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Abstract

The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage 

and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure 

can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In 

the current study, we combined structuralmodeling, microsecond molecular dynamics simulations, 

and Markov state models to characterize conformational landscapes and identify specific dynamic 

signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently 

emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond 

simulations and Markovian modeling provided a detailed characterization of the functional 

conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 

subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite 

considerable structural similarities, Omicron mutations can induce unique dynamic signatures 

and specific distributions of the conformational states. The results suggested that variant-specific 

changes of the conformational mobility in the functional interfacial loops of the receptor-binding 

domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent 

mutations which could provide an evolutionary path for modulation of immune escape. By 

combining atomistic simulations and Markovian modeling analysis with perturbation-based 

approaches, we determined important complementary roles of convergent mutation sites as 

effectors and receivers of allosteric signaling involved in modulation of conformational plasticity 

and regulation of allosteric communications. This study also revealed hidden allosteric pockets 

and suggested that convergent mutation sites could control evolution and distribution of allosteric 

pockets through modulation of conformational plasticity in the flexible adaptable regions.

Graphical Abstract
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INTRODUCTION

A vast number of structural and biochemical studies have extensively explored the 

mechanisms underlying SARS-CoV-2 infection.1–9 These investigations have unequivocally 

demonstrated the critical significance of the viral spike (S) glycoprotein in various aspects of 

the virus’s life cycle, including virus transmission and immune evasion. The S glycoprotein 

has been identified as a key player in facilitating virus entry into host cells, allowing 

for viral replication and dissemination. Additionally, it plays a crucial role in evading 

the host immune response by employing various strategies, such as shielding important 

epitopes and modulating immune recognition.1–9 The architecture of the S protein of 

SARS-CoV-2 is intricate, comprising an N-terminal S1 subunit and a C-terminal S2 

subunit that is structurally rigid. The S1 subunit undergoes functional movements that 

involve conformational changes between the closed and open S states. These transitions 

are facilitated by coordinated global movements of the S1 subunit, which includes the 

N-terminal domain (NTD), receptor-binding domain (RBD), and two structurally conserved 

subdomains, SD1 and SD2. Together, these components dictate the S protein’s structuraland 

dynamic response to binding partners and the ACE2 host receptor.10–15

Structural and biophysical studies have provided extensive characterization of the 

thermodynamic and kinetic properties of the functional SARS-CoV-2 S trimer.16–18 These 

studies have focused on exploring the complex interplay between subdomain movements 

and long-range interactions that link the S1 and S2 subunits to regulate the equilibrium and 

population shifts of the RBD between the open (up) and closed (down) conformations. The 

RBD serves as the primary site of interaction between the S protein and the ACE2 receptor 

on host cells and the population shifts of the RBD between open and closed conformations 

directly impact the accessibility of the ACE2 binding site. The exposure of the RBD in the 

open conformation can enhance the interaction between the S protein and ACE2, resulting 

in a higher binding affinity, while when the RBD is in the closed conformation, the binding 

affinity may be weakened or inhibited. This regulatory mechanism allows the S protein to 

finely modulate its interaction with ACE2 and determine the efficiency of viral entry into 

host cells.16–18 The receptor-binding motif (RBM) is the main functional motif in RBD16–18 

and is composed of the RBD residues 437–508 that form the binding interface between the 

RBD and ACE2 (Supporting Materials, Figure S1). The recognition loop residues (residues 

470–491) of the RBM form a dense interaction network with the ACE2 receptor that 

determines the RBD-ACE2 binding affinity providing a molecular link with virus infectivity.

Cryo-electron microscopy (cryo-EM) and X-ray structural studies have been instrumental 

in elucidating structural characteristics of the SARS-CoV-2 S protein variants of concern 

(VOCs) in different functional states, as well as their complexes with antibodies.19–28 These 

investigations have unveiled a remarkable diversity of binding epitopes and highlighted the 

versatility of the S protein’s binding mechanisms when interacting with various classes of 

antibodies. Biophysical studies using the differential scanning fluorimetry (DSF) assay have 

investigated the protein stability of SARS-CoV-2 Wu-Hu-1, Delta, and Omicron variants, 

showing that the S Omicron BA.1 variant exhibits the lower inflection temperature and 

a reduced protein stability for the S Omicron BA.1 variant compared to the S Wu-Hu-1 

and S Delta variants, while the BA.2 RBD was found to be more stable than the BA.1 

Xiao et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variant.29–32 In contrast to the conformational changes observed in the original Wu-Hu-1 

strain and other VOCs upon ACE2 binding, the Omicron S protein exhibits a distinct 

behavior showing a preference for the “one-RBD-up” conformation both before and after 

ACE2 binding.33–35 The Omicron BA.2 subvariants of SARS-CoV-2 have been linked 

to the increased transmissibility and especially significant antibody and vaccine evasion 

capabilities.36–40 Studies examining the binding affinities of Omicron BA.1.1 and BA.2 with 

the ACE2 receptor revealed that these variants exhibit stronger binding affinity compared 

to the BA.3 and BA.1 variants, suggesting that these variants may have a higher potential 

for viral entry into host cells.41–43 At the same time, surface plasmon resonance (SPR) 

studies showed that the Omicron BA.4/5 RBD has only marginally greater binding affinity 

for ACE2 compared to the ancestral Wu-Hu-1 strain and the BA.1 variants.44 The cryo-EM 

structures and biochemical analysis of the S trimers for BA.1, BA.2, BA.3, and BA.4/

BA.5 subvariants confirmed that the increased transmissibility of the BA.2 variant can be 

driven by a combination of the enhanced ACE2 binding affinity and stronger antibody 

evasion compared to the other Omicron sublineages.45,46 The cryo-EM conformations of 

the BA.2.75 S trimer in the open and closed forms, as well as the structures of the open 

BA.2.75 complexes with ACE2, have shown that the BA.2.75 is the most stable among 

the Omicron variants, exhibiting ~4–6-fold increased binding affinity compared to other 

Omicron variants.47,48

The BA.2 variant generated a new wave that led to a second generation of newly emerging 

Omicron variants that display a significant growth advantage and include BA.2.3.20, 

BA.2.75, BQ.1, BQ.1.1 XBB.1, XBB.1.5, and XBB.1.6 subvariants.49,50 They demonstrated 

the increased transmissibility and the ability to outcompete other strains in the rate of 

infectivity and spread.50 The XBB.1 subvariant is derived from the BA.2 lineage and 

emerged by recombination of two cocirculating BA.2 lineages (BJ.1 and BM.1.1.1). The 

XBB.1.5 subvariant harbors F486P modification involving a two nucleotide substitution, and 

while it is equally immune-evasive to closely related XBB.1 with F486S mutation, XBB.1.5 

exhibits growth advantage due to the higher ACE2 binding affinity from a single S486P 

mutation that can restore most of the favorable hydrophobic contacts.51–53 These studies 

suggested that R346T and L368I substitutions may enhance binding affinity, while F486S in 

XBB.1 leads to the decreased ACE2 binding affinity. BQ.1 is a direct descendant of BA.5, 

with additional spike mutations in some key antigenic sites (K444T and N460K). Its first 

descendant, BQ.1.1 carries a further additional mutation R346T. Biochemical investigations 

demonstrated that the binding affinity of the XBB RBD can be enhanced compared to that 

of the BA.2 variant but is weaker than for the BA.2.75 variant.53,54 At the same time, the 

binding affinities for BQ.1 and BQ.1.1 were comparable to the binding exhibited by the 

BA.4/5 variants.53,54 The binding affinity of the XBB.1.5 RBD-ACE2 was only slightly 

weaker than the one observed for BA.2.75 but significantly stronger than that of the XBB.1 

and BQ.1.1 variants.55 The neutralizing activity against XBB.1.5 was markedly lower than 

immune evasion of the ancestral strain and BA.2, while similar immune escape potential 

was observed for the XBB.1 and XBB.1.5 variants.56,57 These studies concluded that a 

high transmissibility and rapid surge of the newly emerged variants may result from the 

considerably enhanced immune evasion potential and the preserved favorable ACE2 binding, 

leading to the improved fitness which is comparable only to the BA.2.75 variant.
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Since March 2023, sublineages of the XBB variant harboring the F486P substitution 

(XBB.1.5 and XBB.1.9) dominated worldwide (https://nextstrain.org/ncov/gisaid/global/

6m). Very recently, an XBB sublineage XBB.1.16 RBD emerged in various countries 

including the US. Compared to XBB.1.5, XBB.1.16 has E180V and T478R mutations 

showing a greater growth advantage in the human population compared to XBB.1 and 

XBB.1.5 variants, while exhibiting similar immune evasion potential.58 The emerging 

variants display the increased infectivity and transmissibility over previous Omicron 

variants, and some RBD residues (R346, K356, K444, V445, G446, N450, L452, N460, 

F486, F490, R493, and S494) are mutated in at least five new independent Omicron 

sublineages.59 BQ.1.1 subvariant bears all five recent convergent mutations (R346T, K444T, 

L452R, N460K, and F486V). Evolutionary studies suggested that sublineages descending 

from BA.5, including BQ.1 and BQ.1.1 convergently increased viral fitness by consecutively 

acquiring substitutions at the R346, N460, and K444 residues, and it was proposed that 

BQ.1.1 increased the binding affinity to human ACE2 during evolution from the BA.5 

variant.60 Consistent with previous studies from the same group51,52 L452R and N460K 

substitution can increase the ACE2 binding affinity, while K444T substitution significantly 

decreased ACE2 binding affinity.60 It was suggested that acquiring L452R and N460K 

substitutions that potentially increase ACE2 binding ability can allow for the increased 

substitution frequency at the convergent sites to modulate immune escape capacity. Indeed, 

the latest studies showed that several convergent mutations present in the BA.2 or BA.5 

subvariants including R346T mutation that was found in BA.2.75.2, as well as K444T and 

N460K substitutions can be associated with the robust escape from monoclonal antibodies 

and from vaccine-induced antibodies.61,62 The patterns of convergent evolution in the 

Omicron variants was reviewed recently using analysis of the mutations which emerged 

at least three times independently in different linages.63 The convergently evolved mutations 

tend to cluster in specific locations of the NTD and RBD, and spatial clustering under 

convergent evolution is believed to create potential synergic binding effects between the 

RBD mutations.64,65 Additionally, convergent mutations N439K, N440K, L452R, T478R/K, 

and E484K may have evolved to carry positive charges, thus enhancing the electrostatic 

complementarity with the ACE2. Importantly, balancing the ACE2 binding and immune 

escape fitness tradeoffs can shape up the RBD evolution and patterns of convergent 

mutations. By examining mechanisms driving the emergence of convergent RBD mutations, 

it was suggested that the immune pressure on the RBD becomes increasingly focused 

and promotes convergent evolution, explaining the observed sudden acceleration of SARS-

CoV-2 RBD evolution and the convergence pattern.66

Computer simulations of the SARS-CoV-2 S proteins have allowed for a better 

understanding of the molecular mechanisms of SARS-CoV-2 S protein and receptor binding. 

