminosity-dependent processes comprise electron-positron
collisions leading to physics processes such as Bhabha scattering or
two-photon processes.

The problem with such a high-resolution background overlay39 is
that many resources are required for their readout, storage, and dis-
tribution. For example, the size of the PXD background overlay data
needed for the simulation of a single event is ~200 kB. This is roughly
2N times the size of the background overlay data per event with
respect to all other detector components together40 where N is the
PXD background amplifier coefficient. Thus, an idea is to simulate
them online. However, the on-the-fly simulation of background events
is not feasible due to the considerable simulation time required by
Geant4, which takes approximately 1500 seconds to simulate a single
event. As a result, while storing such a massive amount of data is very
inefficient for high-resolution detectors, we propose to generate the
background signatures with IEA-GAN on the fly as a surrogate model.

Here we show, by applying IEA-GAN, to the PXD at Belle II, we are
able not only to reduce the storage demand for pre-produced back-
ground data by a factor of 2 (see ”Discussion” section) but also enable
us to have the ability of online simulation as shown in Fig. 1 by dra-
matically reduce the CPU time of online simulation in comparison to
theold infeasibleGeant4 approach. As a result, It is nowfinally possible
to employ the IEA-GAN as anonline surrogatemodel for the ultra high-
granularity PXD background simulation on the fly, a task that was
unattainable before for such a high-resolution detector simulation.
Thus, IEA-GAN stands as the viable candidate capable of managing the
ultra-high granularity of the forthcoming HL-LHC25 era.

Results
IEA-GAN architecture
A Generative Adversarial Network (GAN) is an unsupervised deep
learning architecture that involves two networks, the Generator and
the Discriminator, whose goal is to find a Nash equilibrium41 in a two-
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player min-max problem. IEA-GAN, as shown in Fig. 2, is a deep gen-
erative model based on a self-supervised relational grounding.

IEA-GAN’s discriminator, D, takes the set of detector response
images xi∈Rd coming from one event and embeds them as input
nodes within a fully connected event graph in a self-supervised way.
The Event graph is a weighted graph where the nodes are the
embedded detector images in an event, and the edges are weighted by
thedegree of similarity between thedetector images in eachevent (see
“Methods” section). IEA-GAN approximates the concept of an event
(the event graph) by contextual reasoning using the permutation
equivariant Relational Reasoning Module (RRM). RRM is a GAN-com-
patible, fully connected, multi-head Graph Transformer Network42–44

that groups the image tokens in an event based on their contextual
similarity. The contextual degree of similarity between samples in an
event is learned by the attention mechanism in the RRM. For multi-
modal contrastive reasoning, the discriminator also takes the sensor
embedding of the detector as class tokens (see “Methods” section). In
the end, it compactifies both image and class modalities information
by projecting the normalized graphonto a hypersphere asdiscussed in
detail in section 4.

To ensure that the Generator G has a proper understanding of an
event and captures the intra-event correlation, it first samples from a
Normal distribution, N ð0,1Þ, at each event as random degrees of
freedom (Rdof), and decorates the sensor embeddings with this four-
dimensional learnable Rdof (see “Methods” section). Then, for a self-

supervised contextual embedding of each event, the RRM acts on top
of this. Notably, Rdof differs from the original GAN9 Gaussian latent
vectors. Rdof can be considered as an event-level learnable segment
embedding45 or perturbation46 to the token embeddings, which can
leverage the diversity of generated images. Combining these modules
with the IEA Loss allows the Generator to gain insight and establish
correlation among the samples in an event, thus improving its overall
performance.

Apart from the adversarial loss, IEA-GAN also benefits from a self-
supervised and contrastive-based set of losses. The model under-
stands the geometry of the detector through a proxy-based con-
trastive 2C loss31 where the learnable proxies are the sensor
embeddings over the hypersphere.Moreover, to improve the diversity
and stability of the training, we introduce a Uniformity loss for the
discriminator. The Uniformity loss can encourage the discriminator to
give equal weight to all regions of the hypersphere35 rather than just
focusing on the areas where it can easily distinguish between real and
fake data. Encouraging the discriminator to impose uniformity not
only promotes more diverse and varied outputs but also mitigates
issues such as mode collapse.

Another essential part of IEA-GAN is the IEA loss that addresses the
class confusion32,33 problem of the conditional generative models for
fine-grained datasets. In the IEA-loss, the generator tries to imitate the
discriminator’s understanding of each event through a dyadic infor-
mation transferwith a stop-gradient (sg) for thediscriminator. This can

Fig. 1 | Pixel detector layout. (Taken from ref. 100). The pixel detector (PXD) is the
inner-most sub-detector of the Belle II experiment (a) and is configured in a two-
layered overlapping sensor structure (b). PXD image examples (c) for sensors 7

(top) and 25 (down).d The event generation pipeline with Geant452 (top) and using
IEA-GAN (bottom). Generating PXD data on the fly of analysis avoids the need to
store them offline.
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improve the ability of the generator to generate more fine-grained
samples in the simulation process by being aware of the variability of
conditions at each event.

IEA-GAN evaluation
Our study showcases the performance of IEA-GAN in generating ultra-
high-granularity detector responses, demonstrated through its suc-
cessful application to the ultra-high dimensional data of the Pixel
Vertex Detector (PXD) at Belle II, consisting of over 7.5 million pixel
channels. Furthermore, our findings reveal that the Fréchet inception
distance (FID)47 and Kernel Inception Distance (KID)48 metrics for
detector simulation are a very versatile estimator in conjunction with
the marginal distributions and are associated with the other image
level metrics. We show that by using IEA-GAN, we are able to capture
the underlying distributions so that we can generate and amplify
detector response information with a very good agreement with the
Geant4 distributions. We also find out that the SOTA models in high-
resolution image generation, even with an in-depth hyperparameter
tuning analysis, do not perform well in comparison.

