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Abstract

Purpose: To explore the potential of B7-H3-targeted ultrasound molecular imaging (USMI) for 

longitudinal assessment and differentiation of metastatic and reactive sentinel lymph nodes (SLNs) 

in mouse models.

Procedures: Metastatic and reactive SLN models were established by injection of 4T1 breast 

cancer cells and Complete Freund’s Adjuvant (CFA) respectively to the 4th mammary fat pad of 

female BALB/c mice. At day 21, 28, and 35 after inoculation, USMI was performed following 

intravenous injection of B7-H3-targeted microbubbles (MBB7-H3) or IgG-control microbubbles 

(MBcontrol). All SLNs were histopathologically examined after the last imaging session.

Results: A total of 20 SLNs from tumor-bearing mice (T-SLNs) and five SLNs from CFA-

injected mice (C-SLNs) were examined by USMI. Nine T-SLNs were histopathologically positive 

for metastasis (MT-SLNs). From day 21 to 35, T-SLNs showed a rising trend in MBB7-H3 signal 
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with a steep increase in MT-SLNs at day 35 (213.5 ± 80.8 a.u.) as compared to day 28 (87.6 ± 

77.2 a.u., P=0.002) and day 21 (55.7 ± 35.5 a.u., P<0.001). At day 35, MT-SLNs had significantly 

higher MBB7-H3 signal than non-metastatic T-SLNs (NMT-SLNs) (101.9 ± 48.0 a.u., P=0.001) and 

C-SLNs (38.5 ± 34.0 a.u., P=0.001); MBB7-H3 signal was significantly higher than MBcontrol in 

MT-SLNs (P=0.001), but not in NMT-SLNs or C-SLNs (both P>0.05). A significant correlation 

was detected between MBB7-H3 signal and volume fraction of metastasis in MT-SLNs (r=0.76, 

P=0.017).

Conclusions: B7-H3-targeted USMI allows differentiation of MT-SLNs from NMT-SLNs and 

C-SLNs in mouse models and has great potential to evaluate tumor burden in SLNs of breast 

cancer.
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Introduction

Determination of axillary lymph node (ALN) status is critical for tumor staging, 

prognostication, and guidance for treatment in breast cancer patients [1–4]. ALN dissection 

is a reliable means to identify nodal metastasis but carries a significant risk of complications 

such as lymphedema, paresthesia, seroma, and limited shoulder motion [5, 6]. As a less 

morbid procedure, sentinel lymph node dissection (SLND) has replaced ALN dissection 

as the current reference-standard test for nodal staging in breast cancer with clinical 

node-negative patients [6, 7]. Nonetheless, SLND remains a surgical procedure performed 

under general anesthesia, with a considerable proportion of patients (7–41%) suffering 

postoperative complications [6, 8]. SLND is reliant upon two tracers to locate sentinel 

lymph nodes (SLNs), an expensive radioactive isotope and a blue dye that may cause severe 

anaphylaxis [9]. Even with the combination of two tracers, SLND fails to identify axillary 

malignancies in breast cancer patients with false-negative rates ranging from 5.1% to 9.4% 

[10]. In addition, the majority of patients (74%) who undergo SLND are pathologically 

negative [11]. Therefore, a noninvasive method for a more accurate assessment of SLN 

status is warranted.

Ultrasound (US) is a portable, noninvasive, and relatively inexpensive imaging modality 

and has been widely used to evaluate ALN status in breast cancer patients [12]. Using 

conventional US, metastatic lymph nodes commonly appear with cortical thickening, 

a round shape, absence of an echogenic hilum, and peripheral or mixed vascularity 

in Doppler imaging mode [12, 13]. However, the diagnostic capability of conventional 

US for nodal metastasis is not satisfactory [12, 14]; early or small metastases without 

obvious morphologic changes might be misdiagnosed, necessitating a more reliable and 

sensitive imaging technique with a higher diagnostic accuracy [15]. Contrast-enhanced 

ultrasound imaging (CEUS) following subdermal or peritumoral injection of contrast agents 

(microbubbles) has been developed to detect and depict SLNs in both clinical and preclinical 

animal studies. The accuracy of SLN detection by CEUS is high [16–18], but the diagnostic 

accuracy, especially specificity, of CEUS for SLN status is rather limited [16, 17, 19]. 