Molecular dynamics (MD) simulations of the full-length SARS-CoV-2 S glycoprotein 

embedded in the viral membrane with a complete glycosylation profile provided detailed 

characterization of the conformational landscapes of the S proteins in the physiological 

environment.67–70 Using distributed cloud-based computing, large-scale MD simulations 

of the viral proteome observed dramatic opening of the S protein complex, predicting 

the existence of several cryptic epitopes in the S protein.71 MD simulations of the S 

protein in solution and targeted simulations of conformational changes between the open 
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and closed S forms revealed the key electrostatic interdomain interactions mediating the 

protein stability and kinetics of the functional spike states.72 Using the replica-exchange 

MD simulations, conformational landscapes of the full-length S protein trimers were 

investigated, unveiling hidden functional intermediates along with open-closed transition 

pathways and previously unknown cryptic pockets.73 Using MD simulations with a 

full representation of glycan moieties, conformational changes in a complete membrane-

embedded SARS-CoV-2 spike glycoprotein were probed to accurately describe pocket 

dynamics leading to discovery of cryptic pockets.74 The linkage between conformational 

dynamics and allosteric modulation of SARS-CoV-2 S in the absence or presence of ligands 

was established in an smFRET imaging assay, showing the presence of long-range allosteric 

control of the RBD equilibrium, which in turn regulates the exposure of the binding site 

and antibody binding.18 Our studies used integrative computational modeling approaches to 

reveal that the S protein could function as an allosteric regulatory machinery controlled 

by stable allosteric hotspots acting as drivers and regulators of spike activity.75–81 A 

comparative analysis of the conformational dynamics, electrostatics, protein stability, and 

allostery in the different functional states of S trimers for BA.1, BA.2, and BA.2.75 variants 

showed that Omicron mutations may evolve by targeting vulnerable sites of conformational 

adaptability to elicit immune escape while maintaining their control on balancing protein 

stability and functional fitness through robust allosteric communications with the stability 

hotspots.82 By combining atomistic simulations and a community-based network model of 

epistatic couplings, we found that convergent Omicron mutations such as G446S (BA.2.75, 

BA.2.75.2, XBB), F486V (BA.4, BA.5, BQ.1, BQ.1.1), F486S, F490S (XBB.1), F486P 

(XBB.1.5) can display epistatic relationships with the major stability and binding affinity 

hotspots which may allow for the observed broad antibody resistance.83

In the current study, we perform multiple microsecond MD simulations and Markov state 

model (MSM) analysis to characterize conformational landscapes and identify specific 

dynamic signatures of the SARS-CoV-2 S RBD-ACE2 complexes for the recently emerged 

XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. The results of simulations and MSM 

analysis provide a detailed characterization of the conformational states in the Omicron 

complexes, showing the increased thermodynamic stabilization of the XBB.1.5 complex, 

which is contrasted to more dynamic BQ.1 and BQ.1.1 variants. Using a comparative MSM 

analysis, we discover variant-specific changes of conformational mobility in the flexible 

RBD loops 470–491 and 440–452 containing convergent mutation sites that allow for 

modulation of conformational plasticity and immune escape.

By combining MSM analysis with perturbation-based response approaches, we also 

examine mechanisms of long-range dynamic couplings and allosteric communications in 

the Omicron RBD-ACE2 complexes. Based on the premise that allostery is linked with 

the evolvability of proteins, we explore the relationship between allosteric interactions 

and patterns of convergent Omicron mutations, showing how convergent mutations can 

potentiate conformational plasticity and modulate allosteric responses in the RBD to 

binding and immune escape. Using perturbation response scanning analysis, our study 

reveals important complementary roles of convergent Omicron mutations as regulators 

and transmitters of allosteric signaling in the RBD-ACE2 complexes. By integrating the 

results of atomistic MD simulations and MSM analysis with perturbation-based profiling of 
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allosteric residue potentials, we characterize the conformational landscape of the Omicron 

RBD-ACE2 complexes and examine the effect of Omicron mutations on the thermodynamic 

stability and kinetic transitions between different conformational states. Our findings suggest 

a mechanism in which convergent Omicron mutations can promote high transmissibility 

and antigenicity of the virus by controlling the interplay between the RBD stability 

and conformational adaptability, allowing for optimal fitness tradeoffs between binding 

to the host receptor and robust immune evasion profile. We also explore our method 

for fast and accurate allosteric site prediction PASSer (Protein Allosteric Sites Server) 

(https://passer.smu.edu)84–87 to characterize the distribution allosteric sites in the Omicron 

complexes and detect previously unknown hidden allosteric pockets present in the stable 

RBD conformations. Through integrative computational approaches, this study provides a 

systematic analysis and comparison of the effects of Omicron subvariants on conformational 

dynamics and allosteric signaling in the complexes with the ACE2 receptor.

MATERIALS AND METHODS

Structural Modeling and Refinement.

The crystal structures of the BA.2 RBD-ACE2 (pdb id 7XB0) and BA.5 RBD-ACE2 

complexes (pdb id 7XWA) were obtained from the Protein Data Bank.88 During structure 

preparation stage, protein residues in the crystal structures were inspected for missing 

residues and protons. Hydrogen atoms and missing residues were initially added and 

assigned according to the WHATIF program web interface.89 The missing loops in the 

studied cryo-EM structures of the SARS-CoV-2 S protein were reconstructed and optimized 

using the template-based loop prediction approach ArchPRED.90 The side-chain rotamers 

were refined and optimized by the SCWRL4 tool.91 The protein structures were then 

optimized using atomic-level energy minimization with composite physics and knowledge-

based force fields implemented in the 3Drefine method.92 The protonation states of the 

titratable residues of the ACE2 and RBD proteins were predicted at pH 7.0 using Propka 

3.1 software using the PROPKA software and web server,93 and the titratable residues were 

assigned the dominant protonation state at pH 7.0.

The refined structural models of the XBB.1 RBD-ACE2 and XBB.1.5 RBD-ACE2 

complexes were obtained based on its paternal BA.2 RBD-ACE2 complex, and the models 

for BQ.1 and BQ.1.1 complexes were constructed based on the paternal BA.5 RBD-ACE2 

complex. The MutaBind2 approach was employed to introduce mutations and optimize 

structural models for XBB.1, XBB.1.5, BQ.1, and BQ.1.1 RBD-ACE2 complexes.94,95 

This approach utilizes the FoldX energy model96,97 to introduce single or multiple point 

mutations on the crystal structure, followed by robust side-chain optimization and multiple 

rounds of energy minimization using the NAMD 2.9 program98 with the CHARMM36m 

force field.99

All-Atom Molecular Dynamics Simulations.

The CHARMM36M force field99 with the TIP3P water model100 was employed to perform 

all-atom MD simulations for each of the Omicron RBD-ACE2 complexes. The structures of 

the SARS-CoV-2 S-RBD complexes were prepared in Visual Molecular Dynamics (VMD 
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1.9.3).101 The protonation states of titratable residues were determined under neutral pH. 

The protein systems were solvated in 130 Å × 85 Å × 75 Å water boxes. In each system, 

sodium and chloride ions were added to maintain an ionic strength of 0.1 M. After energy 

minimization, the systems were first heated up from 100 to 300 K with a temperature 

increment of 20 K per 50 picoseconds (ps). Consequently, the systems were subjected 

to 1.5 nanoseconds (ns) isothermal–isobaric (NPT) equilibrations at 300 K (equilibrium 

run), followed by 1 microsecond (μs) canonical (NVT) simulations (production run) at 

300 K. Snapshots of the production run were saved every 100 ps. In all simulations, the 

SHAKE constraint was used to constrain bonds associated with hydrogen atoms in the 

solvent molecules and the proteins.102 The nonbonding interactions within 10 Å were 

calculated explicitly. The Lennard-Jones interactions were smoothed out to zero at 12 Å. 

The long-range electrostatic interactions were calculated using the particle mesh Ewald 

method103 using a fourth order (cubic) interpolation and a cutoff of 10.0 Å. The simulations 

were conducted using OpenMM (version 7.6.0).104 For each system, MD simulations 

were conducted three times in parallel to obtain comprehensive sampling. Each individual 

simulation has 10,000 frames.

For each system, MD simulations were conducted three times in parallel to obtain 

comprehensive sampling. Each individual simulation of the studied BA.2, BA.4/BA.5, 

XBB.1, XBB.1.5, BQ.1, and BQ.1.1 RBD-ACE2 complexes stored 10,000 frames; thus, 

we collected 30,000 frames for each of the complexes.

Time-Structure-Based Independent Component Analysis.

The time-structure independent components analysis (tICA) method identifies the slowest 

degrees of freedom and can preserve the kinetic information present in the MD trajectories 

by maximizing the autocorrelation function.105–108 In contrast to principal component 

analysis (PCA), which finds coordinates of maximal variance, tICA finds coordinates 

of maximal autocorrelation at the given lag time. Therefore, the tICA approach is 

useful to find the slow components in a data set and a robust method to transform 

MD simulation information before clustering data for the construction of a Markov 

model. Using a time series of molecular coordinates provided by an n-dimensional MD 

trajectory x(t) = (x1(t), ⋯, xn(t))T ∈ ℝn with Cartesian coordinates (x1, ⋯, xn), tICA can reduce 

the dimensionality of the trajectories and determine the slowest independent collective 

degrees of freedom onto which the projections of the initial data set have the largest time 

autocorrelation.

The tICA approach identifies the slowest degrees of freedom by solving the generalized 

eigenvalue problem:

CF = CFK

(1)

where K = diag(k1, ⋯, kn) and F = (f1, ⋯, fn) are the eigenvalue and eigenvector matrices, 

respectively, and C and C are the covariance matrix and the time-lagged covariance matrix 

of the coordinate vector defined as follows, respectively,
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C = (x((t) − x(t) )T (x(t) − x(t) )

(2)

C = (x(t) − x(t) )T (x(t + t0) − x(t) )

(3)

where ⋯  denotes the average. In order to obtain a symmetric time-lagged covariance 

matrix, 1
2 C + CT  is calculated. The latter step assumes the time reversibility of the process, 

which is satisfied in MD simulations. The featurization and dimensionality reduction were 

performed using the PyEMMA package.109

Markov State Model.