For evaluation, we have two categories ofmetrics: image level and
physics level. As we are interested in having the best pixel-level
properties, diversity, and correlation of the generated images

simultaneously while adhering to minimal generator complexity due
to computational limitations, choosing the best iteration to compare
results is challenging. Hence, we choose models’weights with the best
FID for all comparisons. To compute the FID and KID scores, based on
the recent Clean-FID project49, we entirely fine-tuned the Inception-
V350 model on the PXD images, as the PXD images are very different
from the natural images used in their initial training. The downstream
task for the fine-tuning was multi-class classification, involving 40
different sensors with which it acquired the ability to discriminate
sensors. In other words, the classification task of the Inception-V3
involved identifying the specific sensor ID from a range of 1 to 40. This
task required the model to identify the sensor to which each data
sample belonged by discerning the data characteristics inherent to
each sensor. This process can be done for any other detector dataset.
FID measures the similarity of the generated samples’ representations
to those of samples from the real distribution. Given large sampling
statistics, for each hidden activation of the Inception model, the FID
evaluates the Fréchet distance, also known as Wasserstein-2 distance,
between the first two moments of the activation distributions. As
demonstrated to be useful and practical in the natural image analysis
domain, FID performs51 well in terms of discriminability, diversity, and
robustness despite only modeling the first two moments of the

Fig. 2 | Pixel detector layout, and the simulation pipelines. IEA-GANarchitecture
(a) and Relational Reasoning Module components (b), and the IEA Self-Supervised
Loss (c). a Rdof stands for Random degrees of freedom, which decorates the
generator’s sensor/layer embedding with an event-level learnable embedding
responsible for the generator’s intra-event correlation. The Relational Reasoning
Modules (RRM) in the generator and the discriminator do the intra-event reasoning
by clustering class/image embeddings based on their contextual similarity,
respectively. The red lines correspond to the forward and backward passes of the
generator. The black lines correspond to the forward and backward passes of the
discriminator. The discriminator is trained with the Adversarial loss, see Eq. (6), 2C

loss, see Eq. (7) and the Uniformity loss, see Eq. (17). On the other hand, the gen-
eratoruses theAdversarial loss, 2C loss, and the IEA loss, see Eq. (16), illustrated in c.
Sg means stop-gradient for the discriminator from the IEA loss, a self-supervised
dyadic-aware loss for the generator. b The Relational Reasoning Module (RRM) for
the generator (left) and the discriminator (right) create event graphs at each
iteration. The attentionmechanism inside the RRM learns the contextual degree of
similarity between samples in an event. c The IEA-loss imposes a pair-wise fine-
grained class-to-class imitation force for the generator. Sg indicates that gradients
are stopped for the discriminator, and only the generator’s gradients will be
updated.
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distributions in the feature space. The lower the FID score, the more
similar the distributions of the real and generated samples are. Kernel
Inception Distance (KID) is another metric similar to FID, used for
evaluating the quality of generative models. Unlike FID, KID uses a
kernel two-sample test, which provides an unbiased estimate of the
distance between distributions and is more robust to small
sample sizes.

We compare IEA-GAN with three other models (only for image-
level metrics) and the reference, which is the Geant4-simulated52

dataset. The baselines are the SOTA in conditional image generation:
BigGAN-deep53 and ContraGAN31. We also compare IEA-GAN with the
previous works on the PXD image generation task: PE-GAN7 and
WGAN-gp6 (only for FID).

Table 1 demonstrates that generated images by IEA-GAN have the
lowest FID and KID score compared to the other models and outper-
form them by 42%. This indicates that our model is able to generate
synthetic samples that are much closer to the target data than the
samples generatedby the othermodels. The lowFIDandKIDvalues for
theTestData indicate that themodel has achieved a full understanding
of the full data. In the Supplementary Table 3 in supplementary note,
we demonstrate the sensitivity and possible interoperability of FID to
various types of image distortions directly linked to the underlying
physics recorded by the corresponding sensor. We achieved this by
introducing controlled changes or jitters to the images and tracking
their impact on the FID score.

At the pixel level, there are the pixel intensity distribution, occu-
pancy distribution, and mean occupancy. The pixel intensity dis-
tribution defines the distribution of the energy of the background hits.
The occupancy distribution and the pixel intensity distribution are
evaluated over all sensors of a given number of events, while themean
occupancy corresponds to themean value of sparsity across events for
each sensor. This pixel-level information is essential since upon phy-
sics analysis via the basf2 software54, when onewants to use the images
and overlay the extracted information on the signal hits, the sparsity of
the image defines the volume of the background hits on each sensor.
The pixel intensity distribution, the occupancy distribution, as well as
the mean occupancy per sensor are shown in Fig. 3. The distributions
for the IEA-GANmodel show the closest agreement with the reference.

The bimodal distribution of the occupancy comes from the geo-
metry of the detector, as the sensors are not in a cylindrical shape like a
calorimeter but in an annulus shape. This indicates how challenging
generating this detector signature is concerning both its geometry and
resolution. In order to capture the correct bi-modality of the occupancy
distribution, the RRMand theUniformity loss play an important role. By
using the Uniformity loss in the discriminator, the generator is incenti-
vized to produce samples that are not biased towards a particularmode
or class, leading to a wider bimodal distribution of generated samples.

Moreover, by utilizing the RRM module that considers the inter-
dependencies and correlations among the sampleswithin an event, the
IEA-GAN exhibits a superior consistency with high-energy hits, which
enhances the diversity of generated samples in regions with lower
occurrence rates.

Along with all these image-level metrics, we also need an intra-
event sensitive metric. All the above metrics are equivariant under
permutation between the samples among events. In other words, if we
randomly shuffle the samples between events while fixing the sensor

number, all the discussed metrics are unchanged. Hence, we need a
metric that looks at the context of each event individually in its event
space and goes beyond the sample space. Ergo, we compute the
Spearman’s correlation between the occupancy of the sensors along
the population of generated events,

rs =Corrp R
]M =40

i= 1

ðkxik0Þ
 !

,R
]M =40

i = 1

ðkxik0Þ
 ! !

, ð1Þ

where R(.) is the rank operator, a function that assigns a rank to each
number in a list as in the definition of Spearman’s correlation, and
Corrp(.) is the Pearson Correlation function. ⨄ is the disjoint union
operator that symbolizes the concatenation operation. The norm with
subscript 0, denoted by ∥. ∥0, is the L0 measure. It is a function that
counts the number of non-zero elements in a vector. In this work, it is
used to calculate the occupancy of the sensors, i.e., the number of non-
zero elements in the sensor image xi. The coefficients by PE-GAN are
random values in the range [−0.2, 0.2], whereas IEA-GAN images show a
meaningful correlation among their generated images. Even though the
desired correlation is different from the reference, as shown in Fig. 4,
IEA-GAN understands a monotonically positive correlation for intra-
layer sensors andaprimarily negative correlation for inter-layer sensors.

