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Abstract

Epigenetic priming presets chromatin states that allow the rapid induction of gene expression 

programs in response to differentiation cues. In the germline, it provides the blueprint for sexually 

dimorphic unidirectional differentiation. In this review, we focus on epigenetic priming in the 

mammalian male germline and discuss how cellular memories are regulated and inherited to the 

next generation. During spermatogenesis, epigenetic priming predetermines cellular memories that 

ensure the lifelong maintenance of spermatogonial stem cells and their subsequent commitment 

to meiosis and to the production of haploid sperm. The paternal chromatin state is also essential 

for the recovery of totipotency after fertilization and contributes to paternal epigenetic inheritance. 

Thus, epigenetic priming establishes stable but reversible chromatin states during spermatogenesis 

and enables epigenetic inheritance and reprogramming in the next generation.

Introduction

The germline is the only cellular lineage capable of transmitting genetic and epigenetic 

information to the next generation. In the mammalian germline, primordial germ cells 

(PGCs), the precursors of sperm and eggs, are specified in the early embryos and undergo 

epigenetic reprogramming to reset previous epigenetic states [1]. Upon migration to the 

gonads, PGCs receive sex-specific signals from the surrounding somatic cells, which initiate 

either spermatogenesis or oogenesis [2]. After reaching the gonad, male germ cells are 

called prospermatogonia (also known as gonocytes) and arrest at the G1/G0 phase of the 

cell cycle. Prospermatogonia later resume the cell cycle after birth, and a subset of them 

convert to spermatogonial stem cells (SSCs), which sustain the lifelong production of sperm 

[3]. After the commitment to differentiation, male germ cells undergo meiosis and produce 

haploid sperm (Figure 1) [4]. Although single-cell RNA-seq analysis revealed various 

substages and transitions during spermatogenesis [5], the final cell fate of male germ cells 

after sex determination is sperm unless the cells undergo cell death [6]. Consistent with this 

unidirectionality of the differentiation process, recent studies revealed that gene expression 

programs in various stages of spermatogenesis are predetermined at the chromatin level 
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during prior stages of development [7–10] (Figure 2). This suggests that chromatin-based 

cellular memories ensure the unidirectional differentiation process during spermatogenesis.

Another major aspect of epigenetic regulation in the germline is the preparation for 

embryonic development in the next generation. Several studies demonstrate that the 

chromatin state of sperm contributes to the transmission of epigenetic information to the 

offspring [11–13]. Epigenomic instability in sperm is associated with an increased risk 

of abnormal embryogenesis, highlighting the importance of the paternal epigenome in 

embryonic development [11,14].

Epigenetic priming, observed in a variety of cell types such as pluripotent stem cells, 

neurons, immune cells, and cancer cells, presets chromatin states that enable the induction of 

gene expression programs in response to differentiation cues [15–18]. In the male germline, 

epigenetic priming provides stable but reversible chromatin states that guide unidirectional 

spermatogenesis and allow subsequent epigenetic inheritance and reprogramming in the 

next generation. In this review, we discuss recent findings that highlight the importance 

of epigenetic priming for autosomal gene expression programs during the major stages 

of male germline development, as well as for the subsequent epigenetic inheritance and 

reprogramming in the next generation. For other key aspects of germline development, such 

as the regulation of the sex chromosomes, retrotransposons, and gene regulation in the 

female germline, we refer readers to recent reviews on these topics [3,19–22].

Epigenetic reprogramming in primordial germ cells

Epigenetic reprogramming in PGCs provides the foundation for subsequent gametogenesis 

by resetting the prior epigenetic state. In mice, extraembryonic signals trigger the emergence 

of PGCs from pluripotent epiblast cells during gastrulation. PGCs then migrate to the 

genital ridges, which give rise to the gonads. During this period, sequential global 

and locus-specific DNA demethylation takes place. First, global methylation levels are 

reduced through rounds of DNA replication; subsequently, from embryonic day 9.5 

(E9.5) to E13.5, methylated cytosines at imprinted control regions and meiotic genes are 

actively demethylated by ten-eleven translocation (TET) methylcytosine dioxygenase [23]. 

After DNA demethylation, meiotic genes are suppressed through repressive chromatin 

modifications mediated by Polycomb Repressive Complex 2 (PRC2), which trimethylates 

histone H3 at lysine 27 (H3K27me3) [24,25]. Interestingly, a subset of germline gene 

promoters are modified with H3K27me3 at the epiblast stage, and these H3K27me3 

marks appear to persist into PGCs, suggesting that the epigenetic state persists, at least 

in part, from the epiblast stage into PGCs [24]. PRC2 may also be involved in the 

epigenetic priming of a broader range of target genes. In human hypomethylated male 

PGCs between weeks 7 and 9, corresponding to E13.5 in mice PGCs in terms of DNA 

methylation level, 76% of male-specific H3K27me3-marked promoters are also modified 

with an active promoter mark H3K4me3 [26]. These types of bivalent promoters are 

indicative of a transcriptionally poised epigenetic state [15]. Thus, these results suggest 

that DNA demethylation and subsequent PRC2-dependent gene regulation are key aspects of 

epigenetic priming in PGCs.
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Epigenetic programming in prospermatogonia

In mice, after E13.5, male PGCs, called prospermatogonia, proliferate and then enter 

G1/G0 cell cycle arrest. Subsequently, prospermatogonia either undergo the first wave of 

spermatogenesis [27] or give rise to a pool of foundational SSCs. This process is mediated 

by the germ cell–specific X-linked homeobox transcription factor RHOX10, which acts in 

concert with the downstream transcription factors DMRT1 and PLZF to generate SSCs 

[28,29]. RHOX13, another X-linked homeobox transcription factor, is required for the 

first wave progression but not for differentiation into SSCs [30]. H3K9 demethylases, 

JMJD1A/B, demethylate H3K9me2 in prospermatogonia and regulate the SSC maintenance 

genes in the subsequent undifferentiated spermatogonia [31], supporting the notion that 

prospermatogonia are epigenetically primed to generate SSCs.

