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Abstract

Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate 

complex biochemical processes and control communications in cells. The quantitative 

understanding and characterization of allosteric molecular events are among major challenges 

in modern biology and require integration of innovative computational experimental approaches to 

obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational 

landscapes. The growing body of computational and experimental studies empowered by 

emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring 

and learning the universe of protein allostery from first principles. In this review we analyze 
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recent developments in high-throughput deep mutational scanning of allosteric protein functions; 

applications and latest adaptations of Alpha-fold structural prediction methods for studies of 

protein dynamics and allostery; new frontiers in integrating machine learning and enhanced 

sampling techniques for characterization of allostery; and recent advances in structural biology 

approaches for studies of allosteric systems. We also highlight recent computational and 

experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often 

hidden role of allosteric regulation driving functional conformational changes, binding interactions 

with the host receptor, and mutational escape mechanisms of S proteins which are critical for 

viral infection. We conclude with a summary and outlook of future directions suggesting that 

AI-augmented biophysical and computer simulation approaches are beginning to transform studies 

of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric 

states, and mechanisms which may bring about a new revolution in molecular biology and drug 

discovery.
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INTRODUCTION

Allosteric mechanisms are often used to control the activity of enzymes, ion channels, 

and other proteins, and are essential for the regulation of metabolic pathways, signal 

transduction, and other cellular processes. Allosteric regulation can also be used to regulate 

gene expression, as well as the production of hormones, neurotransmitters, and other 

molecules.1-5 In general, allosteric interactions involve the binding of a ligand to a protein 

at a site other than its active site, causing a cascade of conformational changes and/or 

dynamic rearrangements in the system that affect the protein’s activity as a result. Despite 

significant research efforts and continuous progress in understanding the diversity and 

complexity of allosteric molecular events, the interplay and balance of thermodynamic 
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and kinetic factors underlying molecular mechanisms of protein allostery are often difficult 

to monitor and characterize due to the dynamic nature of these processes and presence 

of short-lived hidden allosteric states involved in the regulation. Allosterically regulated 

proteins employ diverse molecular mechanisms to propagate various perturbations such as 

ligand binding or mutations, but the allosteric phenomenon is believed to be primarily 

driven by a thermodynamic principle that binding of an effector ligand stabilizes the active 

state over the inactive state and removing the effector ligand reverses this effect.6-8 A 

conformational change in one state can affect the stability of other states, leading to 

altered binding and/or catalytic activities. The dynamic equilibrium between the inactive 

and active allosteric protein states can be often affected and selectively modulated through 

activated mutations, by post-translational modifications, and via binding with allosteric 

modulators and proteins. To understand the underlying principles of allosteric regulation, it 

is important to characterize the thermodynamic, structural, and dynamical properties of the 

different conformational states, as well as their interconversion pathways. While mechanistic 

studies of allosteric regulation are often focused on thermodynamic characterization of 

the functional states and their equilibrium, there has been an increasing realization of 

the critical role of the intrinsic protein dynamics in driving allosteric events through 

redistributions of dynamically modulated functional motions rather than population shifts 

involving appreciable structural transformations.9,10 These allosteric models have explained 

the functional interplay between allosteric effects and conformational dynamics in a variety 

of dynamic protein systems. Hierarchical approaches combined multiscale equilibrium and 

nonequilibrium simulations with biophysical experiments to characterize remodeling of the 

free energy landscapes, detect allosteric functional states, and dissect signal transmission 

mechanisms.11-19 It was proposed that population-shift based structural allostery and 

dynamically driven allostery that are often discussed as limiting scenarios of allosteric 

mechanisms and long-range communication can coexist and operate synchronously to adapt 

the protein free-energy landscape to incoming signals.

Probing and understanding the effect of perturbations lies at the core of many fundamental 

challenges and technologies of modern biology including allosteric phenomenon.20 

Perturbation-based physical approaches21-24 emphasize the importance of simulated 

forces for probing of protein dynamics and prediction of phenotypic responses in 

complex biological systems. Combined with biophysical simulations and dynamic network 

models of proteins, these approaches can provide insightful mechanistic details of the 

underlying molecular mechanisms, quantify the protein response to various perturbations, 

and guide the identification of allosteric interactions, regulatory sites, and long-range 

communications.25-27 To describe the multipartite organization and dynamic nature of 

biological systems regulated by allosteric regulatory events, the information-based theory 

of signal propagation28-30 and dynamic network flow models that operate through a 

stochastic walk on the dynamics of the network31-33 have been developed revealing details 

of multiscale dynamic relationships and the network community structure associated with 

functionally relevant protein changes.

Stochastic Markov state models (MSMs) have emerged as a robust and physically rigorous 

framework for characterization of hidden allosteric states, detection of cryptic allosteric 

pockets, and describing the kinetics of transitions between functional states during allosteric 
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events.34-38 Combined with molecular dynamics (MD) simulations, MSM approaches can 

provide detailed network connectivity maps of states on the free energy landscape and 

estimate the effect of allosteric perturbations on the conformational equilibrium and kinetics 

of allosteric transitions.

Another challenge in quantitatively characterizing allosteric proteins is understanding the 

underlying mechanisms by which they respond to external signals. Allosteric proteins 

interact with their environment in complex ways, and the precise details of these interactions 

are often not well-understood. In order to accurately measure and characterize the behavior 

of allosteric proteins, it is important to gain a better understanding of the underlying 

mechanisms of their behavior. Current techniques for studying allosteric proteins are 

often limited in their ability to capture the full range of dynamic behavior exhibited by 

allosteric proteins. The development of new and improved tools for studying allosteric 

proteins is a key challenge in quantitatively characterizing these dynamic systems. The 

interdisciplinary structural biology strategies that exploited synergies between X-ray 

high-throughput crystallography, cryo-electron microscopy (cryo-EM), nuclear magnetic 

resonance spectroscopy (NMR), biophysical approaches, and multiscale computational 

methods are beginning to show a considerable potential in addressing some of these 

challenges and uncovering the invisible dynamic aspects of allosteric protein functions at 

the atomistic level.