In order to demonstrate that the learned correlation is actually
meaningful, we incorporate the Mantel test55,56, which is a significance
test of the correlation between two distance/correlation matrices
excluding the diagonal part. TheMantel test works by comparing each
pair of corresponding elements in the two matrices. The null hypoth-
esis is that there’s no relationship between the two sets of correlations,
and the test statistic is a correlation coefficient. The significance of the
observed correlation is evaluated using permutation testing. This
involves randomly rearranging the elements of onematrixmany times,
recalculating the test statistic each time, and then seeing how extreme
the observed test statistic is relative to this null distribution of test
statistics. If the observed test statistic is very extreme, then the p-value
is <0.05, and the null hypothesis is rejected. For IEA-GAN, the Mantel
test results show a veridical correlation of 18 ± 2% with empirical
p-value of 0.0013. As the p-value is <0.05, we can reject the null
hypothesis and observe that there is significant evidence for a corre-
lation between the two sets of matrices. This suggests that the sensor
classes that are more correlated in the Geant4 samples tend to also be
correlated in the generated ones by IEA-GAN.Whereas for PE-GAN, the
Mantel test results show a veridical correlation of 0.2% with empirical
p-value of 0.96 in support of the null hypothesis.

While image level metrics indicate the low-level quality of simu-
lations, we must also confirm that the resulting simulations are rea-
sonable physics-wise when the entire detector is considered as a
whole. For this, we do the tracking analysis to examine the Helix
Parameter Resolutions (HPR). The quality of the tracking and HPRs
directly impacts the precision and accuracy of the measurements.

At the Belle II experiment, after each collision event, tracks pro-
pagating in vacuum in a uniform magnetic field move roughly along a
helix path described by the five helix parameters fd0,z0,ϕ0,ω, tan λg
with respect to a pivot point57. The difference between the true and
reconstructed helix parameters defines the resolution for the corre-
sponding helix parameter. The track parameter resolution is affected
by the number of hits, the hit intensity, and the underlying intra-event

Table 1 | FID and KID comparison between models (all models in the benchmark are highly tuned to the current problem and
dataset), averaged across six random seeds (retrained and averaged across six models trained with different random seeds)

WGAN-gp BigGAN-deep ContraGAN PE-GAN IEA-GAN Test Data

FID 12.09 4.40± 0.88 3.14 ± 0.74 2.61 ± 0.91 1.50 ±0.16 2.4 × 10−5

KIDð× 10�3 Þ 9.6 3.1 ± 0.1 1.5 ± 0.2 2.1 ± 0.4 1.0 ±0.2 7.6 × 10−1

The lower the FID and KID, the better the image quality and diversity. The bold values highlights the state of the art results by IEA-GAN.
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correlation. Understanding how the background effects impact the
HPR can give us crucial insights into the overall performance of the
detector and the quality of the data it produces.

In this study, we utilize the same event generation and track
reconstruction (employing the same set of signal events across all
simulations to factor out signal fluctuations) for all simulations,
ensuring that the signalhits across simulations are essentially identical.
Consequently, the true track information remains consistent. Then,
the primary point of difference lies in the origin of the background.

This distinct differentiation allows any disparities identified in the
tracking parameter resolutions to be attributed largely to the different
backgrounds and their generation origin, enabling a direct evaluation
of the quality andperformance of the IEA-GANmodel in comparison to
Geant4. It is essential to note that the core objective of this study is not
to isolate or mitigate the effects of background noise but to simulate
and measure its impact on track reconstruction efficiency accurately.
The background affects the tracking to make it assign wrong hits. The
background processes can create additional hits in the detector

Fig. 3 | Image-Level Histograms. Pixel intensity distribution in linear (top left) and logarithmic scale (top right), the distribution of the occupancy (bottom left) and the
mean occupancy per sensor (bottom right) for 10,000 events.

Fig. 4 | Intra-Event Correlation. Spearman’s correlation between the occupancy of Geant4 sensor images (left), and sensor images from IEA-GAN (center), sensor images
from PE-GAN (right).
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simulation that are not part of the actual particle trajectory. When
these spurious hits are incorporated into the track reconstruction
process, it leads to imperfect track parameter (Helix parameters)
resolution. Thus, the effectiveness of the surrogatemodel is evaluated
based on how well it replicates the Geant4 simulated background
effects. As a result, we aim to ensure that IEA-GAN can generate the
PXD background that impacts the track reconstruction process like
Geant4-simulated background processes would.

First, as a physicsmotivation, we highlight the impact of the intra-
event correlation by shuffling Geant4 samples. In other words, we
show that in a physics analysis, the intra-event sensor-by-sensor cor-
relation influences the performance of the tracking parameters. We
examine the results by comparing the standard deviation of the Helix
parameter resolutions and the 2-sample Kolmogorov-Smirnov test (KS
test)58 between the shuffled and unshuffled Geant4 PXD background.
The standard deviation for each resolution, Δp, where p is a Helix
parameter, is computed as follows:

σp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1 ðΔpi � ΔpÞ2

n

s
, ð2Þ

where σp is the standard deviation for the Helix parameter p, n is the
number of the reconstructed tracks, and Δp is the resolution mean.
The Error (margin of error) for the standard deviation (using the
confidence interval method)59,60 is

Error =

ffiffiffiffiffiffiffiffiffiffiffiffi
nσ2

p

χ2
1�α=2,n

r
�

ffiffiffiffiffiffiffiffiffi
nσ2

p

χ2
α=2,n

r
2

:
ð3Þ

Where σp is the standard deviation computed using eq. (2), n is the
number of the reconstructed tracks, χ2α=2,n and χ21�α=2,n are the critical
values from the chi-squaredistribution for ndegrees of freedom, andα
is the significance level for a 95% confidence interval. For 5000 events,
the results for the high momentum tracks, with more than 0.4GeV
show that there is strong evidence that losing the intra-event sensor-
by-sensor correlation would impact the resolution and thus the
precision of the d0, ϕ0 and ω Helix parameters. For the z0 and tan λ
parameter, there is no significant difference in the standard deviation
of the resolutions.However, theKS test for theseparameters yields low
p-values, indicating a high discrepancy between the shape of the two
distributions.