CEUS following intravenous administration of microbubbles was also used for lymph node 
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characterization with advantages of getting access to the lymph node directly through nodal 

blood supply and enabling the simultaneous evaluation of both primary tumors and lymph 

nodes. However, the performance of this strategy is inconsistent between previous studies 

and seems not to contribute to a higher diagnostic accuracy for lymph node metastasis 

[20–23].

Ultrasound molecular imaging (USMI) is a novel imaging approach with high potential to 

better characterize tumors, and thus improve diagnostic accuracy of conventional US [24]. 

Using molecularly-targeted contrast microbubbles, USMI has the advantages of both US and 

molecular imaging and has been recently translated to first in-human clinical trials in cancer 

imaging [25]. Targeted contrast agents are created by conjugating target specific binding 

ligands to the microbubble shell to make them firmly attach to the molecular targets of 

tumor vasculature [26]. B7-H3, also known as CD276, was discovered recently as a novel 

tumor neovasculature associated marker that is differentially expressed in several cancer 

types such as colon, breast, lung, etc. [27]. Previous studies have confirmed high protein 

expression of B7-H3 in both tumor cells and tumor neovasculature with murine and human 

breast cancer tissues [28–30]. In breast cancer patients, tumor expression of B7-H3 was 

suggested as a predictor of early regional lymph node metastasis [30, 31]. B7-H3 expression 

was also detected in metastatic lymph nodes from breast cancer patients [30], suggesting it 

as a promising molecular imaging target for metastatic SLNs. B7-H3-targeted microbubbles 

(MBB7-H3) were previously shown to differentiate breast cancer from benign entities in a 

transgenic mouse model with a high diagnostic accuracy [28].

To the best of our knowledge, the application of USMI to metastatic SLN depiction has been 

limited [32], and MBB7-H3 have never been used for characterizing SLNs. Physiologically, 

lymph nodes are constantly exposed to varying levels of different types of antigens and thus 

show varying degrees of reactive changes [33]. Enlarged reactive lymph nodes frequently 

exist along the lymphatic drainage pathways, particularly of large and/or necrotic tumors, 

which may mimic metastatic lymph nodes [34]. The aim of this study is to assess the 

feasibility of USMI with MBB7-H3 to longitudinally evaluate and differentiate metastatic 

SLNs from reactive SLNs in mouse models of orthotopic breast cancer and Complete 

Freund’s Adjuvant (CFA) mediated inflammation.

Materials and methods

Fig. 1 schematically summarizes the overall study design.

Cell culture and animal models

4T1 murine breast cancer cells were used for creating syngeneic orthotopic tumor models in 

immunocompetent BALB/c mice. All animal procedures were approved by the Institutional 

Administrative Panel on Laboratory Animal Care. The metastatic SLN model (n=21) was 

developed by injecting 1×106 4T1 cells to the right 4th mammary fat pad of BALB/c mice. 

Similarly, the reactive SLN model (n=6) was established by administration of 40 μl of 

complete Freund’s adjuvant (CFA) (Sigma-Aldrich) to the same location in another group of 

BALB/c mice to produce local inflammation. At day 10 after 4T1 cell implantation or CFA 

injection, the SLNs of the animal models were located by peri-inflammation and peritumoral 
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injection of 25 μl of 0.4% Trypan blue solution (Thermo Scientific) in a CFA-injected mouse 

and a 4T1 tumor-bearing mouse, respectively, and both mice were euthanized and dissected 

to locate the SLNs. At day 22 to 23 after 4T1 cell implantation, primary tumors were 

surgically removed under a strict aseptic operation procedure to extend the survival of the 

tumor-bearing mice [35, 36]. The SLNs were located by peri-inflammation and peritumoral 

injection of 25 μl of 0.4% Trypan blue solution (Thermo Scientific). The size of SLNs from 

tumor-bearing mice (T-SLNs, n=20) and CFA-injected mice (C-SLNs, n=5) was monitored 

by B-mode US imaging at day 0 (baseline), 7, 14, 21, 28, and 35 post-injection of 4T1 cells 

or CFA. For additional details please refer to Supplementary Methods.