This review is focused on a critical analysis of the latest developments in the field, 

marked by the emergence of innovative computational and experimental approaches that can 

dissect important principles of allosteric regulation and advance atomistic characterization 

of allosteric states, interactions and mechanisms from a unified perspective. In the next 

chapters we discuss recent developments in deep mutational scanning and mapping of 

allosteric energy landscapes; applications of Alpha-fold structural prediction methods for 

studies of protein dynamics and allostery; new developments in integrating enhanced 

sampling techniques and machine learning (ML) for characterization of dynamics and 

allostery; and recent advances in the experimental structural biology and biophysical 

approaches for studies of allosteric systems and regulatory mechanisms. We also highlight 

recent computational and experimental studies of SARS-CoV-2 spike proteins revealing 

complex dynamics and allosteric mechanisms underlying functional activities and virus 

transmission as well as integrative studies that discovered and validated previously unknown 

allosteric cryptic sites and allosteric modulators. We conclude with the outlook and future 

directions presenting our perspective on future developments in the field and speculate what 

methods and sources of information may be leveraged in the future to develop a unified 

framework for modeling of protein dynamics and allostery.

DEEP MUTATIONAL SCANNING AND ALLOSTERY: HIGH-THROUGHPUT 

BIOCHEMICAL TOOLS PARTNER WITH SIMULATIONS AND AI FOR 

MAPPING OF ALLOSTERIC LANDSCAPES AND REGULATORY HOTSPOTS

To probe principles of allostery, molecular mechanisms of allosteric regulation must be 

investigated for protein systems where allosteric signatures are intimately linked with 
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phenotypic responses that can be identified in biophysical studies. The recent biochemical 

studies extensively exploited advances in deep mutational scanning (DMS) methodology 

to map allosteric energy landscapes, investigate the molecular nature of allostery at 

the residue level, and identify the allosteric hotspots or residues critical for allosteric 

signaling.39-43 The DMS approach has been a powerful tool for examining allosteric effects 

by systematically measuring the impact of mutational perturbations on various phenotypes 

using high-throughput experiments.41-43

A general approach for quantifying mutational effects for multiple molecular phenotypes 

using multidimensional DMS enabled a comprehensive characterization of allosteric 

mutations in protein domains and produced comprehensive atlases of allosteric 

communications, distinguishing the effects of mutations on allostery, binding, and protein 

stability.41 By using innovative implementations of protein-fragment complementation 

assays, this pioneering study allowed for a detailed characterization of the biophysical 

effects of mutations by quantifying multiple molecular phenotypes in multiple genetic 

backgrounds and fitting the data into thermodynamic models using neural networks. Another 

study reported a large-scale analysis of the genotype-phenotype landscape for the lac 

repressor from Escherichia coli LacI enabling a quantitative map of the effect of amino acid 

substitutions on LacI allostery.42 This study showed that in general allosteric phenotypes 

can be quantitatively predicted using additive approximations and neural network-based 

models. However, allosteric effects may also operate via less-conventional mechanisms that 

can synchronize and amplify combinations of silent amino acid substitutions to induce 

allosteric changes. This investigation reinforced the notion that allostery is a distributed 

biophysical phenomenon governed primarily by the ensemble-defined remodeling of the 

energy landscape and the thermodynamic free energy balance with additive contributions 

from many residues and interactions.42 To examine whether allosteric mutations are 

abundant, structurally localized, or distributed in nature, an elegant saturation mutagenesis 

study of a synthetic allosteric system in which dihydrofolate reductase (DHFR) is regulated 

by a blue-light sensitive LOV2 domain was conducted.43 By assessing the impact of 

1548 viable DHFR single mutations on allostery, this study established that fewer than 

5% of mutations could exhibit a statistically significant influence on allostery, and that 

allostery-disrupting mutations were proximal to the insertion site, while allostery-enhancing 

mutations appeared to be structurally distributed and enriched on the protein surface.43 

Importantly, this DMS profiling study revealed that engineering of mutations in weakly 

conserved and structurally distributed sites of the protein could lead to diverse evolutionary 

strategies for optimization and manipulation of allosteric regulation. Moreover, these 

fascinating experimental insights into allosteric mechanisms disclosed various weaknesses 

of computational approaches that may often overemphasize the role of structurally stable 

allosteric hotspots, while allostery may be in fact rescued and enhanced through distributed 

cooperative effects of a considerable number of weakly conserved flexible sites.

DMS analysis of the molecular chaperone Hsp90 encoded 14,160 amino acid variants and 

quantified growth effects under standard conditions and under various stress conditions.44 

The results showed that different environments could impose unique functional demands 

on the Hsp90, where function-beneficial mutations occupied the protein surface and were 

often localized near interfaces with the binding partners. Moreover, mutations that disrupt 
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binding to certain clients can lead to the reprioritization of others, providing a roadmap for 

rational rewiring of cellular networks.44 Interestingly, this comprehensive DMS mapping 

of the Hsp90 fitness maps revealed patterns that were generally consistent with the 

computational analysis of allosteric changes of the molecular chaperone, suggesting that 

mutations affecting client binding can be intimately involved in modulation of the Hsp90 

allosteric communications.45,46

The ease and proliferation of DMS tools in modern biochemical studies enabled a systematic 

characterization and comparison of allosteric hotspots across multiple homologous proteins 

allowing for in-depth analysis of allosteric effects in protein families (Figure 1). 

Using computational protein design, single-residue saturation mutagenesis and random 

mutagenesis, along with multiplex assembly, DMS was employed to build a more 

comprehensive catalog of Lac repressor allosteric variants comparable in specificity and 

induction to wild-type LacI with its inducer.47 An insightful review of DMS and high-

throughput mutational methods emphasized the transformative role and advantages of 

these emerging technologies for understanding of the allosteric phenomenon and their 

unique ability to comprehensively map the functional landscape at the resolution of 

individual residues.48 Furthermore, DMS can be used for profiling double mutants that 

disrupt or restore normal allosteric functions. Lastly, this analysis highlighted the large 

scale and data-rich nature of the DMS output that is perfectly suited for data mining 

and predicting residues that are exclusively important for allostery using ML models.48 