In the context of each Helix parameter, for d0 impact parameter,
the significant standard deviation in resolution shows that the loss of
correlation directly impacts how well we can measure the particle’s
closest approach to the origin in the transverse plane. Losing sensor-
by-sensor correlations that help to associate track hits correctly leads
to a more spread out distribution of reconstructed values as shown in
Fig. 5 and Table 2. This could affect subsequent analyses, such as
identifying primary and secondary vertices, especially in scenarios
where particles have negligible deflection (high momentum regime).

For the ϕ0 parameter, the insignificant resolution standard
deviation difference and KS test result suggest that the lack of layer
correlation doesn’t significantly impact the distribution and precision
of measurements of the azimuthal for high momentum tracks. The
higher error in the standard deviation of Δz0 in the shuffled data
suggests that the lack of correlation between detector layers intro-
duces more uncertainty in determining the longitudinal interaction
point. High momentum tracks are less likely to deviate significantly in
the z-direction. Combined with the insignificant KS test result, this
indicates a fundamental difference in how particle trajectories are
reconstructed in the z-direction without layer correlation. ω is a mea-
sure of the curvature of the particle’s track and is inversely propor-
tional to the particle’s momentum. For high-momentum particles, we
would expect the curvature to be smaller since higher-momentum
particles travel more linearly. The standard deviation for Δω shows a
slight discrepancy between the shuffled and unshuffled data, but the
KS test doesn’t show a significant difference. This indicates that while
the overall distributions of the curvature resolution don’t significantly
differ, there’s a minor difference in the precision with which the cur-
vature is reconstructed, which could have implications for subsequent
physics analyses that depend on accurate momentum information.
Despite the insignificant resolution difference, the significant KS test

Table 2 | Standard deviation (using eq. (2) and eq. (3)) and KS
test results for the shuffled and unshuffled Geant4 data
across the 5 Helix parameters

Parameter Standard deviation ± error KS statistic p-value

Shuffled Geant4 Unshuffled Geant4

Δd0 [cm] 0.1343 ±0.0007 0.0732 ±0.0004 0.0067 0.7655

Δϕ0 [rad] 0.2158 ±0.0011 0.1859 ± 0.0009 0.0066 0.7899

Δz0 [cm] 5.0076 ±0.0253 4.9341 ± 0.0249 0.0152 0.0211

Δω[cm−1] 0.0010 ±0.0001 0.0008±0.0001 0.0138 0.0485

Δ tan λ 0.0388± 0.0002 0.0382 ±0.0002 0.0167 0.0086

Fig. 5 | The pull plot for the resolution of d0 (left) and z0 (right) in the presence of correlated (unshuffled) background and uncorrelated (shuffled) background at

high momentum regime. The pull, π(Δ(p)) where p is a Helix parameter, is computed as πðΔðpÞÞ= ΔpShuff:�ΔpUnshuff:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

ΔpShuff:
+ σ2

ΔpUnshuff:

q .
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result forΔ tan λ suggests differences in the inclination distributions of
highmomentum tracks between the shuffled and unshuffled data. This
might indicate that the inclination of the track, which is also related to
the momentum in the longitudinal direction, is affected by the loss of
correlation between layers and sensors.

Now, we compare IEA-GAN with PE-GAN (the second-best per-
forming model on the overall image level metrics) for the resolutions
of all five helix parameters as shown in Fig. 6 and Table 3 for 5000
events for high momentum tracks (PT >0.4GeV). In the low momen-
tum region, the resolution performance of the models is on par. The
tail behavior of Δϕ comes from curling tracks where the direction of
the tracks is swapped. Our meticulous comparison revealed that the
standard deviation of these parameters, produced by the IEA-GAN
model, approximates the Geant4 reference more closely, out-
performing the PE-GAN model in each instance. Moreover, the
Kolmogorov-Smirnov test results further consolidated our findings,
showing higher p-values for the IEA-GAN model, thus adhering more
accurately to the Geant4 reference. Another interesting observation is
that, in comparison with the shuffled Geant4, IEA-GAN shows a more
significant KS test p-value for z0, ω, and tan λ resolutions and a more
precise d0 reconstruction. Looking at the precision of IEA-GAN’s d0

and z0 reconstruction, one can alsodeduce that despite only capturing
a weak correlation, the downstream physics analysis, track recon-
struction, benefits from even the weak correlation captured by
IEA-GAN.

As a result of the analysis, we observe a good agreement between
the IEA-GANandGeant4, both in the tail segments (standarddeviation)
and precision of the resolutions where the most significant difference
between Geant4 and no background is found. Hence, not only does
IEA-GAN demonstrate a close image level agreement with Geant4, but
it maintains a proper reconstructed physical behavior during track
reconstruction as well.

Discussion
In this work, we have proposed a series of robust methods for ultra-
high-resolution, fine-grained, correlated detector response generation
and conditional sampling tasks with our Intra-Event Aware GAN (IEA-
GAN). IEA-GANnot only captures the dyadic class-to-class relations but
also exhibits explainable intra-event correlations among the generated
detector images while other models fail to capture any correlation. To
achieve this, we present the Relational Reasoning Module (RRM) and
the IEA-loss, with the Uniformity loss used in Deep Metric Learning.
The RRM introduced a self-supervised relational contextual embed-
ding for the samples in an event, which is compatiblewithGAN training
policies, a task that is very challenging. It dynamically clusters the
images in a collider event based on their inherent correlation, culmi-
nating in approximating a collision event.Our IEA-loss, a discriminator-
supervised loss, helps the generator reach a consensus over the dis-
criminator’s dyadic relations between samples in each event. Finally,
we have demonstrated that the Uniformity loss plays a crucial role for
the discriminator in maximizing the homogeneity of the information
entropy over the embedding space, thus helping the model overcome
mode-collapse and capture a better bi-modality of generated
occupancy.