Microbubble characterization

Preclinical streptavidin-coated microbubbles (VisualSonics) were incubated with 

biotinylated rat anti-mouse B7-H3 antibody (eBioscience) to generate B7-H3-targeted 

microbubbles (MBB7-H3). As a control group, IgG-control microbubbles (MBcontrol) 

were generated by using biotinylated isotype-matched control immunoglobulin G (IgG) 

(eBioscience) with the same incubation method. The integrity of the microbubbles was 

characterized before and after incubation with rat anti-mouse B7-H3 antibody or isotype-

matched IgG antibody using Coulter counter (AccuComp Z2; Beckman Coulter Life 

Sciences). The functional conjugation efficiency of rat anti-mouse B7-H3 antibody to 

the microbubbles was evaluated using fluorescence activated cell sorter (FACS) analysis. 

Additional details are included in the Supplementary Methods.

USMI and image analysis

USMI was performed at day 21, 28, and 35 for all the SLNs (n=25) following intravenous 

administration of 5 × 107 MBB7-H3 or MBcontrol (in random order) on the largest cross 

section of SLNs using a dedicated small-animal high resolution US imaging system (Vevo 

2100, VisualSonics). Four minutes after administration, a continuous high-power destructive 

pulse (3.7 MPa; transmit power, 100%; mechanical index, 0.63) was applied to destroy all 

microbubbles within the imaging plane. Imaging data sets were analyzed offline in random 

order using a commercially available software (Vevo CQ, VisualSonics). The magnitude of 

imaging signal (expressed in arbitrary units, a.u.) from bound microbubbles were assessed 

by subtracting the average post-destruction signal from the average pre-destruction signal 

as described previously [37]. A detailed description of USMI protocol is provided in the 

Supplementary Methods.

Ex vivo tissue analysis

After the last imaging session (day 35), ex vivo hematoxylin and eosin (H&E, Scytek) 

staining and immunofluorescence using rat anti-mouse B7-H3 antibodies (eBiosciences) 

were performed for all examined SLNs (n=25) and primary tumors (n=20) using standard 

techniques (See Supplementary Methods). For T-SLNs presenting metastases, volume 

fraction of metastasis (VFM) was calculated as shown in the Supplementary figure 1.
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Immunofluorescence staining

Paraffin-embedded primary tumor sections (n=20) and MT-SLN sections (n=9) with the 

largest area of metastasis (confirmed by their adjacent H&E-stained sections) were selected 

to proceed with immunofluorescence staining. After deparaffinization and rehydration, 

tissue sections were placed in pre-warmed (94–96°C) sodium citrate buffer (pH 6.0, Abcam) 

maintained at a sub-boiling temperature for 10 minutes to unmask antigens; this is followed 

by cooling down at room temperature for 30 minutes and subsequent blocking with 3% 

bovine serum albumin solution (Sigma-Aldrich) containing 3% donkey serum and 3% goat 

serum for 1 hour at room temperature. Sections were then co-incubated with rat anti-mouse 

B7-H3 (eBiosciences) and rabbit anti-mouse CD31 (Abcam) antibodies overnight at 4°C at a 

dilution of 1:50 and 1:100, respectively. Above primary antibodies were visualized by using 

AlexaFluor-488 conjugated donkey anti-rat or AlexaFluor-546 conjugated goat anti-rabbit 

secondary antibodies, respectively (Invitrogen). The fluorescent sections were imaged using 

a digital slide scanner (Nanozoomer; Hamamatsu) with exposure time of 3 seconds for both 

FITC and Trtc channels.