By integrating computational design, high-throughput screening along with structural and 

biophysical analysis of an allosteric transcription factor, the recent study showed that 

epistatic interactions can shape up the protein fitness landscape and allosteric functions, 

leading to new binding specificity.49

DMS experiments were combined with molecular dynamics (MD) simulations and network 

analysis into a function-centric approach50 that examined the underlying functional 

landscape of a bacterial transcription factor showing how disrupted allosteric switches can 

be restored through functional plasticity and redundancy of flexible positions, suggesting the 

role of diverse and broad ensembles of mutational communication pathways in propagating 

allosteric phenotypic effects (Figure 1). This seminal study revealed that residues critical 

for allosteric signaling are often weakly conserved leading to multiple solutions to the 

thermodynamic principle of cooperativity, in contrast to the view of a finely tuned allosteric 

residue network maintained under evolutionary selection. In a subsequent study, DMS of 

four homologous bacterial allosteric transcription factors produced a large pool of data 

that was leveraged by deep learning (DL) to build a robust predictor of allosteric hotspots 

revealing that regulatory sites mediating allostery are widely distributed on the protein rather 

than being restricted to specific pathways linking the allosteric and active sites.51 Moreover, 

a model trained on one protein can predict hotspots in a homologue, demonstrating 

that global structural and dynamic properties are typically strong predictors of allosteric 

importance for a given residue than local and physicochemical properties. Engineering of 

allosteric functions and regulation via limited number of key mutations were demonstrated 

by the analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily 

in which a few key mutations induced a reorganization of the conformational landscape 

rendering the emergence of allostery in LDH proteins. which we targeted for investigation 
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by site-directed mutagenesis.52 The recent advances in DMS tools and rapid emergence 

of multiplexed (pooled) screens producing a large number of mutational perturbations 

and measurements in proteins using a single-pot experiment represent a considerable 

breakthrough in revealing allosteric functional landscapes while supplying ML tools with 

invaluable data sets to manipulate allosteric functions and engineer novel allosteric proteins.

ALPHAFOLD, PROTEIN ENSEMBLES AND ALLOSTERY: PAVING THE WAY 

FOR THE NEXT AI REVOLUTION IN MOLECULAR BIOLOGY

Among the emerging trends in studies of protein structure and dynamics is the growing 

realization and rapidly expanding efforts to develop a new generation of ML approaches 

that leverage the wealth of experimental and simulation data for autonomous assessment 

of dynamic events and regulatory mechanisms. The remarkable success of advanced ML 

methods in protein structure modeling is exemplified by achievements of AlphaFold2 (AF2) 

that leverages covariation and representations of amino acid contacts on graph neural 

networks to yield a robust DL framework that trains on the sequences of homologous 

proteins to predict a single accurate structure for all sequences.53-55 The AlphaFold 

database, hosted at EMBL-EBI (https://alphafold.ebi.ac.uk/), provides free access to more 

than 200 million protein structure predictions—a remarkable advancement in structural 

biology that was inconceivable even several years ago.56 A number of insightful reviews 

highlighted the key shortcomings and limitations of the AF2 technology in resolving 

the looming computational biology challenges as the predicted structural models remain 

static and are unable to directly describe functionally relevant dynamic changes in protein 

systems and allosteric signaling mechanisms.57-59 Nussinov and colleagues emphasized that 

for understanding of the regulatory mechanisms the AF2 predicted structures need to be 

accompanied by their representative ensembles and relative populations that are essential for 

quantifying allosteric phenomena—a formidable and ambitious task that is now knocking on 

the door to test the limits of artificial intelligence (AI) technologies.59

In the current review we highlight some of the most recent “post-Alphafold2” developments 

that leveraged achievements in structure prediction to develop new modeling frameworks 

that attempt to extend beyond predicting a single protein structure and toward accurately 

capturing protein dynamics and regulatory mechanisms from first principles. Several latest 

studies outlined a simple and yet plausible strategy that leveraged a multiparameter 

complexity of the AF2 methodology to predict different functional conformations using 

a benchmark set of topologically diverse transporters and GPCR proteins—a first step 

toward adapting the powerful ML apparatus for modeling of protein ensembles and 

populations.60,61 By varying different parameters of the predictor such as the number of 

models generated, the number of known structures of protein homologues as templates, 

and by counterintuitively reducing the depth of the input multiple sequence alignments 

by stochastic subsampling, this study reported a robust generation of multiple functional 

conformations required for protein activities and regulation61 The results of this study 

indicated that AF2 parameters can be manipulated in a specified manner to accurately 

model multiple functional conformations for transporters and GPCRs whose structures 

were not used in the training set. A more general approach leverages AF2 to model 
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alternative functional conformations and is benchmarked on canonical examples of protein 

flexibility, showing promise in recapitulating the conformational landscape of membrane 

proteins.62 In this approach, the initial AF2-predicted models are scanned to identify 

interaction surfaces within the structure, followed by modifying MSA profiles using in silico 

alanine mutagenesis and forcing the attention neural networks within the AF2 engine to 

uncover new residue contacts and promoting more heterogeneous coevolutionary couplings 

of protein residues to produce alternative protein conformations. Integration of double 

electron–electron resonance (DEER) spectroscopy and ensembles of multiple structural 

models obtained by the modified AF2 showed a good agreement with the experimental 

conformational dynamics.63 Despite a significant and somewhat unexpected success of these 

AF2 adaptations, a methodological “tweaking” of the AF2 architecture may be sensitive 

to the protein families and evolutionary patterns among homologies sequences, indicating 

a need for the development of dynamics-centric neural networks and more systematic 

probing and adaptation of the AF2 architectures for explicit exploration of conformational 

ensembles.

Consistent with these arguments, several most recent studies indicated that remarkable 

structure prediction capabilities of AF2 cannot be readily expanded to learn and predict 

the conformational landscapes and allosteric conformational changes that drive protein 

functions and regulation. Using a curated collection of unbound (apo) and bound (holo) 

structures from the database of Conformational Diversity in the Native State of proteins 

(CoDNaS) it was found that AF2 predictions are biased toward a single conformer and 

cannot capture conformational diversity present in the apo and holo pairs with the same 

precision that can be estimated for a single representative conformation of a given protein.64 

Interestingly, AF2 predictions single out the holo protein form in 70% of the studied cases, 

but are unable to reproduce conformational diversity through assessment of the top predicted 

conformer models, suggesting that AF2 neural networks cannot simultaneously predict the 

protein structure and the conformational ensemble. In another study, the performance of 