As a result, an improvement to all metrics compared to the pre-
vious SOTA occurs, achieving an FID score of 1.50, an over 42%
improvement, and aKID scoreof0.0010, aspresented inTable 1. Using
IEA-GAN also comes with a storage release of more than 2 orders of
magnitude. Furthermore, due to thedramaticCPU speed-upof × 147as
shown in Table 4, It is nowpossible to employ the IEA-GAN as an online
surrogate model for the ultra high-granularity PXD background
simulation on the fly, a task that was unattainable before for such a
high-resolution detector simulation. Consequently, IEA-GAN, as a
surrogate model that can generate more than 7.5M information
channels, would be the applicable candidate that can handle the ultra-

high granularity of the HL-LHC era. Moreover, we have shown that the
application of the FID and KID metrics for the detector simulation
provides a powerful tool for evaluating the performance of deep
generative models in detector simulation. We have also illustrated the
vital role that intra-event sensor-by-sensor correlation plays in down-
stream physics analysis. Consequently, we revealed that IEA-GAN,
despite only capturing a weak correlation, surpasses PE-GAN and even
outperforms the inter-event-shuffled (uncorrelated) Geant4 in certain
metrics. We have also conducted an in-depth study into the optimal
design and hyperparameters of the RRM, the IEA-loss, and the Uni-
formity loss. It is important to note that many existing models in
calorimeter simulations do consider observables that depend onmore
than one layer simultaneously. These models typically focus on the
simulation of particle showers from a single particle origin and a small
region with the shower, which indeed capture aspects of inter-layer
correlation within the scope of a localized area. However, our
approach extends this concept by considering the entire event with
multiple-particle origins that embrace the entire PXD detector as a
whole, where correlations between different directions and depths
(various angles and layers) become important within its readout win-
dow. Given the unique topology and geometry of PXD, this distinction
is critical and allows for a more comprehensive full detector simula-
tion, approximating the complex interplay within an event across the
entire detector rather than just the localized particle shower. Fur-
thermore, while previous studies may have implicitly accounted for
layer-by-layer correlations within their framework, our study explicitly
evaluates and compares these correlations and their influence on
downstream physics analysis.

The ability to capture the underlying correlation structure of the
data in particle physics experiments where the physical interpretation
of the results heavily relies on it is very important. The true correlation
between the occupancyof the sensors is determined by the underlying
physical processes within the simulation. Although the actual corre-
lation differs from the one captured by IEA-GAN, the model is learning
patterns related to detector geometry, grounded in how these corre-
lations manifest in the context of the PXD detector’s structure. In
particular, the model picked up a distinct positive layer-wise correla-
tion, particularly between sensors 0−15 in the first layer and between
sensors 16−39 in the second layer. This distinct pattern reflects a layer-
wise understanding of the Toroidal geometry of PXD, although it dif-
fers partially from the actual correlations seen in the Geant4 data. This
suggests that the difference in occupancy between inner and outer
layers could be a major feature learned by the model, which may
impede the learning of more subtle correlations. Therefore, while the
IEA-GAN can provide valuable insights into the correlations and pat-
terns present in the data, it is important to interpret its results in
conjunction with the domain knowledge. To alleviate the discrepancy,
we expect that incorporating perturbations directly into the dis-
criminator’s RRMmodulewould improve its contextual understanding
and, thus, the intra-event correlation. For example, using random
masking61 or inter-event permutation62 over the samples and asking
the RRM module to predict the representation of the perturbed sam-
ple will improve the robustness of the model.

This work significantly impacts high-granularity fast and efficient
detector response and collider event simulations. Since they require
fine-grained intra-event-correlateddata generation,webelieve that the
Intra-Event Aware GAN (IEA-GAN) offers a robust controllable sam-
pling for all particle physics experiments and simulations, such as
detector simulation11,63 and event generation19,20,64,65 at both Belle II37

and LHC66. In particular, the High-Luminosity Large Hadron Collider
(HL-LHC)25 is expected to surpass the LHC’s design-integrated lumin-
osity by increasing it by a factor of 10. For instance, the upcominghigh-
granularity Calorimeter (HGCAL) with roughly 6.5M channels, or the
ITk 3D pixel detector at the HL-LHC67 with around 1M information
channels, will massively increase the geometry and precision
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Fig. 6 | The pull plots for comparing the Helix parameter resolutions for d0, z0, ϕ0, ω, and tan λ. For each parameter, the left figure corresponds to the IEA-GAN
simulated background and the right-side figure corresponds to the PE-GAN simulated background.
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complexity, leading to a dramatic increase in the time and storage
to simulate the detector68 As a result, much more effective and
efficient high-resolution detector simulations are required. IEA-GAN
is the potential candidate for simulating the corresponding full high-
resolution and high-granular detector signatures with capability
of generating more than 7.5M pixel channels. Nevertheless, while
our approach offers a foundation for dealing with the complexities of
any ultra-high granularity experiments, it is but a stepping stone. Our
work aims to pave the way for such advancements, providing a pre-
liminary framework capable of addressing the ultra-high granularity
challenges.

Finally, IEA-GAN also has potential applications in protein design,
which is a process that involves the generation of novel amino acid
sequences to produce proteins with desired functions, such as
enhanced stability and foldability, new binding specificity, or enzy-
matic activity69. Proteins can be grouped into different categories
based on the arrangement and connectivity of their secondary struc-
ture features, such as alpha helices and beta sheets. Our developed
intra-event aware methods, where an event represents the higher
category of features, can also be applied to fine-grained density
estimation70 for generating new foldable protein71–73 structures where
category-level reasoning is of paramount importance.

Methods
Theory of generative adversarial networks
GANs are generative models that try to learn to generate the input
distribution as faithfully as possible. For conditional GANs74, the goal is

to generate features given a label. Two player-based GAN models
introduce a zero-sum game between two Synthetic Intelligent Agents,
a generator network G, and a discriminator network D.

Definition 4.1. (Vanilla GAN) Given the generator G, a function
G : Rd ! Rn, that maps a latent variable z 2 Rd sampled from a dis-
tribution to an n-dimensional observable, and the discriminator D, a
functional D : Rn ! ½0,1�, that takes a generated image x 2 Rn and
assigns a probability to it, they are the players of the following two-
player minimax game with value function V(D, G)9,

min
G

max
D

VðD,GÞ=Ex∼Rn ½logDðxÞ�+Ez∼Rd ½logð1� DðGðzÞÞ�: ð4Þ

After introducing the vanilla GAN, a vast amount of research has
been undertaken to improve its convergence and stability, as, in gen-
eral, training GANs is a highly brittle task. It requires a significant
amount of hyperparameter tuning for domain-specific tasks. Many
tricks,model add-ons, and structural changes have been introduced. A
recent and comprehensive study prompted a very powerful SOTA
model, BigGAN-deep53, which incorporates the hinge-loss variation of
the adversarial loss75,