Stochastic Markov state models (MSMs)110–112 have become increasingly useful states-and-

rates models with the mature and robust software infrastructure113,114 for describing the 

transitions between functional protein states and modeling of allosteric events. In MSM, 

protein dynamics is modeled as a kinetic process consisting of a series of Markovian 

transitions between different conformational states at discrete time intervals. A specific time 

interval, referred to as the lag time, needs to be determined to construct a transition matrix. 

First, k-means clustering method is conducted on projected low-dimensional space and each 

simulation frame is assigned to a microstate. The transition counting is constructed based on 

a specific time interval lag time τ. Macrostates are kinetically clustered based on the Perron-

Cluster Cluster Analysis (PCCA++)115 and considered to be kinetically separate equilibrium 

states. The transition matrix and transition probability were calculated to quantify the 

transition dynamics among macrostates. The corresponding transition probability from state 

i to state j is calculated as

Pij(τ) = Prob Xt + τ ϵ Sj ∣ Xt ϵ Si

(4)

A proper lag time is required for MSM to be Markovian. The value of the lag time and the 

number of macrostates are selected based on the result of estimated relaxation timescale.116 

The implied timescales can be calculated using the eigenvalues (λi) in the transition matrix as

ti = − τ
ln λi(τ)

(5)

The number of protein metastable states associated with these slow relaxation timescales can 

be inferred based on the convergence of the implied relaxation timescale. These metastable 

states effectively discretize the conformational landscape. The Markov state model building 

was conducted using the PyEMMA package (v2.5.12).109 Based on the transition matrix, we 
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obtain implied timescales for transitioning between various regions of phase space and use 

this information to determine the number of metastable states. The number of metastable 

states also defines the resolution of the model by determining how large a barrier must be in 

order to divide phase space into multiple states.

Perturbation Response Scanning.

The perturbation response scanning (PRS) approach117–120 performed in the current study 

implemented the protocol originally proposed by Bahar and colleagues121,122 and was 

described in detail in our previous studies.123,124 In this approach, it is the 3N × 3N Hessian 

matrix H (N is the number of nodes/residues in the protein) whose elements represent 

second derivatives of the potential with respect the coordinates of each protein node, thus 

connecting the perturbation forces to the residue displacements. The 3N-dimensional vector 

Δ R of the node displacements in response to 3N-dimensional perturbation force follows 

Hooke’s law F = H * Δ R.

In the PRS approach, a perturbation force of a given magnitude is applied to one residue at 

a time, and the response of the protein system is measured. The force exerted on residue i is 

expressed as

F (i) = (0 0 0⋯Fx
(i) Fx

(i) Fx
(i)⋯0 0 0)T

(6)

The resulting response is measured by the displacement vector:

Δ R(i) = H−1F (i)

(7)

The second derivatives matrix H is obtained from simulation trajectories for each protein 

structure, with residues represented by Cα atoms. The deviation of each residue from an 

average structure is calculated by Δ Rj (t) = Rj (t) − Rj(t)  and the corresponding covariance 

matrix C is then calculated by Δ R Δ RT . We sequentially perturbed each residue in the 

SARS-CoV-2 spike structures by applying a total of 250 random forces to each residue 

to mimic a sphere of randomly selected directions. The displacement changes, Δ Ri is a 

3N-dimensional vector describing the linear response of the protein and deformation of all 

of the residues. Using the residue displacements upon multiple external force perturbations, 

we compute the magnitude of the response of residue k as | | Δ Rk
(i) | |2  averaged over 

multiple perturbation forces F(i), yielding the ikth element of the N × N PRS matrix. The 

average effect of the perturbed effector site i on all other residues is computed by averaging 

over all sensor (receiver) residues j and can be expressed as ( Δ Ri)2
effector

. The effector 

profile determines the global influence of a given residue node on the perturbations in other 

protein residues and can be used as proxy for detecting allosteric regulatory hotspots in the 

interaction networks. In turn, the jth column of the PRS matrix describes the sensitivity 
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profile of sensor residue j in response to perturbations of all residues, and its average is 

denoted as ( Δ Ri)2
sensor

. The sensor profile measures the ability of residue j to serve as a 

receiver of dynamic changes in the system.

Machine Learning-Based Prediction of Allosteric Pockets.

Machine learning can help detect and predict allosteric sites in proteins since it can deal 

with numerous input features, including local or static features of pockets and delocalized or 

dynamic features of proteins.125 In the current study, we employed the recently developed 

PASSer approach that provides fast and accurate predictions of allosteric sites in proteins.84–

87 PASSer offers three pretrained machine learning-based models: (a) an ensemble learning 

model consisting of extreme gradient boosting (XGBoost) and a graph convolutional neural 

network (GCNN),84 (b) an automated machine learning model powered by AutoGluon from 

Amazon Web Services (AWS),85 and (c) a learning-to-rank (LTR) model.86 The PASSer 

web server has been widely used for the validation of known functional pockets and the 

discovery of new allosteric sites.87

Here, we used the LTR model capable of ranking binding pockets and identifying the most 

probable allosteric binding sites.86 The LTR model in PASSer was trained and validated on 

two widely used data sets, the Allosteric Database (ASD)126,127 which is a comprehensive 

database of allosteric proteins and modulators and CASBench which is a benchmarking set 

that includes annotated catalytic and allosteric sites.128 FPocket is used in this approach to 

detect protein binding pockets and calculate physical and chemical features.129 All pockets 

in the protein were ranked according to their likelihood to be allosteric protein sites using 

the pretrained LTR algorithm with LightGBM, which is a highly efficient gradient boosting 

decision tree approach130 and the LambdaMART method. LambdaMART combines gradient 

boosting decision tree (GBDT) with the loss function derived from LambdaRank, an LTR 

algorithm.86

RESULTS AND DISCUSSION

Microsecond MD Simulations of the Omicron RBD-ACE2 Complexes Reveal Distinct 
Dynamic Signatures of RBD Proteins.

We first performed a comparative structural analysis of the Omicron RBD-ACE2 complexes 

for XBB.1 and XBB.1.5 complexes with the ACE2 receptor (Figure 1). Mutations G339D, 

S373P, S375F, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, and 

Y505H in BA.2 are shared with the BA.1 variant, but BA.2 additionally carries S371F, 

T376A, D405N, and R408S mutations (Table 1). The BA.2.75 subvariant has nine additional 

mutations compared to BA.2 in the NTD (K147E, W152R, F157L, I210V, and G257S) 

and RBD (D339H, G446S, N460K, and R493Q) (Table 1). G446S mutation is shared with 

Omicron BA.1, and R493Q reversed mutation is present in BA.4/BA.5 as well as in XBB.1 

and XBB.1.5 subvariants. The XBB.1 subvariant is a descendant of BA.2 and recombinant 

of BA.2.10.1 and BA.2.75 sublineages, featuring NTD mutations V83A, H146Q, Q183E, 

V213E, and G252V and specific RBD mutations (G339H, R346T, L368I, V445P, G446S, 

N460K, F486S, F490S, and reversed R493Q) (Table 1). Many of these RBD mutations 
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are known for their immune evasion functions, including R346T, G446S, and F486S.57 

XBB.1.5 is remarkably similar to XBB.1 with a critical single RBD modification F486P 

mutation (Table 1). Among the most recent descendant lineages, the Omicron subvariant 

BQ.1 is a direct descendant of BA.5, with additional spike mutations in some key antigenic 

sites (K444T and N460K). Its first descendant, BQ.1.1 carries a further additional mutation 

(R346T).131,132 BQ.1 has been detected in 65 countries, with an overall prevalence of 6%.

Despite considerable mutational differences between newly emerged Omicron variants, 

structural analysis of the RBD complexes with ACE2 for these variants revealed highly 

similar RBD conformations and the same binding mode of interactions, rendering overall 

very minor differences in the crystallographic conformations (Figure 1). We conjectured 

that the regulatory mechanisms of Omicron variants and functional differences in stability, 

binding, and immune escape can be examined through the lens of the conformational 

dynamics, reconstruction of the conformational landscape, and analysis of the distribution of 

multiple substates available to these systems. To characterize conformational landscapes 

and dynamic signatures of the Omicron variants, we conducted multiple independent 

microsecond MD simulations for each of the studied RBD-ACE2 complexes (Tables 1 and 

2, Figure 2). MD simulations revealed important commonalities and striking differences in 

the intrinsic conformational dynamics of the RBDs among Omicron variants.

The conformational flexibility of the Omicron RBD was analyzed by calculating the root-

mean-square deviations (RMSDs) (Supporting Materials, Figures S2,S3) and the root-mean-

square fluctuation (RMSF) distribution for the RBD residues (Figure 2).

The RMSD profiles for the RBD residues showed a fast convergence of the MD trajectories, 

for the BA.2 and XBB.1.5 complexes where all three trajectories converged reaching a 

steady equilibrium state after about 350–400 ns (Supporting Materials, Figure S2). An 

appreciable divergence of the RMSD profiles was seen for the MD trajectories of the XBB.1 

complex (Supporting Materials, Figure S2B,E) reflecting a more heterogeneous ensemble of 

the RBD conformations also pointing out to a greater flexibility of the ACE2.

The RMSD profiles for the Omicron BQ.1.1 RBD showed convergence of the three 

microsecond trajectories reaching the steady state after ~250–300 ns (Supporting Materials, 

Figure S3C). A more significant divergence among trajectories was detected for the 

parental BA.5 RBD (Supporting Materials, Figure S3A) and particularly BQ.1 RBD 

(Supporting Materials, Figure S3B). The RMSDs for the ACE2 displayed a certain degree 

of variability among trajectories for BA.5, BQ.1, and BQ.1.1 variants indicating the 

functionally significant plasticity of both binding partners in the RBD-ACE2 complexes. 

These preliminary findings also suggested that the RBD residues in the XBB.1 and BQ.1 

variants may be more dynamic than in the very closely related XBB.1.5 and BQ.1.1 

sublineages.

The RMSF profiles showed several local minima regions corresponding to the structured 

five-stranded antiparallel β-sheet core region (residues 350–360, 375–380, and 394–403). 

Common to the conformational mobility profiles that displayed a similar overall shape 

was the presence of two RMSF peaks corresponding to the flexible RBD regions (residues 
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360–373 and residues 380–396) (Figure 2). The RBD regions 440–456, 470–491, and 

491–505 include a number of binding interface residues. In particular, residues 491–505 

forming a dominant cluster of major interaction contacts with ACE2 consistently and 

displayed small fluctuations and featured considerable binding-induced stabilization in all 

complexes. Interestingly, the flexible RBD loops 440–452 and 470–491 containing many 

of the convergent mutation sites showed significant differences in their mobility across the 

Omicron variants (Figure 2).