AF2 was tested on a set of 98 fold-switching proteins with at least two distinct tertiary 

structures, revealing that 94% of predictions captured only one of the experimentally 

determined conformation but often failed to capture the other functional states among top 

predicted conformers.65 By extracting AF2 predictions for the wild-type and single protein 

mutants, the predicted AF2 metrics were correlated with the experimental protein stability 

changes for 976 mutations in 90 proteins from the Thermo-Mut Database, showing weak 

or no correlation with the experimental changes of protein stability.66 At the same time, 

AF2 predictions of ligand binding sites, protein disordered regions, and protein–protein 

interactions are superior to the existing tools even though AF2 networks were not initially 

trained on structures of protein–protein complexes.67-69 Hence, while AF2 tools have 

excelled in predicting static structures of proteins, it remains unclear how these neural 

networks should be tweaked to predict conformational ensembles and identify allosteric 

states including low-populated dynamic functional conformations involved in allostery. The 

three-track network architectures developed by Baker and colleagues that incorporate and 

manipulate neural networks to transform and integrate sequence information with the 2D 

distance maps and 3D structure throughout the training have been equally powerful for 

protein structure prediction and provide architectural flexibility that could be potentially 
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adapted for prediction of dynamics and allosteric states.70 Recent illuminating AI-driven 

protein design studies showed that deep networks trained to predict native protein structures 

from their sequences can be inverted to design new proteins, and this conceptual strategy 

could be potentially reformulated and applied to model conformational ensembles of the 

same protein.71-73 These approaches developed by the Baker lab including constrained 

hallucination to optimize sequences for structures containing the desired functional site71 

and an inpainting approach that designs a viable protein scaffold around a given functional 

site72 may provide a platform for “dialing in” sequence-inferred variability of the predicted 

structures as a proxy for rational modeling of protein ensembles.

NMR spectroscopy technologies offer new powerful means to characterize protein dynamics 

and detect hidden allosteric conformations74-77 which in combination with AF2 modeling 

could be a promising direction for accurate prediction of conformational dynamics, allostery, 

and detection of rare states, but these enhancements of deep learning networks require the 

enhanced databases of NMR data for training.78 An alternative direction is a systematic 

exploration of AI systems and ML approaches to capitalize on the wealth of computational 

and experimental information about protein dynamics and conformational ensembles. These 

approaches have a potential to become a unifying data-centric platform for synthesizing 

advances in theory and experimental technologies, leading to the development of robust 

and efficient computational models and expert systems for prediction of allosteric effects in 

protein systems.

EXPANDING THE HORIZONS OF EXPERIMENT-GUIDED MOLECULAR 

SIMULATIONS FOR STUDIES OF PROTEIN ALLOSTERY WITH NETWORK 

AND AI MODELS: COMING TO RESCUE YOU OR REPLACE YOU?

The recently emerging directions in molecular simulations of biomolecular systems and 

characterization of conformational dynamics reflect the arrival of the new era of dynamic 

structural biology exemplified by the increasing cooperation of cryo-EM and single 

molecule FRET techniques with the enhanced simulation approaches and AI/ML models. 

The development of enhanced sampling techniques for exploration of conformational 

landscapes with the aid of neural networks and DL architectures provided a significant 

impetus for studies of protein allostery and allosteric mechanisms. ML approaches were 

employed to facilitate exploration of conformational landscapes using MD simulations 

via optimal selection of reaction coordinates,79-83 enhanced conformational sampling 

by reinforcement learning,84,85 goal-oriented active learning,86 and more recently by 

autonomous generation of the equilibrium ensembles using Boltzmann neural network 

generators.87 A recent review summarized the fundamentals of generative ML applications 

for exploring the free energy surfaces and kinetics of proteins.88 Here, we highlight 

several recent impactful developments in facilitating “autonomous” enhanced sampling of 

protein systems in which ML is deployed to learn the representations and distributions 

of biasing potentials as well as physics-based thermodynamic and kinetic constraints 

to drive a more efficient exploration of the conformational landscapes and prediction 

of functionally relevant dynamic states. By combining DL and biased MD simulations, 

physically meaningful collective variables can be determined resolving the bottlenecks that 
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often hinder the reliable characterization of conformational transitions and rare events.89 

ML together with the variationally enhanced sampling method allowed for learning and 

optimization of sampling-biasing potentials that can be represented in the form of neural 

networks.90 Using the principle of variational inference implemented through deep neural 

networks and a predictive information bottleneck concept, a recently introduced framework 

leverages short MD simulations to estimate the reaction coordinates and perform iterative 

biased simulations that can subsequently enhance exploration of conformational landscapes 

and reliable inference of the associated thermodynamic and kinetic characteristics of the 

system.91,92 Moreover, AI-based State Predictive Information Bottleneck (SPIB) approach 

can reliably learn a reaction coordinate via a deep neural network even from short and 

under-sampled trajectories.93 Further developments of these concepts produced a path 

sampling approach that integrates generic thermodynamic or kinetic constraints into long 

short-term memory (LSTM) networks to accurately learn time series such as MD trajectories 

for systems from different application domains.94 Going forward, the developments of 

these integrative biophysical approaches that leverage AI and ML tools to represent physics-

based thermodynamic and kinetic drivers of efficient sampling in the form of neural 

networks would have significant implications for “autonomous” mapping of conformational 

landscapes, monitoring of allosteric changes, and detection of functional allosteric states.

MSM approaches are powerful tools for exploring long-time dynamic changes underlying 

the function of many allosterically regulated proteins, allowing for detailed network maps 

of functional states on the conformational landscape and quantitative analysis of the effect 

of perturbations on the thermodynamics and kinetics of allosteric transitions. However, 

the application of MSMs to characterize functional conformational changes in highly 

dynamic protein systems remains challenging due to heterogeneity of localized structural 

changes involved in allosteric transformations. As a result, a robust selection of structural 

features that can describe the slowest dynamics of allosteric conformational changes is 

an important bottleneck of the MSM approaches.95 The automatic selection of physically 

meaningful and efficient reaction coordinates using ML approaches allows MSM tools to 

identify functionally relevant states which is the key to proper interpretation of allosteric 

regulation mechanisms.95 The powerful synergy and complementarity of MSM approaches 

and by employing ML-augmented tools for detection of functionally relevant regions on 

the conformational landscapes and identification of structurally important multidimensional 

reaction coordinates, AI models can facilitate a more rapid advancement in the MSM 

methodologies with broader applications in studying functional conformational changes of 

proteins. In particular, ML models came to the rescue by streamlining this analysis and 

allowing for automatic selection of the essential features that can explain conformational 

changes and the distribution of metastable states.96,97 The ML approach that identifies 

feature importance via an iterative exclusion principle can uncover versatile reaction 

coordinates that account for the dynamics of the slow degrees of freedom and allows for 

efficient sampling of the conformational landscapes and detection of hidden intermediate 

states of the system.97

A variational approach to the Markov process neural network (VAMPNets) provides a 

framework for predictions of molecular kinetics using neural networks by combining 

the steps of featurization, dimensionality reduction, discretization, coarse-grained kinetic 
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modeling, and generation of states into a single end-to-end learning system.98 Combining 