Statistical analysis

All data were expressed as the means ± standard deviation. For SLN size and USMI, 

data sets with equal variances were compared by one-way ANOVA followed by a 

Bonferroni’s multiple comparisons test; data sets with unequal variances were compared 

by a Tamhane’s T2 test. The correlation between VFM and MBB7-H3 signal was analyzed 

by Pearson correlation analysis. The performance of B7-H3-targeted molecular imaging in 

differentiating metastatic and non-metastatic SLNs was evaluated using receiver-operating 

characteristic (ROC) analysis and the area under the curve (AUC). SPSS 21.0 software 

(IBM Corporation) was used for data analysis. A P value of less than 0.05 was accepted as 

statistically significant.

Results

Establishment of metastatic and reactive SLNs

Immediately after the injection of Trypan blue solution, a blue-labeled lymphatic vessel 

deriving from the injecting site was observed towards the ipsilateral inguinal lymph node 

which is also slightly labeled by the blue dye several seconds later (Fig. 2a–b). The blue-

labeled inguinal lymph node was further confirmed after removal of the skin and thus was 

determined as the SLNs in our experimental animal models. Fig. 2c summarizes the size 

measurement of T-SLNs and C-SLNs from day 0 to day 35. T-SLN size increased over time, 

followed by a slight drop at day 21; a dramatic size increase in T-SLNs was observed at day 

35 as compared to day 21 (P=0.005). A progressive size increase in C-SLNs was observed 

from day 0 to day 21, which was followed by a gradual decrease up to day 35.

By H&E histological analysis, 9 out of 20 T-SLNs showed the presence of metastasis 

and were defined as metastatic T-SLNs (MT-SLNs), while the other 11 T-SLNs without 

metastasis were defined as non-metastatic T-SLNs (NMT-SLNs).
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Microbubble characterization

We evaluated streptavidin coated microbubbles for their size and distribution before 

and after functionalizing with B7-H3 or iso-IgG antibodies using Coulter counter and 

FACS analysis. Similarly, B7-H3 conjugation efficiency was evaluated by FACS analysis. 

The results showed no significant variation in the microbubble size before and after 

functionalization with B7-H3 or iso-IgG antibodies (Supplementary Fig. 2). Similarly, 

FACS analysis showed efficient conjugation of B7-H3 antibody to the microbubbles 

(Supplementary Fig. 3).

Longitudinal assessment of B7-H3-targeted USMI in MT-SLNs, NMT-SLNs and C-SLNs

Fig. 3 reveals longitudinal assessment of USMI signal from MBB7-H3 and MBcontrol in 

C-SLNs, NMT-SLNs, and MT-SLNs, respectively. From day 21 to 35, NMT-SLNs and 

MT-SLNs showed a rising trend in both MBB7-H3 signal and MBcontrol signal, with a steep 

increase of MBB7-H3 signal in MT-SLNs at day 35 (213.5 ± 80.8 a.u.) as compared to day 28 

(87.6 ± 77.2 a.u., P=0.002) and day 21 (55.7 ± 35.5 a.u., P<0.001), while C-SLNs showed a 

declining trend in both MBB7-H3 signal and MBcontrol signal. At day 35, MT-SLNs presented 

significantly higher MBB7-H3 signal than NMT-SLNs (101.9 ± 48.0 a.u., P=0.001) and 

C-SLNs (38.5 ± 34.0 a.u., P<0.001), while such difference was not observed in MBcontrol 

signal (all P>0.05); MT-SLNs showed significantly higher MBB7-H3 signal than MBcontrol 

signal (213.5 ± 80.8 a.u. vs 98.0 ± 35.2 a.u., P=0.001), while no significant difference was 

detected between MBB7-H3 signal and MBcontrol signal in NMT-SLNs or C-SLNs (both 

P>0.05). Comparison between MBB7-H3 and MBcontrol signal in MT-SLNs, NMT-SLNs, 

and C-SLNs is shown in Supplementary figure 4. ROC analysis showed that AUC of 

MBB7-H3 signal for differentiating MT-SLNs from NMT-SLNs and C-SLNs was 0.91 (95% 

confidence interval (CI): 0.77, 1.00) (Supplementary Fig. 5).