Lhinge
D = �Ex∼Rn ½minð0,� 1 +DðxÞÞ� �Ez∼Rd ½minð0,� 1� DðGðzÞÞ� ,

ð5Þ

Lhinge
G = �Ez∼Rd ½DðGðzÞÞ�: ð6Þ

Furthermore, many schemes for capturing the class conditions have
been proposed since conditional GANs over image labels have been
introduced74. Themain idea is to minimize a specific metric between a
class identification output of the discriminator and the actual labels
after injecting an embedding of the conditional prior information into
the generator. For example, ACGAN76 tries to capture data-to-class
relations by introducing an auxiliary classifier. The ProjGAN30 also tries
to capture these data-to-class relations by projecting the class
embeddings onto the output of the discriminator via an inner product
that contributes to the adversarial loss. The recent ContraGAN31

incorporated concepts from metric learning or self-supervised learn-
ing (SSL) in order to seize data-to-data relations or intra-class relations
by introducing the 2C loss, derived from NT-Xent loss77, and proxy-
based SSL,

‘2Cðxi,yiÞ = � log
expðScðhðxiÞ>eðyiÞÞÞ+

Pm
k = 1 1k = i: expðScðhðxiÞ>hðxkÞÞÞ

expðScðhðxiÞ>eðyiÞÞÞ+
Pm

k = 1 1k≠i: expðScðhðxiÞ>hðxk ÞÞÞ

 !
:

ð7Þ

Table 3 | Comparison of standard deviation andKS test results for the PE-GAN and IEA-GANmodelswith theGeant4 reference
across 5 Helix parameters for high momentum tracks

Model Parameter Standard deviation ± error KS statistic p-value

Model Geant4

Δd0 [cm] 0.1709 ± 0.0009 0.0732 ± 0.0004 0.0156 0.0164

Δϕ0 [rad] 0.2207 ±0.0011 0.1859 ± 0.0009 0.0120 0.1193

PEGAN Δz0 [cm] 6.9073 ±0.0349 4.9341 ± 0.0249 0.0183 0.0029

Δω[cm−1] 0.0014 ±0.0001 0.0008± 0.0001 0.0116 0.1425

Δ tan λ 0.0579 ±0.0003 0.0382 ±0.0002 0.0179 0.0037

Δd0 [cm] 0.0762 ±0.0004 0.0732 ± 0.0004 0.0104 0.2373

Δϕ0 [rad] 0.1905 ±0.0010 0.1859 ± 0.0009 0.0109 0.1939

IEA-GAN Δz0 [cm] 5.1467 ± 0.0261 4.9341 ± 0.0249 0.0073 0.6814

Δω[cm−1] 0.0010± 0.0001 0.0008± 0.0001 0.0103 0.2537

Δ tan λ 0.0412 ± 0.0002 0.0382 ±0.0002 0.0068 0.7538

Table 4 | Computational performance of IEA-GAN and
PE-GAN generators on a single core of an Intel Xeon Silver
4108 1.80GHz (CPU) and NVIDIA V100with 32GB of memory
(GPU) compared to Geant4

Hardware Simulator Time/event [s] Storage
[Mb]

Speed-up

CPU Geant4 ≈1500 ≈2000 1

PE-GAN 11.781 ± 0.357 ≈47 ≈×127

IEA-GAN 10.159 ±0.208 ≈47 ≈×147

GPU PE-GAN 0.090 ±0.010 ≈47 ≈×16,667

IEA-GAN 0.070 ±0.006 ≈47 ≈×21,429

For the generative models, the mean and standard deviation were obtained for sets of 10,000
events, meaning that the model generates these events one at a time, not in a batch of 10,000.
The time for Geant4 refers to the theoretical time it would take to run the simulation of back-
ground processes on the fly, one event at a time. The storage consumption for Geant4 corre-
sponds to storing 10,000 simulated events of 1 times the PXD background information, while for
the surrogate models (i.e., IEA-GAN and PE-GAN), the term storage specifically refers to the
models’ weights. The bold values highlights the comutation gain of using IEA-GAN for surro-
gating the simulation.
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Here, xi∈ x are the images, yi∈ y are the corresponding labels, Sc(.,.) is
a similaritymetric,h(.) is the output of the image embeddings, and e(.)
is the output of the class embeddings. Although ContraGAN benefits
from this loss by capturing the intra-class characteristics among the
images that belong to the same class, it is prone to class-confusion32,33

as different classes could also show similarity among themselves since
their vector representation in the embedding space might not be
orthogonal to eachother,which is preciselywhatwe aredealingwith in
a fine-grained dataset.

Relational reasoning
Transformers78 are widely used in different contexts. However, their
application in Generative Adversarial Networks is either over the image
manifold to learn long-range interactions between pixels29,79 or via pure
Vision-Transformer-based GANs80 in which they utilize a fully Vision-
Transformer81 based generator and discriminator. Given the fact that
training the Transformers is notoriously difficult82 and task-agnostic
when determining the best learning rate schedule, warm-up strategy,
decay settings, andgradient clipping, fusingandadaptingaTransformer
encoder over a GAN learning regime is a highly non-trivial task. In this
paper, we successfully merge a Transformer-based module adapted to
the GAN training schemes for the discriminator’s image and the gen-
erator’s class modalities without any of the aforementioned problems.

Definition 4.2. (Attention) Transformers utilize a self-attention
mechanism, the data of (K,Q,V, A). The vector spacesK 2 RN ×dk ,Q 2
RN ×dk and V 2 RN ×dv are the set of Keys, Queries, and Values. The
bilinear map a : K×Q ! RN ×N is a similarity function between a key
and a query. The attention, A, is defined as

AðK,Q,VÞ : =SoftmaxðaðK,QÞÞV, ð8Þ

where dk and dv are the dimensions of the corresponding vector
spaces.

The attention mapping used in the vanilla Transformer78 adopts
the scaleddot-product as thebilinearmapbetweenkeys andqueries as

AðK,Q,VÞ : =Softmax
KQTffiffiffiffiffiffi

dk

p
 !!

V : ð9Þ

The normalization factor 1ffiffiffiffi
dk

p mitigates vanishing gradients for large

inputs. Rather than simply computing the attention once, the multi-
head mechanism runs through the scaled dot-product attention of
linearly transformed versions of keys, queries, and values multiple

times in parallel via learnable mapsWk
i ,W

q
i andWv

i . The independent
attention outputs over h number of heads are then aggregated and
projected back into the desired number of dimensions via Wp,

MultiHeadðK,Q,VÞ : =
]h
i= 1

Hi

" #
Wp, ð10Þ

where Hi is given by AðKWk
i ,QWq

i ,VW
v
i Þ. When used for processing

sequences of tokens, the Self-Attention mechanism allows the
transformer to figure out how important all other tokens in the
sequence are, with respect to the target token, and then use these
weights to build features of each token.