VAMPNet and graph-level dynamics with neural networks provided an end-to-end 

framework termed GraphVAMPNet to efficiently learn high resolution metastable states 

from the long-time scale MD trajectories.99 This approach also employed an attention 

learning mechanism to find the important residues for classification of conformational 

ensembles into different metastable states. A Gaussian mixture variational autoencoder 

(GMVAE) can learn a reduced representation of the free energy landscape of protein folding 

with highly separated clusters that correspond to the metastable states during folding.100 

Using quasi-MSM (qMSM) based on the Generalized Master Equation framework, only 

a handful of functionally relevant metastable states can be obtained from short MD 

simulations to facilitate the interpretation of regulatory mechanisms associated with specific 

local and global conformational changes.101 The key ensemble properties of biological 

systems can be learned from MD simulations and described by easily interpretable 

metrics using a range of different ML methods including principal component analysis 

(PCA), random forests (RFs), and three types of neural networks (NNs): autoencoders 

(AEs), restricted Boltzmann machines (RBMs), and multilayer perceptrons (MLPs).102 This 

versatile framework enables efficient learning of the key molecular features driving various 

biomolecular processes such as allosteric conformational rearrangements of the soluble 

protein calmodulin, the effect of ligand binding to a GPCR, and the allosteric coupling of an 

ion channel VSD to a transmembrane potential.

Several computational studies employed combinations of enhanced simulation schemes 

and various ML models to directly infer molecular determinants of allosteric changes and 

ligand-induced ensemble changes in proteins. A ML-based method (Linear Discriminant 

Analysis) was applied to reveal differences between the apo and allosteric inhibitor-bound 

ensembles in an automated way.103 Another ML method was developed for the direct 

conformational ensemble comparison and understanding of temporal relationships during 

allosteric stimulation of hemagglutinin-neuraminidase.104 Zhou and colleagues examined 

allosteric mechanism of Vivid (VVD) protein as one light, oxygen, or voltage (LOV) 

domain using an enhanced allosteric community model based on ML models.105 Variational 

autoencoders (VAEs) have been successfully employed to explore the conformational space 

and allosteric transitions in adenosine kinase (Figure 2), showing that the learned latent 

space can be used to generate unsampled protein conformations and initiate additional 

MD simulations to sample a transition from the closed to the open states and explored 

hidden allosteric states.106 An autoencoder-based detection method for characterization of 

ligand-induced dynamic allostery used a comparison of time fluctuations of the protein 

structures in the form of distance matrices obtained from MD simulations.107

In this simple and elegant approach, the autoencoder was first trained based on the time 

fluctuations of protein residues in the apo form and used to inspect data in both the apo and 

holo forms, showing that the ligand-induced allosteric changes in dynamics can be identified 

and attributed to specific reorganization of cooperative fluctuation motions among residue 

pairs on a long-time scale. A neural relational inference model based on a graph neural 

network used an autoencoder architecture to explore the latent embedding of an allosteric 

system and learn the long-range interactions and communications between distant sites in 

the ligand-induced allosteric regulation of Pin1, conformational transition of SOD1 protein 
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and the activation of MEK1 by oncogenic mutations.108 By requiring a dimensionality 

reduction algorithm to predict the biochemical differences between protein variants instead 

of assuming whether large structural changes are more important than local changes, a new 

ML approach termed DiffNets uses a self-supervised autoencoder to learn features of the 

conformational ensembles that are relevant to dissect the biochemical differences between 

protein systems.109

MD simulations have been widely applied with smFRET experiments to provide atomistic 

insights into the dynamic behavior of biomolecules. A ML-based approach was proposed 

which links MD simulations and single-molecule experiments by constructing the initial 

MSM from a raw set of simulation data and a learning step in which hidden Markov 

modeling is performed to optimize the initial MSM using smFRET measurement data.110 

MD simulations can also be combined with the information provided by smFRET 

experiments to steer the simulation from one conformational state to the other using 

accelerated or enhanced sampling techniques.111

Combined with biophysical approaches and multiscale computational methods, NMR 

studies have been instrumental in uncovering the invisible aspects of protein “life” including 

mapping of allosteric landscapes for protein domains.112-116 Using a combination of triple-

resonance NMR and computational network analysis, the allosteric effects of specific kinase 

mutations and communication paths between regulatory elements and catalytic sites can be 

characterized.117

NMR chemical shift covariance (CHESCA) and projection (CHESPA) analyses118-121 can 

identify residue interaction networks that show correlated changes in chemical shifts due 

to allosteric perturbations caused by ligand binding or mutations designed to modulate 

allosteric conformational equilibria. Using statistical comparative analyses of the NMR 

chemical shift variations elicited by the selected perturbations, the CHESCA approach 

characterizes perturbation-specific chemical shift patterns serving as distinctive signatures 

of allosteric mechanisms. NMR studies of PKA and PKG kinases revealed a wide 

range of noncanonical allosteric effectors ranging from post-translational modifications to 

disease-related mutations that can define diverse mechanisms of constitute activation.122 