The RMSF profiles revealed larger thermal fluctuations for the XBB.1 RBD (Figure 2A) 

compared to more stable XBB.1.5 RBD (Figure 2B). The increased rigidification of the 

XBB.1.5 RBD residue was manifested not only in the smaller deviations of the ACE2-

interacting residues but also in only moderate displacements of the flexible RBD regions 

(residues 355–375 and 380–400) (Figure 2A,B). The stable RBD core regions (residues 

390–420 and 430–450) exhibited even smaller fluctuations in the XBB.1.5 complex (Figure 

2A,B), suggesting the increased RBD stability for these variants which may be a relevant 

contributing factor to the stronger ACE2 binding experimentally observed for the XBB.1.5 

subvariant.54,55 The RMSF profile for XBB.1.5 is characterized by several local minima 

corresponding to the rigid RBD core, the ACE2 interfacial sites (residues 485–505) (Figure 

2B). Importantly, the thermal movements of the intrinsically more flexible RBM region were 

markedly suppressed in the XBB.1.5 variant (Figure 2B). The RBM tip in the XBB.1.5 

RBD-ACE2 complex is maintained in a stable folded conformation that can be described as 

a hook-like folded motif that is similar to the crystallographic conformations. Interestingly, 

in the XBB.1 RBD, the RBM tip is more flexible and samples a more dynamic state that 

circulates between a variety of partly disordered RBM conformations (Figure 2A).

By constructing mutational models of BQ.1 and BQ.1.1 RBD-ACE2 complexes using the 

crystal structure of the BA.4/BA.5 complex and performing microsecond atomistic MD 

simulations, we observed several interesting patterns in the distributions. The RMSF profiles 

for the BQ.1 RBD residue showed markedly greater fluctuations (Figure 2C) compared to 

closely related BQ.1.1 RBD (Figure 2D). In particular, we noticed the reduced mobility in 

the RBM region and partly suppressed motions of intrinsically flexible RBM tip residues 

475–486 in the BQ.1.1 (Figure 2D). Interestingly, convergent mutation sites R346T, K444T, 

and N460K belong to fairly exposed flexible regions, but these positions experienced only 

very moderate fluctuations in the BQ.1.1 RBD-ACE2 complex. One of the microsecond 

MD trajectories of the BQ.1.1 RBD-ACE2 complex showed some divergence in the RMSF 

values showing larger fluctuations of the convergent mutational positions K444, V445, and 

G446 (Figure 2D). The key Omicron mutational positions Q493R, Q498R, N501Y, and 

Y505H that participate in the critical ACE2 binding interface region are highly constrained 

by their strong interactions with the receptor and experience only very minor fluctuations 

across all of the studied variants. Overall, the major difference in the dynamic signatures 

between Omicron variants was a noticeable reduction in the mobility of the intrinsically 

flexible RBM loop for XBB.1.5 and BQ.1.1 subvariants, while this region is characterized 

by greater conformational variability and lack of the well-defined folded RBM tip in the 

XBB.1 and BQ.1 variants (Figure 2).
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To provide a more detailed analysis of stable and flexible RBD regions, we used 

conformational ensembles and computed the fluctuations of the mean distance between each 

residue and all other protein residues. These variations can be converted into the distance 

fluctuation stability indexes to measure the energetics of the residue deformations.133,134 

The adaptation of this approach for the analysis of rigid and flexible residues in the SARS-

CoV-2 S proteins was detailed in our previous studies.83 In this approach, the high values of 

distance fluctuation stability indexes point to structurally rigid residues as they display small 

fluctuations in their distances to all other residues, while small values of this index would 

point to more flexible sites that display larger deviations of their inter-residue distances. 

A comparative analysis of the residue-based distance fluctuation profiles revealed several 

dominant and common peaks reflecting the similarity of the topological and dynamical 

features of the RBD-ACE2 complexes (Supporting Materials, Figure S4). The distributions 

showed that the local maxima for all RBD-ACE2 complexes are aligned with structurally 

stable and predominantly hydrophobic regions in the RBD core (residues 390–420 and 430–

450). These peaks are particularly pronounced for the RBD residues in the XBB.1.5 RBD-

ACE2 complex (Supporting Materials, Figure S4A). Somewhat smaller distance fluctuation 

stability indexes are featured for the RBD core residues in the more dynamic BQ.1 and 

BQ.1.1 complexes (Supporting Materials, Figure S4B). Notably, the ACE2 binding induced 

significant stabilization of the RBD residues 490–510 as evident from sharp peaks of the 

distribution for all complexes. This segment includes the RBM positions (residues 490–505) 

that are involved in direct interactions with ACE2 and determine the binding affinity of 

the RBD-ACE2 complexes. Notably, the RBD positions associated with the high distance 

fluctuation stability indexes are shared among all Omicron variant complexes, featuring 

conserved structural stability hotspots F400, I402, Y421, Y453, L455, F456, Y473, A475, 

and Y489 (Supporting Materials, Figure S4A). A similar shape of the stability index 

distributions for all Omicron variants suggested the conserved partition of stable and flexible 

RBD regions. Nonetheless, the larger peaks can be seen for the more stable XBB.1.5 

complex (Supporting Materials, Figure S4A). This implies that the RBD core regions and 

ACE2 binding interface positions are considerably rigidified in the XBB.1.5 variant. Hence, 

our analysis further confirms the improved RBD stability of XBB.1.5 compared to the more 

dynamic BQ.1 and BQ.1.1 complexes. The structural rigidity and evolutionary conservation 

of Y449, Y473, L455, F456, and Y489 hotspots are critical for the stability and functionality 

of the RBD. By projecting sites of Omicron mutations on the stability index distributions 

(Supporting Materials, Figure S4), we found that these substitutions tend to target more 

dynamic and energetically tolerant sites, inducing moderate binding affinity changes while 

allowing for robust modulation and enhancement of immune escape potentials.

The RMSF analysis of the ACE2 residues showed similar profiles across all of the examined 

variants (Figure 3). The highly stable ACE2 residues corresponding to the rigid core and 

the binding interface positions are centered around K353 and H34 positions (Figure 3). The 

key ACE2 binding motifs correspond to an α-helix (residues 24–31) and a β-sheet (residues 

350–356) that display moderate RMSF values in all complexes. The important polar charged 

residue interactions at the interface are formed with the ACE2 residues D30, K31, H34, 

and E35 that display small thermal fluctuations. Other ACE2 residues Q24, M82, Y83, 

D38, Y41, N330, and K353 that anchor distinct parts of the RBD-ACE2 binding interface 
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remained stable in all MD trajectories (Figure 3). Notably, the conformational dynamics 

profiles revealed signs of the increased ACE2 heterogeneity in the flexible loop (residues 

340–350) which is located away from the binding interface, and this mobility increased in 

the XBB.1.5 and BQ.1.1 RBD-ACE2 complexes (Figure 3B,D).

Structural mapping of the conformational mobility profiles for the Omicron RBD-ACE2 

complexes (Supporting Materials, Figure S5) underscored crucial differences in the rigidity 

and flexibility of the RBD residues, showing the enhanced stabilization of the RBD core 

in the XBB.1.5 variant (Supporting Materials, Figure S5B) compared to the less rigid 

XBB.1 complex (Supporting Materials, Figure S5A). The structural maps also demonstrated 

minor changes in the rigidity of the ACE2 regions, particularly for XBB.1.5 (Supporting 

Materials, Figure S5B) and BQ.1.1 variants (Supporting Materials, Figure S5D). For both 

complexes, the conformational dynamics profiles indicated further stabilization of the ACE2 

regions that are distal from the RBD-ACE2 binding interface. At the same time, the 

RBD in the BQ.1.1 complex is more dynamic compared to the structurally rigid XBB.1.5 

RBD. These observations may indicate that Omicron mutations in different variants could 

induce moderate and yet specific long-range response on both RBD-ACE2 binding interface 

contacts and also on long-range allosteric interactions.

To examine the character of dynamic couplings and quantify correlations between motions 

of the RBD regions, we performed the dynamic cross correlation (DCC) residue analysis 

and reported the DCC maps for the Omicron RBD-ACE2 complexes (Figure 4). The DCC 

maps demonstrated subtle differences in the dynamic couplings (Figure 4). For XBB.1 

and XBB.1.5 complexes, we observed strong positive correlations among residues 395–475 

(Figure 4A,B).

The movements of these RBD residues are anticorrelated with the displacements of the 

RBM tip (residues 475–487). This reflects a more stable RBD in the XBB.1.5 complex 

yielding strong dynamic couplings between the RBD core and more flexible regions of the 

binding interface. Hence, conformational dynamics of the XBB.1.5 RBD exhibited signs 

of long-range allosteric couplings between the RBD core elements and flexible loops that 

could collectively determine the RBD response to binding (Figure 4A,B). A different pattern 

of dynamic couplings was observed for BQ.1 (Figure 4C) and BQ.1.1 (Figure 4D). For 

BQ variants, positive dynamic correlations were seen for residues 335–375 and 396–455 in 

the RBD, while the movements of the flexible loop (residues 375–395) are anticorrelated 

with the RBD core. Common to XBB.1.5 and BQ.1.1 RBDs is the presence of negative 

cross-correlations between motions of the RBM tip (residues 475–487) and other RBD 

regions (residues 400–470 and 490–520) (Figure 4), where the extent of anticorrelation 

is stronger for the XBB.1.5 RBD (Figure 4B). The key differences in the conformational 

dynamics of the Omicron RBD-ACE2 complexes were further exemplified by the DCC 

maps showing the reduced mobility of the RBM loops in XBB.1.5 and BQ.1.1 and the 

enhanced long-range dynamic couplings between RBD regions in these complexes (Figure 

4).

To conclude, microsecond MD simulations of the Omicron RBD-ACE2 complexes 

presented convincing evidence of distinct dynamic patterns in the otherwise structurally 
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similar Omicron RBD-ACE2 complexes. Consistent with the experimental data, our results 

showed that XBB.1.5 and BQ.1.1 mutations may induce the increased stabilization of the 

RBD, which may be linked with the experimentally observed greater RBD stability and 

enhanced ACE2 binding of the XBB.1.5 variant compared to the other variants.55–57

Dimensionality Reduction Analysis Unveils Differences in Conformational Heterogeneity of 
the Omicron RBD-ACE2 Complexes.