Event Approximation. An event, a single readout window after the
collision of particles, consisted of 40 of images, each of which a sensor
hitmap (image) of size 256 × 768. Thus, each event represents a round
of detector signature collection. In order to approximate the concept
of an event, at each iteration, IEA-GAN should take an event with
40 sensor images. Therefore, we are conditioning the model with the
sensor type [[1, 40]], which can be thought of as amixture of angle and

radius conditioning. These conditions have to enter the model as
learnable tokens as they are not absolute and are context-based. It is
impossible to pre-define meaningful sparse connections among the
sample nodes in an event. For instance, the relation between images
from different sensors can vary from event to event, albeit cumula-
tively, they followaparticulardistribution. Ergo, themodel has to learn
any dynamical inherited conditions from the data in context (through
the Relational Reasoning Module).

To model the context-based similarity between the different
detector sensors in each event rather than their absolute properties,
we have to use a permutation-equivariant83,84 relational block that can
encode pairwise correspondence among elements in the input set. For
instance, Max-Pooling (e.g. DeepSets85) and Self-Attention78 are the
common permutation equivariant modules for set-based problems.
Performing attention on all token pairs in a set to identify which pairs
are the most interesting enables Transformers like Bert45 to learn a
context-specific syntax as the different heads in the multi-head atten-
tion might be looking at different syntactic properties86,87.

Hence, we use a self-attention mechanism with weighted sum
pooling as a form of information routing to process meaningful con-
nections between elements in the input set and create an event graph.
Each sample in an event is viewed as a node in a fully connected event
graph, where the edges represent the learnable degree of similarity.
Samples in each event go into message propagation steps of our
Relational Reasoning Module (RRM), a GAN-compatible fully con-
nected multi-head Graph Transformer Network42–44.

Relational reasoning module. Specifically designed to be compatible
with GAN training policies, the Relational Reasoning Module (RRM)
can capture contextualized embeddings and cluster the image or class
tokens in an event based on their inherent similarity.

LetX = {x1, . . . , xm} be the set of the sampled images in each event,
wherexi 2 Rd , andy = {y1, . . . , ym} be the set of labels,with yi∈ [[1, 40]]
for 40 detector (PXD) sensors. We also define two linear hypersphere
projection diffeomorphisms, hx : Rk ! Sn and hy : Z ! Sn, which
map the image embedding manifold and the set of labels to a unit n-
sphere, respectively. The unit n-sphere is the set of points,
Sn = fs 2 Rn+ 1j k sk2 = 1g, that is always convex and connected. The
Relational Reasoning Module benefits from a variant of the Pre-Norm
Transformer78 with a dot-product Multi-head Attention block such
that,

p0ðlÞ
i =pðlÞ

i +
Xh
k = 1

Xm
j = 1

aðl,kÞ
ij WðlÞ

SNLN pðlÞ
j

� �
, ð11Þ

pðLÞ
i =hLN

x LN �L
l =0 p0ðlÞ

i +F SN LN p0ðlÞ
i

� �h i� �� �� �
, ð12Þ

where p0ðlÞ
i 2 Rk is the embedding of each image via the discriminator

for layer l of the RRM. LN is the Layer Norm function88 and h is the
number of heads defined in Eq. (10).F ½ : � is a two layer MLP functional
defined as F SN½pðlÞ

i �=ReLUðpðlÞ
i Wðl,1Þ

SN ÞWðl,2Þ
SN with Spectral

Normalization89. The logits aðl,kÞ
ij are the normalized Attention weights

of the bilinear function that monitor the dyadic interaction between
image embeddings in layer l and head k defined in Eq. (9). WðlÞ

SN in Eq.
(11) is the learnable multi-head projector at layer l defined in Eq. (10)
with Spectral Normalization. The output of the composition of all
layers via the composition of L functionals,
�L

l =0Φ
l : =ϕwL °. . . °ϕw0

½pðl =0Þ
i � 2 Rm× k , goes into a Layer Normal-

ization layer where Φl =p0ðlÞ
i +F ½LNðp0ðlÞ

i Þ�. hLN
x ð :Þ in Eq. (12) is the

hypersphere compactification while the vectors are being standar-
dized over the unit n-sphere Sn by a Layer Normalization.

For the discriminator, this module takes the set of image
embeddings as input nodes within a fully connected event graph,
applies a dot-product self-attention over them, and then updates each
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sample or node’s embedding via the attentive message passing, as
shownon the right of Fig. 2. In the end, it compactifies the information
by projecting the normalized graph onto a hypersphere via an L2
normalization90. Embedding the samples in an event on the unit
hypersphere provides several benefits. In modern machine learning
tasks such as face verification and face recognition90, when dot pro-
ducts are omnipresent, fixed-norm vectors are known to increase
training stability. In our case, this avoids gradient explosion in the
discriminator. Furthermore, as Sn is homeomorphic to the 1-point
compactification of Rn when classes are densely grouped on the
n-sphere as a compact convex manifold, they are linearly separable,
which is not the case for the Euclidean space91.

For the generator’s RRM, we use a simpler version of the above
dot-product Multi-head Attention block without the last hypersphere
compactification due to the stability issues, as shown on the left of
Fig. 2. Itfinds a learnable contextual embedding for each event thatwill
be fused to each class token via the feature mixing layer, which is a
matrix factorization linear layer WSNð:Þ. Formally, we have,

qð0Þ
i =WSNðri ] eiÞ , ð13Þ

q0ðlÞ
i =qðlÞ

i +
XM
k = 1

Xm
j = 1

aðl,kÞ
ij WðlÞLN qðlÞ

j

� �
, ð14Þ

qL
i =LN �L

l =0 q0ðlÞ
i +F LN q0ðlÞ

i

� �h i� �� �
, ð15Þ

where ei : Z ! Rt is the embedding of each class token via the

embedding layer of the generator. The logits aðl,kÞ
ij are the normalized

Attention weights of the bilinear function that monitor the dyadic
interaction between classes in the event embeddings in layer l and
head k defined in Eq. (9). W(l) in Eq. (14) is the learnable multi-head
projector at layer l defined in Eq. (10). The output of the composition
of all layers via the composition of L functionals,