The two newly proposed CHESCA-based methodologies, called temperature CHESCA (T-

CHESCA) and CLASS-CHESCA, can prioritize predicted allosteric sites and identify the 

core allosteric residues.123 These NMR CHESCA adaptations are based on the invariance 

of core inter-residue correlations to changes in the chemical shifts of the active and 

inactive conformations interconverting in fast exchange. Integration of NMR spectroscopy 

and surface plasmon resonance revealed dynamic communication networks of residues 

linking the ligand-binding site to the activation interface in the glucocorticoid receptor 

and identified a specific motif acting as a ligand- and coregulator-dependent allosteric 

switch governing transcriptional activation.124 A recently introduced NMR-guided directed 

evolution approach highlighted a new role of NMR in the selection process of mutational 

libraries as this approach can identify locations of the allosteric hotspots and mutations that 

can minimize nonessential protein dynamics to achieve high catalytic efficiency without a 

priori structural information.125
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Solution NMR experiments and Gaussian-accelerated molecular dynamics (GaMD) 

simulations examined the structural and dynamic determinants of allosteric signaling within 

the CRISPR-Cas9 HNH nuclease, advancing our understanding of the allosteric pathway 

of activation.126 A further integration of NMR with multimicrosecond molecular dynamics 

(MD) simulations and graph-based network modeling probed the effects of mutations on 

the structure and allosteric communication within the CRISPR-Cas9 system, showing that 

mutations responsible for increasing the specificity of Cas9 alter the allosteric structure 

of the catalytic HNH domain.127 Attempts are still underway to develop fundamental, 

if not ubiquitous, theory of protein allostery. The recent study hypothesized that higher-

order cooperativities among multiple binding events rather than pairwise cooperativities 

are needed to decipher protein allostery.128 This graph-based method extends the idea of 

allosteric regulation to systems with many distinct conformational degrees of freedom and 

provides a conceptual framework for considering complex allosteric systems with multiple 

distinct conformations as versatile apparatus functioning to integrate information from 

ligand binding.

ALLOSTERIC REGULATION MODELS AND MACHINE LEARNING IN 

STRUCTURAL BIOLOGY AND FUNCTIONAL STUDIES OF THE SARS-CoV-2 

SPIKE PROTEINS AND ESCAPE MECHANISMS

Here, we discuss recent advances in integrative structural biology of SARS-CoV-2 spike 

proteins, which highlight an important and often hidden role of allosteric regulation 

driving functional conformational changes, binding interactions with the host receptor and 

mutational escape mechanisms of S proteins which are critical for viral infection. The 

latest developments in structural and computational studies of SARS-CoV-2 S proteins 

also underscore the value of AI-based approaches to unveil otherwise cryptic allostery 

states, druggable allosteric sites, and regulatory mechanisms. The rapidly growing body of 

structural and functional studies established that the mechanism of SARS-CoV-2 infection 

that involves conformational transitions between distinct functional forms and activation 

of the viral spike (S) glycoprotein trimer which consists of an amino (N)-terminal S1 

subunit and carboxyl (C)-terminal S2 subunit where S1 participates in the interactions 

with the angiotensin-converting enzyme 2 (ACE2) host receptor using the receptor-binding 

domain (RBD).129,130 Conformational transitions between the closed S state with RBDs 

in the “down” conformation and the receptor-bound open state in which RBDs can 

adopt an “up” conformation were characterized using biophysical experiments suggesting 

that mechanisms of conformational selection and receptor-induced structural adaptation 

can often involve allosteric stabilization and regulation.129,130 Recent experimental and 

computational studies suggested that dynamic biological functions of the SARS-CoV-2 S 

proteins and mutational escape mechanisms can be rationalized and predicted by examining 

critical molecular events related to viral infection and dissemination through the lens of 

protein allostery and the allosteric regulatory landscape of the SARS-CoV-2 S protein. 

Conformational dynamics of SARS-CoV-2 S protein in the absence or presence of ligands 

visualized using smFRET imaging assays showed that ACE2 binding is controlled by 

the conformational landscape of the RBD via population-shift mechanism, in which 
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ACE2 captures the intrinsically accessible up RBD conformation rather than inducing a 

conformational change.131 Moreover, smFRET data demonstrated that that antibodies that 

target diverse epitopes of the S protein located away from the RBD can allosterically 

modulate the RBD functional dynamics and shift the thermodynamic equilibrium toward 

the open S form that promotes ACE2 binding. Conformational dynamics of SARS-CoV-2 

trimeric S glycoprotein in complex with ACE2 revealed by cryo-EM experiments further 

confirmed that binding can modulate the conformational landscape of the S trimer and 

induce continuous swing motions between allosteric states.132 This cryo-EM investigation 

proposed a mechanism of conformational transitions of the SARS-CoV-2 S trimer acting 

as the dynamic allosteric fusion machine from the ground prefusion state to the postfusion 

state, in which ACE2 binding shifts the conformational landscape toward the open RBD 

state and promoting a cascade of allosteric responses of the fusion machine facilitating 

transitions toward the postfusion state.132 The energy landscape of the SARS-CoV-2 S 

proteins and complexes with antibodies revealed extensive conformational heterogeneity 

in which changes between unbound protein and complexes with antibodies are often 

reminiscent of apo-to-holo switching using the preexisting conformational equilibrium. 

The intrinsic flexibility of the SARS-Cov-2 S proteins examined by enhanced sampling 

simulations agreed with FRET cryo-EM experiments, unveiling a multitude of functional 

allosteric conformations with druggable cryptic pockets (Figure 3).133,134

These experimental and computational studies supported an emerging paradigm that 

allosterically regulated dynamics of the S protein may provide a versatile mechanism 

for efficient virus transmission and enable diversity of escape mutation-induced allosteric 

responses that counteract the effects of antibodies. Using Folding@home distributed 

computing project adaptive sampling simulations of the viral proteome captured dramatic 

opening of the apo Spike complex, far beyond that seen experimentally, and predicts 

the existence of “cryptic” epitopes and hidden allosteric pockets.135 Using the cryo-EM 

Metainference (EMMI) method that can accurately model conformational ensembles by 

combining simulations with cryo-EM data, the intermediate states in the opening pathway 

of SARS-CoV-2 S protein were identified signaling a potentially druggable cryptic allosteric 

site located in the vicinity of the RBD recognition site.136 These extensive simulation studies 

have provided a strong evidence of conformational heterogeneity of the S protein capable 

of adopting a multitude of functional conformations and unveiling previously unknown 

cryptic pockets during allosteric transitions between the open and closed forms. Our recent 

studies combined multiscale simulations of conformational landscapes with coevolutionary 

analysis and network-based modeling of the SARS-CoV-2 proteins to examine allosteric 

mechanisms of the SARS-CoV-2 S proteins.137-140 These studies suggested that coevolution, 

conformational dynamics, and allostery conspire to drive cooperative binding interactions 

and signal transmission of the SARS-CoV-2 S protein with ACE2 enzyme. These studies 

provided compelling evidence that the SARS-CoV-2 S protein can function as a functionally 

adaptable allosterically regulated machine that exploits plasticity of allosteric centers to 

fine-tune responses to antibody binding, where the experimentally confirmed regulatory 

hotspots correspond to the global mediating centers of the allosteric interaction networks 