While the analysis of MD simulations and functional movements provided important 

insights into the underlying conformational landscape, the high dimensionality of the data 

sets produced by simulations often hinders salient dynamic signatures associated with 

the mechanisms of allosteric transitions. Here, to facilitate the conformational landscape 

analysis, we employed the tICA dimensionality reduction method to project the results of 

MD simulations into low-dimensional space.105–108 The low-dimensionality projection of 

the MD ensemble in different microsecond trajectories highlighted a consistent occupancy 

of the dominant conformational region for the BA.2 complex (Figure 5A) as well as 

for the related XBB.1 (Figure 5B) and XBB.1.5 variants (Figure 5C). The dominant low-

dimensional region is associated with “hook-like” folded conformation of the RBM tip, 

which is observed in the crystallographic conformations. Notably, this RBD conformation is 

also prevalent in the low-dimensional density distribution for the BA.4/BA.5 variant (Figure 

5D). The conformational space of the BA.4/BA.5 variant (Figure 5D) remains narrow 

and similar to that of BA.2 (Figure 5A). In general, the commonly shared region in the 

low-dimensional space corresponds to the crystallographic conformations observed in the 

parental BA.2 and BA.4/BA.5 variants.

Nonetheless, in a striking contrast, a much larger conformational space is explored by 

the BQ.1 (Figure 5E) and BQ.1.1 variants (Figure 5F). This analysis showed that a small 

number of changes acquired in BQ.1 and BQ.1.1 variants due to accumulation of convergent 

mutations in R346, K444, L452, and N460 positions could lead to significant enhancement 

of the conformational variability and result in the noticeable redistribution in the population 

of conformational states (Figure 5E,F). The broader area of the conformational space 

for BQ.1 reflected the greater mobility of BQ.1 RBD (Figure 5E). Interestingly, the 

tICA projection of the conformational ensembles for the BQ.1.1 variant (Figure 5F) 

revealed some additional and unique regions of the conformational space compared to 

the closely related BQ.1 variant. The heterogeneity of the dynamic states revealed in the 

low-dimensional projection space for BQ.1 (Figure 5E) and BQ.1.1 (Figure 5F) suggested 

that convergent mutations may induce unique dynamic signatures of the conformational 

ensembles for these variants and promote the increased conformational plasticity of the 

RBD.

A common and powerful approach to probe conformational landscapes is to combine 

MD simulations with MSM analysis to estimate probabilities for protein transition among 

different macrostates. To build an effective MSM, it is important for a dimensionality 

reduction method to retain information about transitions among these macrostates. We 

analyzed the relaxation timescales in MSM, also referred to as implied timescales. The 

relaxation timescale can be interpreted as the time needed for a system to change its state. 
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In the tICA-reduced 2D space, the k-means clustering method was applied to partition the 

2D data into 250 states. The implied timescales were calculated with lag times ranging 

from 0.1 to 12 ns. The top 15 timescales are shown (Figure 6A). The trend of the implied 

relaxation timescale revealed that the estimated timescale converged after about 5 ns, which 

was chosen as the lag time in the construction of MSM. Based on the gap of timescales, 

the number of macrostates was set to seven. The low-dimensional representation with 2 

components (t-IC) showed some overlapping and the increased density of states in the 

dominant region sampled in all examined Omicron RBD-ACE2 systems (Figure 6B). These 

high-density regions are sampled in the BA.2, XBB.1, and XBB.1.5 variants (Figure 6B) 

and these regions are associated with macrostates 3 and 4 (Figure 6C). The less populated 

regions are sampled in the BQ.1 and BQ.1.1 variants where macrostates 1, 2, 5, 6, and 7 

contribute to the overall distribution of states (Figure 6B,C). To visualize the distribution 

density of all simulations, a hexagon binning was employed where each hexagon represents 

a small region, and the color bar shows the frequency of this region (Figure 6D). The 

density plot revealed a clearly dominant area in the low-dimensional space sampled by all 

variants. Importantly this region is exclusively sampled by the XBB.1.5 variant, suggesting 

considerable stabilization of this complex. The least dense area of the distribution (“right 

leg”) appeared mostly in a more dynamic BQ.1 variant. In general, the low-dimensional 

projection analysis emphasized the key differences in the conformational dynamics of the 

Omicron variants, where XBB.1 and XBB.1.5 RBDs tend to occupy a more limited area of 

the conformational space corresponding to the crystallographic conformation of the parental 

BA.2 variant. In contrast, convergent mutations in the BQ.1 and BQ.1.1 RBD complexes 

may induce greater conformational heterogeneity, which is particularly apparent in the BQ.1 

variant with the most flexible RBD structure among studied systems.

After the partition of the MSM macrostates was determined (Supporting Materials, Figure 

S6), the stationary distribution and transition probabilities were calculated based on the 

constructed MSM. We determined the distributions of the Omicron RBD-ACE2 complexes 

in different macrostates which revealed the unique dynamic signatures and populations in 

each complex. The transition probabilities were determined among different macrostates for 

all systems, with the 5 ns lag time. The high percentage of self-conserved probability shows 

the stability of macrostates. We compared the distributions and transitional maps between 

parental BA.2 (Supporting Materials, Figure S7A) and XBB.1/XBB.1.5 subvariants (Figure 

7A,B). For the BA.2 variant, we found that macrostates 3, 4, and 5 dominate the distribution 

with the macrostate 4 contributing ~51% to the conformational population (Supporting 

Materials, Figure S7A). The transitional map for BA.2 showed that the macrostates could 

have high kinetic barriers for transition to the other states (Supporting Materials Figure 

S7C). For example, for the macrostate 4, there is an overall probability of less than 0.5% to 

shift to two macrostates 3 and 5. At the same time, there is almost a 100% probability that 

minor macrostate 6 would interconvert to the macrostate 5 but close to zero probability of 

the reverse transition (Supporting Materials Figure S7B).

A comparative MSM analysis for XBB.1 and XBB.1.5 sublineages of BA.2 showed 

a reduction in the number of macrostates, where macrostates 3 and 4 dominate the 

conformational distribution for XBB.1 (Figure 7A,C) and XBB.1.5 RBDs (Figure 7B,D). 

Moreover, the population of macrostate 4 increased in the XBB.1.5 RBD to 86% from 75% 
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in the XBB.1 variant (Figure 7B). Structural analysis of the obtained macrostates showed 

that the differences between macrostates 3 and 4 are confined to the flexible RBM region 

(residues 470–491) that harbors several Omicron XBB.1/XBB.1.5 mutational sites and 

convergent Omicron sites F486P (F486S) and F490 (F490S) (Figure 8). The MSM analysis 

revealed that the dominant macrostate 4 featured well-ordered and stable “hook-like” RBM 

tip conformation. At the same time, macrostates 4 and 5 in BA.2 have a similar ordered 

RBM tip region but differ in the conformation of the flexible loop 440–452 (Figure 8). 

In macrostate 4, this loop assumes the crystallographic conformation of the BA.2 RBD, 

while this loop becomes more disordered in macrostate 5 (Figure 8). Hence, the major 

structural differences between major macrostates are mostly confined to the order–disorder 

transitions in the flexible loop regions 440–452 and 470–491. Interestingly, these regions 

harbor a number of convergent mutational sites including K444, V445, G446, N450, and 

L452 positions.

The transition maps for XBB.1 (Figure 7C) and XBB.1.5 (Figure 7D) unveiled a small 

transitional probability to interconvert from macrostate 4 to macrostate 5, indicating the 

increasing dominance of macrostate 4. The MSM analysis also revealed that dominant 

macrostate 4 featured well-ordered and stable “hook-like” conformation of the RBM tip 

centered on the F486P position in XBB.1.5 (Figure 8). This state becomes less favorable 

in XBB.1, while the contribution of macrostate 3 with a partly disordered conformation of 

the RBM tip increased. Based on the structural comparison of the macrostates, it becomes 

apparent that a combination of F486S and F490S mutations in XBB.1 may induce the 

increased mobility of the flexible RBM tip. On the other hand, the effect of F486P mutation 

in the XBB.1.5 variant can result in a partial restoration of the interfacial contacts mediated 

by F486P in this region. This analysis provides a plausible rationale of the experimental 

data which discovered that the XBB.1.5 variant is equally immune-evasive as XBB.1 but 

may have growth advantage due to the higher ACE2 binding. Deep mutational scanning 

experiments confirmed the effects of F486 mutations (F486V/I/S/L/A/P) showing that 

F486P imposes the lowest cost in RBD affinity loss and has the largest increase in RBD 

expression.135,136 F486V (BA.4/BA.5), F486I, F486S (XBB.1), or F486P(XBB.1.5) also 

represents a convergent evolutionary hotspot shared by the Omicron subvariants and is one 

of the major hotspots for escaping neutralization by antibodies.137

A comparison of the macrostate distributions and transition maps for the parental BA.5 

(Supporting Materials, Figure S7B,D) and BQ.1/BQ.1.1 variants (Figure 9) revealed a vastly 

different pattern even though the structures of all Omicron RBD-ACE2 complexes are 

similar. Interestingly, for the parental BA.5 variant, we observed populations of macrostate 

3 and macrostate 1, where structurally macrostate 1 is more similar to the experimental 

structure and has a well-ordered RBM tip conformation (Supporting Materials, Figure S7B). 

Hence, the increased mobility of the BA.5 RBD is manifested in a more populated state with 

the very flexible RBM region (residues 470–491). Interestingly, the distribution is broadened 

in the BQ.1 variant showing significant contribution of macrostates 1 (34%), 2(11%), 3 

(35%), and 7 (20%) (Figure 9A,C). Structural analysis showed that macrostates 3 and 7 are 

similar in their partly distorted RBM tip conformation but these macrostates are different in 

the conformation of the loop 440–452 (Figure 8). The macrostate 1 has a well-ordered RBM 
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tip but featured conformational differences distributed over the flexible loops in the RBD 

(Figure 8).

The transitional maps showed that macrostates 3, 1, and 4 tend to occupy neighboring 

areas of conformational space (Figure 9). Interestingly, the distribution of macrostates can 

be altered in the BQ.1 variant (Figure 9A,C), as macrostate 1 begins to dominate the 

population, while the contribution of macrostate 4 is markedly diminished. The transition 

map for BQ.1 showed that macrostate 4 can convert to macrostate 1 with 77% probability, 

while the reversed transition is highly unfavorable (Figure 9C,D). Macrostate 3 is also 

connected with macrostates 2 and 7 in the BQ.1 variant. The dominant population 

of macrostates for BQ.1 is characterized by distorted and partly disordered RBM tip 

conformation featured in macrostates 3 and 7 and enhanced flexibility of the RBD loops 

in macrostate 1.