Ex vivo analysis

Different proliferative alterations were observed in C-SLNs, NMT-SLNs and normal 

lymphatic tissues of MT-SLNs (Supplementary Fig. 6). B7-H3 expression was observed 

both on the tumor neovasculature and on tumor epithelial cells in primary tumors and 

MT-SLNs (Supplementary Fig. 7).

Correlation of B7-H3-targeted imaging signal with VFM in MT-SLNs

A wide variation of MBB7-H3 signal in MT-SLNs, ranging from 48.8 a.u. to 311.8 a.u., 

prompted the hypothesis that MBB7-H3 signal may correlate with VFM in MT-SLNs. As 

expected, VFM in the nine MT-SLNs ranged from 8% to 86%, and a significant correlation 

was detected between MBB7-H3 signal and VFM (Pearson correlation coefficient (r): 0.76; 

95% CI: 0.59, 0.94; P=0.017) (Supplementary Fig. 8). Representative H&E-stained sections 

with low and high VFM along with corresponding US images, including a color map 

representing MBB7-H3 signal, are shown in Fig. 4 and Fig. 5, respectively. The scale for the 

color maps was kept constant for all images.
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Discussion

In this study, we established metastatic and reactive SLN mouse models and showed that 

USMI using MBB7-H3 allows longitudinal assessment and differentiation of metastatic and 

reactive SLNs. A previous study has shown that USMI using dual-targeted microbubbles 

(P-selectin and ανβ3-integrin) can aid in detecting metastatic SLNs in melanoma [32]. 

However, P-selectin expression levels change after an inflammatory stimulus [38] and ανβ3-

integrin has been shown to express in granuloma [39]. Therefore, targeted microbubbles 

with a higher specificity for the detection of metastatic lymph nodes are warranted. Since 

enlarged reactive lymph nodes are frequently present along the lymphatic drainage pathways 

of tumors and can mimic lymph node metastasis [34], it is important to evaluate whether 

USMI allows differentiation of enlarged reactive nodes from metastatic nodes. To the best of 

our knowledge, this study is the first that have attempted to perform SLN characterization 

using B7-H3-targeted USMI in metastatic and reactive SLNs in mouse models.

We employed a syngeneic metastatic 4T1 triple negative breast tumor model in 

immunocompetent BALB/c mice which provided a tumor microenvironment with 

compatible stromal, vascular, and immunologic milieu [40]. This syngeneic breast cancer 

model spontaneously develops metastases in SLNs that mimics human breast cancer patients 

[35, 41]. One limitation of this model is the fast growth rate of tumors [35] that may grow 

to the size limit allowed by the Animal Research Compliance regulation before metastases 

can be detected in SLNs. Hence, we surgically removed the primary tumor when it reached a 

certain size range (308.4 ± 57.8 mm3) to extend the life span of the tumor-bearing mice and 

allow tumor to metastasize to SLNs [35]. Localized inoculation of CFA enhances antibody 

production and induces an inflammatory response at the injection site [42], which was used 

as reactive SLN model in this study. Consistent with previous studies [42, 43], both T-SLNs 

and C-SLNs showed size enlargement at early time points, which may be due to a direct 

innate immune reaction [44] and/or a primary immune response to antigens from tumor or 

CFA being presented by antigen-presenting cells [45]. From day 21 to 35, T-SLNs presented 

a dramatic size enlargement while C-SLNs showed a declining trend of size development, 

which is similar to the results of an earlier study where they used rabbit model for the study 

[45].