(Figure 3). By examining conformational landscapes and the residue interaction networks 

in the SARS-CoV-2 Omicron spike protein structures, we have shown that the Omicron 
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mutational sites are dynamically coupled and form a central engine of the allosterically 

regulated spike machinery that regulates the balance between conformational plasticity, 

protein stability, and functional adaptability.141 MD simulations demonstrated an allosteric 

crosstalk within the RBD in the apo- and the ACE2 receptor-bound states.142 Allosteric 

interactions between SARS-CoV-2 spike mutational sites were also confirmed in extensive 

MD simulations, suggesting that the interplay of spatially proximal local interactions and 

long-range communications between sites of escape mutations can represent an evolutionary 

strategy employed by the virus to modulate virulence of emerging SARS-CoV-2 variants.143

Elucidating this relationship between local interactions and their global effects is essential to 

understanding evolution of allosteric proteins that can be manifested as epistatic nonadditive 

changes in biophysical properties at the level of biological function.49 The effect of 

nonadditive, epistatic relationships among S-RBD mutations was assessed by comparing 

the effects of all single mutants at the RBD-ACE2 interfaces for the Omicron variants, 

showing that structural constraints can curtail the virus evolution and put limits on antibody 

escape.144 A systematic analysis of the epistatic effects in the S-RBD proteins using DMS 

analysis of all amino acid mutations in the SARS-CoV-2 S variants showed nonadditive 

contributions of physically proximal mutational sites as well as long-range couplings 

between sites of escape mutations.145

The functional and systems biology studies reinforced the notion that the Omicron 

mutations may have emerged as an evolutionary product of balancing multiple fitness 

requirements, including the immune escape, productive binding with the host receptor, 

conformational plasticity, and allosteric communications.146,147 The reversed allosteric 

communication approach is based on the premise that allosteric signaling in proteins is 

bidirectional and can propagate from an allosteric to orthosteric site and vice versa, thus 

providing means for detecting cryptic allosteric sites.148,149 An integrated computational and 

experimental strategy exploited the reversed allosteric communication concepts to combine 

MD simulations with MSM for characterization of binding shifts in the protein ensembles 

and identification of cryptic allosteric sites.150 A network-based adaptation of the reversed 

allosteric communication approach was proposed to identify allosteric hotspots and infer 

this analysis to characterize the distribution of allosteric binding pockets (Figure 3) in 

the SARS-CoV-2 Spike Omicron BA.1, BA.1.1, BA.2, and BA.3 variant complexes.151 

Integrative computational and experimental studies detailed allosteric communications in an 

S protein trimer and validated the allosteric site located between SD1 and SD2 subdomains 

of the S protein (Figure 3).152 By screening commercial compound databases, several hits 

were selected and validated at both the molecular level and cellular level for their binding 

strength and antivirus activities (Figure 4).

We also reported the discovery of potential small molecules targeting the SARS-CoV-2 

S protein by combining in silico technologies with in vitro experimental methods. Using 

mass spectrometry (MS) and surface plasmon resonance (SPR) methods our studies have 

discovered and validated five natural products as potential modulators of the S activity.153 

Using a combination of in silico and biochemical tools, N-acetylneuraminic acid (Neu5Ac), 

a type of predominant sialic acid found in human cells, was tested as a molecular probe 

of the S protein and validated as an allosteric modulator.154 A similar dual strategy 
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of molecular docking and SPR screening of compound libraries interrogated 57,641 

compounds and identified 17 binders of ACE2 and 6 potent blockers of the RBD that 

compete with the RBD-ACE2 interactions in an SPR-based competition assay.155 Although 

identification and validation of allosteric modulators of the SARS-CoV-2 S proteins remain 

to be challenging tasks, exploiting allosteric regulatory mechanisms and allosteric binding 

sites in SARS-CoV-2 proteins has potential to discover viable broad-spectrum therapeutic 

agents with utility for drug resistance.

AI expert systems and ML approaches showed a considerable promise to reveal functions 

of SARS-CoV-2 spike (S) proteins particularly predicting patterns of evolving mutations 

and mutational escape mechanisms. Deep mutational learning (DML), a machine-learning-

guided protein engineering technology, was developed to investigate the enormous sequence 

space of combinatorial mutations and accurately predict the impact of these mutations 

on ACE2 binding and antibody escape.156 This method integrates yeast display screening 

of RBD mutational libraries with deep sequencing into an ML approach that can predict 

antibody robustness to a large variety of SARS-CoV-2 variants, thus serving as a guide 

for selection of effective therapeutics for virus infection.156 A comprehensive ML-based 

investigative framework for analysis of S protein mutations was developed and applied to 

4296 Omicron viral genomes, revealing a core haplotype of 28 polymutants in the S protein 

and a separate core haplotype of 17 polymutants in nonspike genes.157 A multitask ML 

framework that harnesses systematic mutation screens in the RBD of the S protein for 

predicting SARS-CoV- 2 antibody escape was recently unveiled.15 This ML model analyzes 

data on escape from multiple antibodies simultaneously, creating a latent representation of 

mutations that is effective in predicting the escape potential and binding properties of the 

virus.158 ML models have been actively deployed to facilitate physics-based predictions 

of the S proteins with ACE2 and antibodies, revealing the impact of RBD mutations and 

suggesting novel sets of mutations that strongly modulate binding and escape properties of 

the virus.159,160

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Despite the growing evidence that many complex protein systems and regulatory 

assemblies function as dynamic and versatile allosteric machines, the understanding and 

characterization of the protein allostery universe even for a single system which includes 

hidden allosteric protein states, allosteric interactions, and communication pathways are 

still surprisingly limited. Although many theories and models have been developed in 

attempts to rigorously describe this phenomenon, the highly dynamic, complex, and 

diverse nature of allosteric events and mechanisms continues to pose new challenges 

to the field testing the limitations of existing technologies and making the quest for a 

universal theory of allostery an important priority of computational and structural biology. 