Remarkably, the MSM analysis indicated that the distribution of macrostates can be 

markedly altered in the closely related BQ.1.1 variant (Figure 9B,D). We observed the 

population shift to macrostates 3, 4, and 6 dominating the conformational distribution with 

macrostate 4 contributing 43%, macrostate 3 contributing 33%, and macrostate 6 providing 

22% of the total population (Figure 9B,D). While macrostate 3 has a partially disordered 

RBM tip, macrostate 6 displayed alterations in the flexible loop 440–452 compared to 

the crystallographic conformation of the BA.5 RBD (Figure 9B,D). The transition map 

showed that macrostate 5 could interconvert to macrostate 4 with ~17% probability, but the 

interconversion between states 4 and 3 is less probable (with only 3.9% from state 3 to 

4 and 2.5% of the reversed transition) (Figure 9D). At the same time, macrostate 2 could 

readily interconvert to macrostate 3 with a 100% probability and macrostate 6 can convert to 

macrostate 5 with a 47% probability (Figure 9D).

Although the distribution of macrostates in BQ.1.1 becomes more similar to that of the 

XBB.1.5 variant, revealing the critical contribution of macrostates 3 and 4, the population 

of conformational states is significantly broader than that in XBB.1.5 (Figure 9C,D). In 

addition to the most dominant macrostate 4, the combined contributions of macrostates 3 

and 6 are equally significant. These macrostates feature distinct variations of the flexible 

RBD loops 440–452 and 470–491 in the BQ.1.1 variant. As a result, the BQ.1.1 RBD 

may exist in a dynamic equilibrium between the crystallographic conformation seen in the 

parental BA.5 RBD and more dynamic states with highly variable RBM loops (Figure 

9C,D). These results demonstrated that convergent mutations that are characteristic of the 

BQ.1 and BQ.1.1 variants could significantly change the dynamic equilibrium and modulate 

the increased flexibility of the RBD in these Omicron variants compared to a more stable 

RBD in the XBB.1.5 variant.

The MSM analysis provided a detailed characterization of conformational macrostates, 

revealing the unique and distinct dynamic signatures of structurally similar Omicron RBD-

ACE2 complexes. One of key findings of this analysis revealed a strong preference of 

XBB.1.5 for a single macrostate associated with the ordered RBM conformation due to the 

restoration of F486P contacts with ACE2 inducing curtailed mobility in this region. Our 

results suggest that this dynamic signature may allow XBB.1.5 to maintain immune evasion 
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while protecting the RBD stability and binding. In contrast, the dominant macrostates in 

XBB.1 are characterized by highly flexible RBM conformation induced by F486S mutation 

and weaker ACE2 contacts which may explain the growth advantages of the XBB.1.5 

variant. Another key finding is the emergence of several dominant macrostates in the BQ.1.1 

variant including conformations with the highly flexible loop 440–452. Based on our results, 

BQ.1.1 variant mutations (R346T, K444T, and N460K) can increase the mobility in the loop 

harboring convergent mutational sites K444T, V445, and G446. Notably, BQ.1.1 bears all 

five recent convergent mutations: R346T, K444T, L452R, N460K, and F486V. The increased 

adaptability of the 440–452 loop may provide means for the enhanced immune evasion of 

the BQ.1.1 variant, further emphasizing the role of convergent mutations in modulating the 

flexibility of the mobile regions.

In general, MSM analysis consistently showed that major macrostates in the Omicron 

variants may differ due to variations in the intrinsically flexible RBD loops 470–491 and 

440–452 involved in the interfacial contacts and containing sites of convergent mutations 

K444, V445, G446, N450, L452, and F486. Our results suggested that the variant-specific 

changes of conformational mobility in these functional loops may be modulated and altered 

through accumulation of various convergent mutations, thereby providing an evolutionary 

path for the improved immune escape without incurring a significant cost on the ACE2 

binding. Moreover, the immune pressure on the RBD that promotes convergent evolution 

may be localized in these functional loops responsible for dynamic differences between 

variants. We argue that through this interplay of dynamic changes modulated by convergent 

mutations, BA.2/XBB.1/XBB.1.5 or BA.5/BQ.1/BQ.1.1 subvariants can enhance antibody 

escape.

Perturbation Response Scanning Reveals the Complementary Role of Convergent 
Mutations as Allosteric Effector and Sensor Centers.

Patterns of convergence are often offered as evidence of adaptation, and recent studies 

indicated that allosteric interactions in proteins can not only dictate long-range couplings 

and signal transmission patterns but are also essential in the evolutionary adaptation of 

proteins.138,139 It has been recognized that allosteric mechanisms can regulate contribution 

of different conformational states and shape up functional landscapes in proteins, enabling 

evolutionary adaptation of new functions through controlled modulation of conformational 

plasticity.139

We hypothesized that sites of convergent mutations target specific structural hotspot 

of adaptation that may be organized through engagement to the pre-existing allosteric 

network. In this model, convergent mutations may work in concert with each other to 

potentiate functional protein adaptation to binding and immune escape via modulation of 

conformational flexibility in the key regions. According to the MSM analysis, we suggest 

that specific modulation of mobility in the two flexible regions (residues 440–452 and 

470–491) may be orchestrated through the allosteric interaction network that couples sites 

convergent mutations.

To explore potential allosteric roles of the convergent mutations in RBD and characterize 

how Omicron variants can exploit these sites to optimize functional adaptation, we 
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employed perturbation profiling methodology to interrogate the inter-residue couplings and 

particularly probe the role of convergent mutations in mediating long-range allosteric effects 

in the Omicron RBD-ACE2 structures. The PRS method118–120 was used to examine the 

allosteric roles of the RBD residues using the conformational ensembles of the XBB.1/

XBB.1.5 and BQ.1/BQ.1.1 RBD-ACE2 complexes (Figure 10). The effector profiles 

measured the allosteric capacity of residue i to influence dynamics changes in all other 

residues, with the local maxima usually attributed to allosteric centers that may control 

propagation of perturbations over long distance and allosteric communications in the system. 

At the same time, the transmission capacity of residue j to perturbations can be evaluated 

from sensor distributions in which major peaks are often aligned with flexible regions 

experiencing large functional changes.

The PRS analysis revealed consistent effector peaks corresponding to sites with a high 

allosteric potential (residues 338–353, 400–406, 420–422, 432–436, 450–456, and 501–512) 

that are conserved across all RBD-ACE2 complexes (Figure 10A,B). The highest peaks 

corresponded to the hydrophobic RBD core (residues 399–402) and RBD segment (residues 

505–512) that connects N501Y and Y505H interfacial positions with the central RBD core 

(Figure 10A,B). The major allosteric effector clusters were also observed in the functionally 

important segment (residues 450–456) harboring convergent mutational sites N450 and 

L452R and connecting the RBD core with the ACE2 binding interface (Figure 10A,B). 

We also found that the effector distribution peaks featured higher values for the XBB.1.5 

(Figure 10A), suggesting that the structural stability of the RBD for this variant may further 

amplify the effect of the corresponding allosteric hotspots. Of particular interest was a 

comparison of the effector profiles for XBB.1.5 (Figure 10A) and BQ.1.1 variants (Figure 

10B). The overall shape of the effector profiles and the distribution of major peaks were 

quite similar, indicating that the allosteric networks in both variants could be controlled 

through the same key RBD positions. By projecting positions of convergent mutational sites 

on the distributions, it can be seen that N450, L452R, R493Q, S494, and especially Y501 

residues correspond to major allosteric centers that regulate long-range couplings (Figure 

10A,B). There is a visible concentration of the effector sites near the critical interfacial 

region anchored by the Y501 position which is experimentally shown to be involved in 

short- and long-range epistatic relationships with other RBD sites.64,65,136

These sites could mediate an ensemble of well-defined signaling paths from the RBD core 

to the interface regions. Interestingly, by inspecting the effector potential for the entire 

spectrum of Omicron mutational sites in XBB.1.5 and BQ.1.1 variants, we noticed that 

many of other Omicron positions featured only moderate effector values. The sensor profiles 

were similar between XBB.1/XBB.1.5 and BQ.1/BQ.1.1 variants (Figure 10C,D) featuring 

convergent mutation sites N460K and F486S/V as important local peaks of the distribution. 

It is worth mentioning that highly flexible peripheral RBD regions displayed higher sensor 

peaks and could be involved in transmission of allosteric changes. We argue that these 

sensor clusters may allow the S-RBD to exploit conformational plasticity to mediate binding 

response to various classes of antibodies.

We also performed structure-based PRS analysis of major macrostates (Figure 11). 

Interestingly, significant differences were observed in both the effector and sensor profiles. 
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Consistent with the major contribution of macrostate 4 to the population of XBB.1/XBB.1.5 

and BQ.1.1 states, the effector profile for this macrostate featured highest peaks (Figure 

11A). Notably, a significant fraction of convergent mutation sites including N440K, K444T, 

V445P, G446S, N450, and L452R exhibited high effector potential values in macrostate 

4. Moreover, the effector potential of these sites diminished in more dynamic macrostates 

3 and 6 that contribute significantly to the population distribution of BQ.1 and BQ.1.1 

variants (Figure 11A). Another cluster of notable effector centers is concentrated near 

R493Q, S494, and Y501 sites. On the other hand, highly flexible convergent mutation sites 

T478R/K, E484K and F486S/P are prominently featured among sensor hotspots of allosteric 

perturbations (Figure 11B). The sensor potential of these residues is amplified in macrostate 

6 in which the flexibility of the loops 440–452 and 470–491 is redistributed and enhanced 

compared to macrostate 4. Hence, convergent mutations in the RBM regions may function 

as sensor hotspots of allosteric signals that is enabled through modulation of conformational 

plasticity in these regions.

Structural superposition of the major macrostates with the crystallographic conformations of 

BA.2 and BA.5 RBD showed overall fold similarity, while also highlighting differences 

in modulation of the flexible RBD loops (Figure 11C-E). Macrostate 3 displayed a 

distorted RBM conformation that abrogated “hook-like” folded arrangement of the RBM 

tip (Supporting Materials, Figure S8A). At the same time, macrostate 4 is similar to 

the crystallographic BA.2 and BA.5 conformations showing a close structural overlap 

in the loops 440–452 and 470–491 (Supporting Materials, Figure S8B). On the other 

hand, macrostate 6 featured a significant displacement of the loop 440–452 and moderate 

fluctuations of the RBM tip region (Supporting Materials, Figure S8C).