In our longitudinal assessment of USMI, T-SLNs showed a rising trend in both MBB7-H3 

signal and MBcontrol signal, while C-SLNs showed a declining trend, corresponding to 

their size changes from day 21 to 35. Since vascular status is an important factor that 

influences the binding of microbubbles to molecular targets expressed on endothelial cells 

[46], varied hypervascular responses of T-SLNs and C-SLNs to tumor and inflammation 

progress may account for their different signal patterns over time [45]. Further studies 

are needed to explore the relationship between USMI and vascular status to improve the 

diagnostic performance of USMI. Although unavoidable responses of SLNs to external 

stimuli could potentially complicate a vascular-targeted imaging approach, B7-H3-targeted 

USMI was shown to be capable of differentiating MT-SLNs from NMT-SLNs and C-SLNs 

with great efficiency in our mouse models.
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B7-H3 is a member of the B7 family of immunoregulators that is expressed at low levels 

in most normal tissues but is overexpressed in a broad spectrum of cancers including tumor 

vasculatures [27, 47]. Although the underlying mechanism of its function in cancer has 

remained unclear, B7-H3 was identified as a predictor of poor prognosis and increased risks 

for metastasis [47]. B7-H3 overexpression is highly prevalent in various breast cancer cell 

lines and breast tumors of both murine and human, and is associated with positive lymph 

node metastasis [30, 31, 48]. Coincidently, our study detected B7-H3 expression both on 

the tumor neovasculature and on tumor epithelial cells not only in primary tumors but 

also in MT-SLNs. In support of our results, B7-H3 protein was also reported to express in 

all metastatic lymph nodes from breast cancer patients [30], suggesting it as a promising 

molecular target for detecting lymph node metastasis. This is further supported by our 

results that at day 35, MT-SLNs had significantly higher MBB7-H3 signal than NMT-SLNs 

and C-SLNs. In addition, MBB7-H3 signal was much higher than MBcontrol signal in MT-

SLNs, but not in NMT-SLNs or C-SLNs. Our results confirmed the hypothesis that B7-H3 

has great potential as a molecular target for nodal characterization in breast cancer.

Notably, Pearson correlation analysis revealed a significant correlation (r=0.76) between 

MBB7-H3 signal and VFM in MT-SLNs. A previous study also noted that signal from 

dual-targeted microbubbles were different among metastatic lymph nodes, which might 

be caused by varied metastatic stages of lymph nodes among their animal models [32]. 

In addition, an earlier study proved that MBB7-H3 signal correlated well (r=0.77) with 

B7-H3 expression in a transgenic mouse model of breast cancer. These results indicate that 

the extent of metastasis, partially equivalent to the number of molecular targets in SLNs 

affects USMI signal. In this study we observed that MBB7-H3 were not able to detect early 

metastases in SLNs due to overlaps between MBB7-H3 signal in MT-SLNs with low VFM 

and NMT-SLNs/C-SLNs. Considering the fact that ALN dissection is not recommended for 

women with early-stage breast cancer and limited SLN metastasis based on the American 

College of Surgeons Oncology Group Z0011 trial [49], noninvasive differentiation of SLN 

tumor burden in the diagnostic period remains clinically important, which would aid surgical 

decision making. In addition, B7-H3 has emerged as a new potential therapeutic target in 

several cancer types, and anti-B7-H3 antibodies are currently being studied in several phase 

I clinical trials [50, 51]. B7-H3-targeted USMI may also be used to evaluate the responses of 

tumor or metastatic lymph nodes to anti-B7-H3 therapies.

Several limitations existed in our preliminary study. Firstly, the sample size is relatively 

small, especially for C-LSNs (n=5), which may have limited the statistical significance of 

the data obtained. Secondly, the imaging plane with the largest SLN cross section was 

selected subjectively and a single imaging plane might miss small metastases, which would 

compromise the diagnostic capacity. Three-dimensional USMI would be preferable in future 

studies. Finally, diagnostic performance of B7-H3-targeted USMI at earlier stages (before 

day 35) was not evaluated and needs further studies with a larger sample size.