Among emerging directions in the field are computational methods for the identification 

and mapping of allosteric networks, as well as novel experimental approaches to study 

allosteric mechanisms, including time-resolved and single-molecule studies; approaches to 

engineering allosteric regulation to enhance function and facilitate the design of sensors and 

drugs, the design of synthetic chemical networks that use allostery in feedback mechanisms, 

directed evolution of allostery, nonequilibrium simulation methods for modeling of allosteric 
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ensembles and pathways. The latest advances in structural characterization of allosteric 

molecular events and hidden functional states important for allosteric function using cryo-

EM, NMR, smFRET spectroscopy have highlighted the growing need for data-centric 

integrative biophysics approaches. By developing an open science infrastructure for ML 

studies of allosteric regulation and validating computational approaches using integrative 

studies of allosteric mechanisms, the scientific community can expand the toolkit of 

approaches and chemical probes for dissecting and interrogation allosteric mechanisms in 

many therapeutically important proteins. The development of community-accessible tools 

that uniquely leverage the existing experimental and simulation knowledge base to enable 

interrogation of the allosteric functions can provide a much needed impetus to further 

experimental technologies and enable steady progress.

Data Availability Statement

Crystal structures were obtained and downloaded from the Protein Data Bank (http://

www.rcsb.org), accession numbers 6X2C (the cryo-EM structure of SARS-CoV-2 S-protein 

in the closed 3RBD-down state), 6X2A (the cryo-EM structure of SARS-CoV-2 S-protein 

in the open 1RBD-up state), and 6X2B (the cryo-EM structure of SARS-CoV-2 S-protein 

in the open 2RBD-up state). All simulations were performed using the NAMD 2.13 

package that was obtained from Web site https://www.ks.uiuc.edu/Development/Download/. 

All simulations were performed using the all-atom additive CHARMM36 protein force 

field that can be obtained from http://mackerell.umaryland.edu/charmm_ff.shtml. The 

residue interaction network files were obtained for all structures using the Residue 

Interaction Network Generator (RING) program RING v2.0.1 freely available at http://

old.protein.bio.unipd.it/ring/. The computations of network parameters were done using 

NAPS program available at https://bioinf.iiit.ac.in/NAPS/index.php and Cytoscape 3.8.2 

environment available at https://cytoscape.org/download.html. The rendering of protein 

structures was done with interactive visualization program UCSF ChimeraX package 

(https://www.rbvi.ucsf.edu/chimerax/) and Pymol (https://pymol.org/2/) . The software 

tools used in this study, including SciPy (https://www.scipy.org), and Pandas (https://

pandas.pydata.org) are freely available at their Web sites. All the data obtained in this work 

(including simulation trajectories, topology and parameter files, dynamic residue interaction 

networks, and analysis), all the software tools, and the in-house scripts are freely available in 

the GitHub sites https://github.com/smu-tao-group/protein-VAE; https://github.com/smu-tao-

group/PASSer2.0 ; https://github.com/kassabry/Perturbation_Experiment.
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Figure 1. 
(A) An overview of mutability landscape mapping approaches. The first approach is 

characterization of a defined collection of single mutants, and the second is DMS. 

In DMS the diversity in the protein is created through generation and expression of 

random mutants followed by high-throughput sorting of active mutants from inactive 

mutants using flow cytometry, phage display, or growth selection. This allows for the 

enrichment of active mutants. (B) The heatmap obtained from DMS analysis allows for 

comprehensive mapping of the phenotypic effects, for example, the decreased, neutral, or 

increased enzymatic activity, the effect of mutations on protein folding, and the mutational 

effect on binding, allowing for the identification of allosteric output of mutations and 

detection of allosteric hotspots. (C) A schematic description of dynamic network analysis of 

mutations mimicking DMS by monitoring the perturbation-induced changes in rewiring and 

community modularity of the graph-based residue interaction networks.
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Figure 2. 
Autoencoder architecture for exploring protein (adenosine kinase ADK as an example) 

conformational space.106 Conformational space of a target protein kinase obtained from 

simulations could be used as training data to construct an encoder module to project protein 

structures in Cartesian coordinates onto the reduced space. The encoder module is designed 

with a decreasing number of neurons in hidden layers to encode high-dimensional inputs to 

a low-dimensional latent space. The decoder module, with an increasing number of neurons 

in hidden layers, aims to project latent space hack to the protein kinase conformations.
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Figure 3. 
(A) Molecular topography of allosteric communication pathways in the SARS-CoV-2 S 

3RBD-down, 1RBD-up, and 2RBD-up trimers with regulatory hotspots (S383, D985, 

A570L, I572, I856, F592, and K987) serving as switches of allosteric signaling. (B) The 

cryo-EM structures of in the SARS-CoV-2 S 3RBD-down, 1RBD-up, and 2RBD-up trimers 

with protomers shown in green, blue, and cyan surface. A detailed annotation of the S 

protein elements in the S1 and S2 domains is shown for a single protomer. (C) Protein 

pocket scanning of network-derived allosteric positions identified major allosteric sites: 

hinge allo-pocket I at the junction of the subdomain 1 and subdomain 2 SD1/SD2 (F541, 

I587, K557, I834, Y855, I856, L570, I572 M740, D745, and L981) and allo-pocket II 

(A520, C361, A522, K528, K529, D389, F329, and T333). (D) Structural maps of the 

hinge regions in the SARS-CoV-2 spike trimer mutants and network-derived high centrality 

positions corresponding to allosteric mediating sites shown in red spheres.
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Figure 4. 
Elucidation of the allosteric binding pockets identified for designing molecular modulators 

of the S protein. (A) An allosteric path was discovered that correlates the motion of the 

RBD with the motion of the junction between the SD1 and the SD2 subdomains of the S 

protein. (B) Building on this finding, we designed non-RBD binding allosteric modulators 

to inhibit SARS-CoV-2 by prohibiting the conformational change of the S protein. (C) 

A schematic illustration of a cooperative conformational change of the S protein. (D) 

Three discovered potential molecular modulators and their binding modes. The top three 

compounds, i.e., CPD7, CPD20, and CPD26, were proven to be able to inhibit SARS-CoV-2 

at a concentration of 100 μM. These compounds, especially the CPD7, show a stronger 

inhibitory effect, suggesting that these compounds may inhibit viral entry.
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