Collectively, these observations suggested that convergent mutation sites may play 

complementary roles in shaping up the long-range allosteric couplings and mediating 

changes in conformational plasticity of the RBD. Indeed, K444T, N450, L452R, and Y501 

correspond to the effector centers of allosteric interactions and could control conformational 

changes in the flexible loop 440–452. The analysis revealed that convergent mutation 

sites, N460K, T478K, and F486/V/S/P of the mobile RBM tip (Supporting Materials, 

Figure S1) serve as major transmitters of long-range signals in the RBD-ACE2 complexes. 

According to the PRS analysis, the allosteric crosstalk between sites of convergent mutations 

acting as allosteric effectors and receivers may provide a mechanism for exerting such 

coordinated control among interfacial regions. Structural hotspots in adaptation often 

refer to specific regions or residues that have undergone significant changes or variations 

during the process of adaptation, which play a critical role in conferring new functions or 

improving existing functions in response to evolutionary pressures. The observed variations 

of conformational flexibility in the two flexible RBD loops 440–452 and 470–491 observed 

in the macrostates may be evolutionary beneficial for immune escape without compromising 

binding and stability. Combined, the results of MSM analysis and PRS modeling suggested 

that convergent mutations may be involved in long-range epistatic interactions where 

mutational changes in spatially distant communicating residues may control the extent of 

conformational plasticity in the flexible regions. According to our findings, convergent 

mutations may enable variant-specific adaptation of conformational dynamics in the 

interfacial regions and shape up conformational landscapes to control immune escape, while 
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preserving the RBD stability, functionality, and ACE2 binding. A potential implication of 

these results is that cumulative effects of individually near-neutral RBD mutations may 

allow for evolutionary adaptation and modulation of conformational mobility.131 Although 

mutations in viruses occur randomly as the virus replicates where most of these mutations 

have no significant effect on the virus’s characteristics, the emergence of Omicron mutations 

and a pattern of convergent mutations may confer the increased transmissibility and the 

ability to evade the immune system. These advantageous mutations can then become more 

prevalent in subsequent viral populations. Our findings are consistent with a mechanism 

in which Omicron mutations that achieved high transmissibility and antigenicity of the 

virus may promote a balance of the RBD folding stability and conformational adaptability 

to ensure the proper tradeoff between protein viability, binding to the host receptor and 

immune escape.

Inferring Evolution of Allosteric Cryptic Pockets from Conformational Ensembles and 
Macrostates.

The reversed allosteric communication approach is based on the premise that allosteric 

signaling in proteins is bidirectional and can propagate from an allosteric to orthosteric 

site and vice versa.127,140–142 A more integrated computational and experimental strategy 

exploited the reversed allosteric communication concepts to combine MD simulations 

and MSM analysis to monitor shifts in the protein conformational ensembles and detect 

cryptic allosteric sites.136,137 We have recently developed a fast and accurate allosteric 

site prediction method PASSer,87 and here, this approach was employed for detection 

of allosteric RBD pockets using information about conformational ensembles and major 

functional macrostates of the Omicron RBD-ACE2 complexes. To simplify the presentation 

of the results, we focused on the predicted RBD pockets for the optimized structural models 

of XBB and BQ variants (Supporting Materials, Figures S9,S10) as well as on a detailed 

analysis of the determined cryptic pockets that are specific for each of the determined 

macrostates (Figure 12). The allosteric pockets predicted in the structural models of the 

XBB and BQ variants shared a conserved and experimentally determined allosteric site in 

the RBD core where the essential free fatty acid linoleic acid (LA) binds.143 The cryo-EM 

structure of the SARS-CoV-2 S linoleic acid complex revealed this distal binding site and 

experimentally validated the allosteric effect of LA binding. The conserved allosteric pocket 

discovered experimentally is lined up by residues F338, V341, F342, F377, F374, F392, and 

W436. Our predicted pocket in this region is formed by residues F338, F342, Y369, F371, 

A372, I434, and W436 (Supporting Materials, Figures S9,S10). Notably, these residues also 

emerged as allosteric effector hotspots in the PRS analysis of allosteric communications 

in the Omicron complexes. In addition, the analysis also revealed that allosteric pockets 

may be formed near the RBM region (residues R454, F456, R457, K458, S469, E471, and 

I473) (Supporting Materials, Figures S9,S10). Interestingly, we also found that BQ.1 and 

BQ.1.1 RBD structures may open up allosteric pocket that is formed by functional sites near 

binding hotspot Y501 and convergent mutational hotspots L452R and S494. This pocket was 

detected only for these Omicron variants and is formed by RBD residues S494, Y495, R403, 

L452R, Y453, Y501, and G502 (Supporting Materials, Figure S10). Hence, we suggested 

that convergent mutational sites owing to evolutionary adaptability and conformational 

plasticity may be involved in modulation of opening/closing of cryptic allosteric sites.
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To compare and validate the PASSer results in detection of allosteric pockets, we also 

examined macrostates and probed binding pockets using an alternative P2Rank/PrankWeb 

approach.144,145 A considerable consistency in recovering the experimentally known 

allosteric site was seen when using both PASSer and PrankWeb approaches. The residue-

based allosteric pocket propensities139 for the RBD residues in seven major macrostates 

revealed the presence of a dense cluster in the RBD core associated with the experimentally 

known allosteric binding site (Figure 12A–C). This conserved pocket is also preserved in 

the conformational ensembles and is shared between all Omicron variants. In addition, we 

also discovered that the distribution peaks can be associated with the RBD regions near 

the binding hotspot Y501/H505 and strong contributions of convergent mutational sites 

K444, N450, and L452 (Figure 12A,B). These peaks are particularly strong in macrostates 

3 and 4 that are highly prevalent in XBB.1/XBB.1.5 variants. While the composition 

of these pockets may change in the macrostates, these functional convergent mutations 

tend to orchestrate the formation and evolution of cryptic pockets in the conformational 

ensembles. Structural mapping showed evolution of the cryptic pockets in the RBD while 

also highlighting the preservation of the experimentally determined binding site (Figure 

12D–F). The results show that variant-specific redistribution of macrostates preserves the 

experimentally known allosteric pocket on the RBD while allowing for the emergence of 

hidden allosteric pockets that are anchored by convergent mutation sites K444T and L452R 

In macrostate 3 with a disordered RBM tip, the allosteric pocket near the RBM region 

may “dissolve” providing a very plastic and “pocketless” interface in this region (Figure 

12D). Similarly, macrostate 6 featuring altered and highly flexible loop 440–452 may induce 

stabilization of the RBD core pockets that occupy regions near the experimental allosteric 

site (Figure 12F).

Some of these pockets have a transient character and may emerge and disappear in different 

conformational states. In the dominant macrostate 4, we found several conserved pockets 

including the experimentally discovered allosteric site along with two adjacent small pockets 

and RBM pocket (Figure 12E). These allosteric binding sites are maintained in the dominant 

macrostate and could be targeted in both XBB and BQQ variants. One of the more 

interesting observations of the allosteric pocket analysis was detection of two additional 

pockets in macrostate 4 (shown in orange and yellow on Figure 12E) that are adjacent 

to the experimental allosteric site and contain a number of convergent mutation sites. In 

particular, one of these pockets (shown in yellow on Figure 12E) is formed by residues 

R346T, T347, N440K, L441, D442, K444, N448, N450, and L452. Strikingly, this allosteric 

pocket included several key convergent mutation sites (R346T, K444, N450, and L452) that 

also play a role as allosteric effector centers. Another pocket shown in orange in Figure 12E 

(residues R454, F456, R457, K458, D467, S469, E471, and I472) links the RBD core with 

the binding interface. Both these allosteric pockets are anchored by convergent mutation 

sites N450 and L452R. Hence, these hotspots could play an integrated role in modulating the 

conformational plasticity and viability of these pockets.

Together, these results showed that a selective group of convergent mutation sites could 

function as allosteric effector centers that control evolution and distribution of allosteric 

pockets through modulation of conformational plasticity in the flexible adaptable regions of 

the RBD. These findings indicated that Omicron XBB.1.5 and BQ.1.1 subvariants may 
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evolve to accumulate convergent mutations in flexible sites to modulate allostery and 

immune escape through opening/closing patches/pockets to control access of antibodies.

CONCLUSIONS

The new generation of SARS-CoV-2 Omicron variants displayed increased viral fitness 

by acquiring convergent mutations, suggesting that the immune pressure can promote 

convergent evolution. While evolutionary and functional studies explored various scenarios 

underlying the balance of virus fitness tradeoffs, a systematic analysis of the effects of 

convergent mutations on the conformational landscape of the RBD-ACE2 binding in newly 

emerged Omicron variants is lacking. In the current study, microsecond MD simulations and 

Markovian modeling characterized the conformational landscapes and functional states of 

the RBD-ACE2 complexes for the recently emerged highly transmissible XBB.1, XBB.1.5, 

BQ.1, and BQ.1.1 Omicron variants. Our results revealed the increased thermodynamic 

stabilization of the XBB.1.5 subvariant, while the flexibility of the RBD can be markedly 

increased in the BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, 

Omicron mutations can induce unique dynamic signatures and specific distributions of 

conformational states in the Omicron variants. The results suggested that variant-specific 

changes of conformational mobility in the flexible RBD loops 470–491 and 440–452 can be 

modulated through allosteric couplings between convergent mutations, which may present 

a plausible mechanism for promoting the diverse immune escape without compromising 

the ACE2 binding. By combining MD simulations and MSM analysis with perturbation-

based response profiling approaches, our study revealed important complementary roles of 

convergent mutation sites as effectors/regulators and sensors/receivers of allosteric signal 

transmission in the RBD-ACE2 complexes. The findings of this study suggested that 

convergent mutation sites may play important roles in shaping up the allosteric changes 

and mediating functional tradeoffs between protein stability, binding to the host receptor 

and immune escape. We also explored the reversed allosteric communication approach and 

characterized the effect of dynamics on the distribution of allosteric pockets in the Omicron 

subvariants. The results show that variant-specific redistribution of macrostates preserves the 

experimentally known allosteric RBD pocket while also revealing a spectrum of hidden 

allosteric pockets that are anchored by convergent mutation sites K444T and L452R. 