Conclusion

In summary, B7-H3-targeted USMI allows differentiation of metastatic SLNs from non-

metastatic and reactive SLNs in mouse models. Moreover, B7-H3-targeted signal correlates 
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well with VFM. Our findings suggest that B7-H3-targeted USMI has great potential to 

evaluate the presence and extent of metastatic involvement in SLNs, laying the foundation 

for further studies and clinical translation of this non-invasive imaging approach for SLN 

characterization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SLN Sentinel lymph node

SLND Sentinel lymph node dissection
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Key Points:

• B7-H3-targeted USMI is a feasible approach to differentiate metastatic SLNs 

from non-metastatic T-SLNs and reactive SLNs.

• Imaging signal from MBB7-H3 was positively correlated with volume fraction 

of metastasis in MT-SLNs.

• B7-H3-targeted USMI has great potential to evaluate tumor burden in SLNs 

of breast cancer.
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Fig. 1. 
Schematic summary of the overall study design. 4T1 tumor-bearing mice (n=21) and CFA-

injected mice (n=6) were established. SLNs were detected by peri-inflammation (n=1) and 

peritumoral (n=1) injection of Trypan blue solution at day 10. The size of T-SLNs (n=20) 

and C-SLNs (n=5) was monitored by B-mode US imaging at day 0, 7, 14, 21, 28, and 35. 

Molecularly-targeted CEUS imaging was performed at day 21, 28, and 35 for all the SLNs 

(n=25) which were histopathologically examined after the last imaging session at day 35.
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Fig. 2. 
SLN detection and size development. (a) a blue-labeled lymphatic vessel (black arrow) was 

observed connecting the blue-labeled inguinal lymph node (white arrow) and tumor after 

peritumoral injection of Trypan blue solution; (b) the blue-labeled SLN was detected after 

the removal of skin. Scare bar=3mm. (c) Size development of T-SLNs and C-SLNs from day 

0 to 35 measured by B-mode ultrasound imaging.
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Fig. 3. 
Development of MBB7-H3 signal and MBcontrol signal from day 21 to 35. NMT-SLNs and 

MT-SLNs showed a rising trend in both MBB7-H3 and MBcontrol signal, while C-SLNs 

showed a declining trend in both of them. MT-SLNs showed a steep increase in MBB7-H3 

signal at day 35 as compared to day 28 (# denotes P=0.002) and day 21 (## denotes 

P<0.001). At day 35, MT-SLNs presented significantly higher MBB7-H3 signal than NMT-

SLNs (* denotes P=0.001) and C-SLNs (** denotes P<0.001).
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Fig. 4. 
MT-SLN with low VFM and corresponding US images. (a-d) Representative H&E-stained 

sections containing metastases from one MT-SLN. The area of SLN and metastases was 

calculated over the field of black and yellow dashed border line, respectively. Scare 

bar=400μm. (e) Zoomed region of the area in the dashed box of fig 4a shows the boundary 

(yellow dashed line) of metastasis (M) and normal SLN tissue. Scare bar=30μm. B-mode 

(4f), contrast-mode (4g), and color map images (4h) of the same MT-SLN (VFM: 8%; 

signal: 48.8). (f-h) Scare bar=600μm.
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Fig. 5. 
MT-SLN with high VFM and corresponding US images. (a-d) Representative H&E-stained 

sections containing metastases from one MT-SLN. The area of SLN and metastases was 

calculated over the field of black and yellow dashed border line, respectively. Scare 

bar=500μm. (e) Zoomed region of the area in the dashed box of fig 4a shows the boundary 

(yellow dashed line) of metastasis (M) and normal SLN tissue. Scare bar=40μm. B-mode 

(4f), contrast-mode (4g), and color map images (4h) of the same MT-SLN (VFM: 53%; 

signal: 245.5). (f-h) Scare bar=700μm.
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