�L
l =0Φ

l : =ϕwL °:::°ϕw0
½qðl =0Þ

i � 2 Rm× t , goes into a Layer Normalization

layer whereΦl =q0ðlÞ
i +F ½LNðq0ðlÞ

i Þ� as shown in Eq. (15).
One input to the generator is the embedded labels, which can be

considered rigid token embeddings that will be learned as a global
representation bias of each sensor. As sensor conditions change for
each event as a set, having merely class embeddings, as used in con-
ditional GANs74, is insufficient because the context-based information
will not be learned. Thus, the generator samples from a per-event
shared distribution at each event as random degrees of freedom
(Rdof). Rdofs are random samples from a shared Normal distribution
for each class, ri ∼N ð0,1Þ, that introduces four-dimensional learnable
degrees of freedom for the generator, see Eq. (13) This way, we ensure
that the generator is aware of intra-event local changes, culminating in
having an intra-event correlation among the generated images. Rdof
can be interpreted as both perturbation46 to the token embeddings
and an event-level segment embedding45, which can enhance the
diversity of the generated images.

Intra-event aware loss
Motivated by Self-Supervised Learning92, to transfer the intra-event
contextualized knowledge of the discriminator to the generator in an
explicit way, we introduce an Intra-Event Aware (IEA) loss for the
generator that captures class-to-class relations,

‘IEAðxr ,xf Þ=
X
i, j

DKL σ h xðrÞ
i

� �>
h xðrÞ

j

� �� �
σ h xð f Þ

i

� �>
h xð f Þ

j

� �� �����
��
,

ð16Þ

where xr = fxðrÞ
i gmi= 1 is the set of real images, and

xf = fGðzi,yi,riÞ=xðf Þ
i gmi = 1 the set of generated images. The softmax

function, σ : Rm ! ½0,1�m, normalizes the dot-product self-attention

between the image embeddings. The map h : Rk ! Sn is the unit
hypersphere projection of the discriminator. Therefore, the dot
product is equivalent to the cosine distance. DKL(. ∣∣. ) is the Kullback-
Leibler (KL) divergence93 which takes two m ×m matrices that have
values in the closed unit interval (due to the softmax function). Hence,
having a KL divergence is natural here as we want to compare one
probability density with another in an event. We also tested other
distance functions reported in the supplementary note. By considering
the linear interaction34 between every sample in an event and assigning
aweight to their similarity, the generatormimics thefine-grained class-
to-class relations within each event and incorporates this information
in its RRM module as shown in Fig. 2.

Upon minimizing it for the generator (having the stop-gradient
for the discriminator), we are putting a discriminator-supervised
penalizing system over the intra-event awareness of the generator by
encouraging it to look for more detailed dyadic connections among
the images and be sensitive to even slight differences. Ultimately, we
want to maximize the consensus of data points on two unit hyper-
spheres of real images and generated image embeddings.

Uniformity loss
The other crucial loss function comes from contrastive representation
learning. With the task of learning fine-grained class-to-class relations
among the images, we also want to ensure the feature vectors have as
much hyperspherical diversity as possible. Thus, by imposing a uni-
formity condition over the feature vectors on the unit hypersphere,
they preserve as much information as possible since the uniform dis-
tribution carries a high entropy. This idea stems from the Thomson
problem94, where a static equilibrium with minimal potential energy is
sought to distribute N electrons on the unit sphere in the evenest
manner. To do that, we incorporate the uniformity metric35, which is
based on a Gaussian potential kernel,

Luniformðx; sÞ= logExi ,xj ∼pevent
exp s k hðxiÞ � hðxjÞk22

� �h i
: ð17Þ

Upon minimizing this loss for the discriminator, it tries to maintain a
uniform distance among the samples that are not well-clustered and
thus not similar. In other words, eventually, we want to reach a
maximum geodesic separation incorporating the Riesz s-kernel95 with
s = − 2 as a measure of geodesic similarity, to preserve maximal
information over the Hypersphere. Therefore, asymptotically it
corresponds to the uniform distribution on the hypersphere96. This
loss is beneficial for capturing the exact distribution of the mean
occupancy distribution and balancing the inter-class pulling force of
the Relational Reasoning module. As a result, not only does it help
generate more diverse and varied outputs, but it also can prevent
issues such as mode collapse or overfitting.

Model details and hyperparameters
In this study, we utilized a dataset of 40,000 Monte Carlo simulated
events40, of which 35000 were allocated for training, 5000 for model
selection (validation), and an independent set of 10000 events served
as the test set for assessing the final model performance. It is note-
worthy to acknowledge that this is a rather small dataset to train a deep
generative model for Oð107Þ data channels. The data in each event
consists of 40 grey-scale 256× 768 zero-padded images. They are zero-
padded on both sides from their original size of 250 × 768 to be divi-
sible by 16 for training purposes.

To capture the intra-event mutual information among the images
using the RRM and approximate the concept of an event, the model
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samples (and generates) an entire event at each iteration. This
approach ensures that each event in our analysis comprises a corre-
lated set of 40 unique images. All hyperparameters are chosen based
on the model’s stability and performance upon the validation set. The
learning rates for the Generator andDiscriminator are 5 × 10−5 with one
sample per class sampler. The Relational Reasoning Module of the
Generator has two heads and one layer of non-spectrally normalized
message propagation with an embedding dimension of 128 and ReLU
non-linearity. The input to the generator’s RRM is embedded class
tokens mixed with 4 random degrees of freedom by a spectrally nor-
malized linear layer.

For the Discriminator, the RRM has four heads with one layer of
spectrally normalized message propagation with the embedding
dimension 1024 as the hyperspheredimension and ReLUnon-linearity.
All Generator and Discriminator modules use Orthogonal
initialization97. For the IEA-loss in Eq. (16), the coefficient λIEA = 1.0
(highlighted in Supplementary Algorithm 1 in supplementary note)
gives the best result. The most stable contribution of the Uniformity
loss, defined in Eq. (17), is with λuniform = 0.1. For the backbone of both
the discriminator and the generator, we use BigGAN-deep53 with a non-
local block at channel 32 for the discriminator only. Since there is no
meaningful way to define aminimal loss in GAN training, our stopping
point is the divergence of the FID.

Data availability
The data used in this study is openly available at https://zenodo.org/
record/833191998.

Code availability
The code for this study is available at https://github.com/Hosein47/
IEA-GAN99.
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