Through integrative computational approaches, this investigation provides a systematic 

analysis and comparison of the effects of Omicron subvariants on conformational dynamics 

and allosteric signaling in the complexes with the ACE2 receptor.
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Figure 1. 
Structural organization and binding epitopes of the SARS-CoV-2 RBD Omicron XBB.1/

XBB.1.5 and BQ.1/BQ.1.1 complexes with human ACE enzyme. (A) The optimized 

modeled structure of the Omicron RBD XBB.1/XBB.1.5-ACE2 complex (only RBD is 

shown). The RBD is in the cyan surface, the binding epitope is in the green surface, 

XBB.1/XBB.1.5 Omicron mutations are in red, and the convergent mutational sites are 

in the blue surface. (B) Top view of the RBD XBB.1/XBB.1.5 from complexes with 

ACE2. (C) Omicron RBD XBB.1/XBB.1.5 in ribbon representation. The sites of convergent 

mutations are in blue spheres. (D) Optimized modeled structure of the Omicron RBD 

BQ.1/BQ.1.1-ACE2 complex (only RBD is shown). The RBD is in the cyan surface, the 

binding epitope is in the green surface, BQ.1/BQ.1.1 Omicron mutations are in red, and 

the convergent mutational sites (R346T, K356, N440K, K444T, V445, G446, N450, L452R, 

N460K, T478K, E484A, F486V, F490, Q493, S494, and N501Y) are in the blue surface. 

(E) Top view of the RBD BQ.1/BQ.1.1 from complexes with ACE2. (F) Omicron RBD 

BQ.1/BQ.1.1 in ribbon representation. The sites of convergent mutations are shown in blue 

spheres.
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Figure 2. 
Conformational dynamics profiles obtained from three independent MD simulations of the 

Omicron RBD XBB.1, XBB.1.5, BQ.1, and BQ.1.1 complexes with ACE2. The RMSF 

profiles for the RBD residues obtained from three independent microsecond MD simulations 

of the Omicron XBB.1 RBD-ACE2 (A), Omicron XBB.1.5 RBD-ACE2 (B), Omicron BQ.1 

RBD-ACE2 (C), and Omicron BQ.1.1 RBD-ACE2 complexes (D).
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Figure 3. 
Conformational dynamics profiles of the ACE2 residues obtained from three independent 

MD simulations of the Omicron RBD XBB.1, XBB.1.5, BQ.1, and BQ.1.1 complexes 

with ACE2. The RMSF profiles for the ACE2 backbone residues obtained from three 

independent microsecond MD simulations of the Omicron XBB.1 RBD-ACE2 (A), Omicron 

XBB.1.5 RBD-ACE2 (B), Omicron BQ.1 RBD-ACE2 (C), and Omicron BQ.1.1 RBD-

ACE2 complexes (D).
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Figure 4. 
DCC for the RBD residues in the Omicron XBB.1 RBD-ACE2 (A), Omicron XBB.1.5 

RBD-ACE2 (B), Omicron BQ.1 RBD-ACE2 (C), and Omicron BQ.1.1 RBD-ACE2 (D) 

complexes.
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Figure 5. 
tICA low-dimensional projection of the conformational space sampled in three independent 

microsecond MD simulations for the Omicron BA.2 RBD-ACE2 (A), XBB.1 RBD-ACE2 

(B), and Omicron XBB.1.5 RBD-ACE2 (C). tICA low-dimensional projection of the 

conformational space for Omicron BA.4/BA.5 RBD-ACE2 (D), BQ.1 RBD-ACE2 (E), and 

Omicron BQ.1.1 RBD-ACE2 (F) complexes. The densities are shown in black dots for MD 

trajectory 1, in red dots for MD trajectory 2, and in blue dots for MD trajectory 3.
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Figure 6. 
MSM analysis of the conformational landscapes for Omicron RBD-ACE2 complexes. (A) 

The estimated relaxation timescale is based on the transition probabilities among different 

microstates using different lag times ranging from 0.1 to 12 ns. The top 15 timescales 

are shown. Each line represents the implied timescale as a function of the lag time, and 

it is based on the corresponding eigenvalue. The estimated timescale converged after ~5 

ns, which was chosen as the lag time in the construction of MSM. The gray area depicts 

a “linear” region where the lag time (x axis) equals the relaxation timescale (y axis) but 

note that y axis is shown in the log scale. The implied timescales crossing under the gray 

region correspond to processes which are faster than the lag time and, thus, are not resolved. 

(B) The low-dimensional density representation with 2 components (t-IC) is constructed 

for all simulated systems. The distribution densities are colored based on the system and 

are shown for BA.2 (in emerald green), BA.2.75 (burnt Sienna), BA.5 (purple), XBB.1 

(pink), XBB.1.5 (forest green), BQ.1 (earthy yellow), and BQ.1.1 variants (brown). (C) The 

low-dimensional density representations with 2 components (t-IC) are shown for macrostate 

1 (red), macrostate 2 (orange), macrostate 3 (green), macrostate 4 (blue), macrostate 5 

(purple), macrostate 6 (brown), and macrostate 7 (lime zest). (D) The distribution density 

of all simulations is visualized using a hexagon bin plot. Each hexagon represents a small 

region, and the color bar shows the frequency of this region.
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Figure 7. 
MSM analysis of the conformational landscape for XBB.1 and XBB.1.5 RBD-ACE2 

complexes. The frequency distribution of occupying different macrostates in XBB.1 (A) 

and XBB.1.5 (B). Transition probability maps among different macrostates with the 5 ns 

lag time for XBB.1 (C) and XBB.1.5 variant (D). The high percentage of self-conserved 

probability shows the stability of macrostates.
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Figure 8. 
Structural analysis of macrostates determined in the MSM analysis. To perform a 

comparative structural analysis of obtained macrostates, the assignments of all points 

are examined to determine which point belongs to which macrostate. By calculating the 

centroid of the conformations that belong to each macrostate, the closest to the centroid 

existing frame is determined and considered as a representative of a given macrostate. 

The macrostates are annotated and are shown in orange-colored ribbons. The convergent 

mutation sites are highlighted in blue spheres. The analysis shows differences between 

conformations that are particularly exemplified by changes in the flexible loops 440–452 

and 470–491.
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Figure 9. 
MSM analysis of the conformational landscape for BQ.1 and BQ.1.1 RBD-ACE2 

complexes. The frequency distribution of occupying different macrostates in BQ.1 (A) and 

BQ.1.1 (B). Transition probability maps among different macrostates with the 5 ns lag time 

for BQ.1 (C) and BQ.1.1 variant (D). The high percentage of self-conserved probability 

shows the stability of macrostates.
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Figure 10. 
PRS analysis of the SARS-CoV-2 Omicron RBD-ACE2 complexes. (A) PRS effector 

profiles for the XBB.1 RBD (in orange lines) and XBB.1.5 RBD (in maroon lines). (B) 

PRS effector profiles for the BQ.1 RBD (in orange lines) and BQ.1.1 RBD (in maroon 

lines). (C) PRS sensor profiles for the XBB.1 RBD (in orange lines) and XBB.1.5 RBD (in 

maroon lines). (D) PRS sensor profiles for the BQ.1 RBD (in orange lines) and BQ.1.1 RBD 

(in maroon lines). The positions of Omicron mutational sites are indicated by brown-colored 

filled circles. The convergent mutation sites are indicated by yellow-colored filled diamonds.
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Figure 11. 
PRS analysis of the macrostates for the Omicron RBD-ACE2 complexes. (A) PRS effector 

profiles for macrostate 3 (in orange lines), macrostate 4 (in maroon lines), and macrostate 

6 (in magenta lines). (B) PRS sensor profiles for macrostate 3 (in orange lines), macrostate 

4 (in maroon lines), and macrostate 6 (in magenta lines).The convergent mutation sites are 

indicated by yellow-colored filled diamonds. Structural mapping of the allosteric effector 

and sensor centers in macrostate 3 (C), macrostate 4 (D), and macrostate 6 (E). The 

RBD conformations for macrostates are shown in orange ribbons and overlayed with 

crystallographic BA.2 RBD conformation, pdb id 7XB0 (in green ribbons) and BA.5 RBD 

conformation, pdb id 7XWA (in magenta ribbons). The allosteric effector centers are shown 

in cyan spheres, and allosteric sensor centers are in blue spheres. The convergent mutation 

sites are shown in red spheres. Convergent mutation sites that correspond to the effector 

hotspots (K444T, N450, L452R, and Y501) are shown in cyan spheres and convergent 

mutation sites that correspond to sensor centers (T478R/K, E484K, and F486S/P) are 

accordingly in blue spheres.
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Figure 12. 
Residue-based allosteric pocket propensity scores of the RBD residues are computed for 

representative RBD conformations corresponding to macrostate 3 (A), macrostate 4 (B), and 

macrostate 6 (C). The allosteric propensity profiles are in light brown bars. The convergent 

mutation sites (R346, K356, N440, K444, V445, G446, N450, L452, N460, T478, F486, 

F490, R493, and S494) are depicted in yellow-colored filled diamonds. Structural mapping 

of PASSer-predicted allosteric pockets on representative RBD conformations corresponding 

to macrostate 3 (D), macrostate 4 (E), and macrostate 6 (F). The RBD conformations are in 

the cyan surface, and convergent mutation sites are shown in red. All macrostates share the 

predicted RBD pocket (shown in blue surface) that is aligned with the experimentally known 

allosteric site (residues F338, F342, Y369, F371, A372, I434, and W436).
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Table 2.

Structures of the Omicron RBD-ACE2 Complexes Simulated in This Study

PDB system productive run per single simulation (μs) number of simulations

7XB0 Omicron RBD BA.2-ACE2 1 3

7XWA Omicron RBD BA.4/BA.5-ACE2 1 3

model Omicron RBD XBB.1-ACE2 1 3

model Omicron RBD XBB.1.5-ACE2 1 3

model Omicron RBD BQ.1-ACE2 1 3

model Omicron RBD BQ.1.1-ACE2 1 3

J Chem Inf Model. Author manuscript; available in PMC 2024 August 28.


	Abstract
	Graphical Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Structural Modeling and Refinement.
	All-Atom Molecular Dynamics Simulations.
	Time-Structure-Based Independent Component Analysis.
	Markov State Model.
	Perturbation Response Scanning.
	Machine Learning-Based Prediction of Allosteric Pockets.

	RESULTS AND DISCUSSION
	Microsecond MD Simulations of the Omicron RBD-ACE2 Complexes Reveal Distinct Dynamic Signatures of RBD Proteins.
	Dimensionality Reduction Analysis Unveils Differences in Conformational Heterogeneity of the Omicron RBD-ACE2 Complexes.
	Perturbation Response Scanning Reveals the Complementary Role of Convergent Mutations as Allosteric Effector and Sensor Centers.
	Inferring Evolution of Allosteric Cryptic Pockets from Conformational Ensembles and Macrostates.

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Table 1.
	Table 2.