Importantly, during the prospermatogonia stages, there is a global increase in DNA 

methylation relative to the basal level in PGCs. In fact, in mice, the overall DNA 

methylation levels in prospermatogonia at postnatal day 0.5 (P0.5) are similar to that of 

sperm, except for promoter and enhancer regions of a small number of stage-specific 

genes [32]. Before the establishment of DNA methylation, there is a genome-wide gain 

of accessible chromatin [33]. Depletion of a chromatin remodeler SNF5 in male germ 

cells affects DNA methylation and cell cycle arrest, indicating that SNF5 is important for 

the chromatin states necessary for epigenetic programming in prospermatogonia [34]. To 

initiate de novo DNA methylation, the histone methyltransferase NSD1 mediates H3K36 

dimethylation (H3K36me2) at genomic regions that will gain DNA methylation. The 

PWWP domain of the de novo DNA methyltransferase DNMT3A recognizes H3K36me2, 

leading to methylation of these regions [35]. DNMT3A-deficient prospermatogonia 

give rise to self-renewing SSCs, but these SSCs cannot commit to spermatogonial 

differentiation, suggesting that DNA methylation acquired in prospermatogonia is required 

for spermatogenic gene expression [36]. Of note, early prospermatogonia have a left-handed 

Z-DNA structure in part of the genome, and a zinc finger protein ZBTB43 resolves Z-DNA 

to induce de novo DNA methylation [37]. Concomitant with the gain of DNA methylation, 

gene expression patterns change substantially around E16.5 [38]. A recent study established 

in vitro reconstituted mouse spermatogenesis, which corresponds to E11.5 to P5~7, and 

suggested that the acquisition of the androgenic epigenome takes place during the cell 

cycle arrested phase of prospermatogonia in fetal testes [38], which coincides with the 

establishment of genome-wide DNA methylation [35]. These molecular events suggest that 

global gain of DNA methylation is a part of the mechanisms of epigenetic priming for 

spermatogonial differentiation.

Epigenetic priming for stem cell maintenance and differentiation in 

spermatogonia

Mammalian males sustain lifelong fertility by balancing self-renewal and differentiation 

of SSCs. SSC activity resides in a heterogenous population of undifferentiated 

spermatogonia, whose cell states are maintained at a delicate equilibrium [39]. Within 

this population, epigenetic regulation performs two major functions: stem cell maintenance 
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and preprogramming of spermatogenic differentiation. In addition, epigenetic priming is 

implicated in establishing the foundational SSC pool [40].

SSC maintenance is regulated by epigenetic regulators such as PRCs [41–43], the H3K79 

histone methyltransferase DOT1L [44], and a chromatin remodeler CHD8 [45]. PRCs 

regulate bivalent domains marked with H3K27me3 and H3K4me3, a signature of a primed 

state that is extensive in germ cells throughout their development, including juvenile and 

adult undifferentiated spermatogonia [8,9,46–50]. Our recent study demonstrated that PRC1 

shields adult undifferentiated spermatogonia from differentiation, maintains slow cycling, 

and directs commitment to differentiation during steady-state spermatogenesis in adults [51]. 

We show that PRC1 directs PRC2-mediated H3K27me3 as an epigenetic hallmark of adult 

undifferentiated spermatogonia. Spermatogonial differentiation is accompanied by a global 

loss of H3K27me3 from genes required for the process [51]. PRC2 is also critical for later 

stages of spermatogenic differentiation because meiotic entry is affected in PRC2-depleted 

male germ cells [43].

Spermatogenic differentiation is preprogrammed at the chromatin level. In undifferentiated 

spermatogonia, SCML2, a germline-specific component of PRC1, binds to thousands of 

active genes with hypomethylated promoters that are enriched with H3K4me3 [7,8], a mark 

set by the histone methyltransferase KMT2B (also known as MLL2) [52]. SCML2 induces 

PRC2-mediated H3K27me3 on these target genes in the meiotic prophase, establishing 

extensive bivalent domains and leading to global suppression of these genes [8]. The 

germ cell–specific protein BEND2 was recently identified as a meiotic regulator that 

restrains H3K4me3 levels in zygotene spermatocytes, and the depletion of BEND2 increases 

H3K4me3 level (Figure 2a) [53]. Although the molecular function of BEND2 is unknown, 

its homolog BEND3 prevents the premature activation of genes with bivalent domains 

during embryonic stem (ES) cell differentiation [54,55]. Notably, BEND2 interacts with 

SCML2, and the Bend2 gene locus is next to the Scml2 gene locus on the X chromosome; 

thus, BEND2 and SCML2 may be coregulated to work together to establish bivalent 

domains. Curiously, KMT2B is also implicated in PGC specification [56], raising the 

possibility that regulation of H3K4me3 is critical for an acquisition of the germline 

potential.

In addition to the preprogramming of gene repression, gene activation is preprogrammed 

as well. In cultured germline stem (GS) cells, which are a proxy for undifferentiated 

spermatogonia, RNA polymerase II (Pol II) and the active H3K4me2 mark are present 

at promoters of suppressed genes that are to be activated in meiotic prophase [9]. 

Accumulation of H3K4me2 at these promoters was confirmed in undifferentiated 

spermatogonia [8]. These meiotic prophase genes are suppressed by PRC1.6, a subcomplex 

of PRC1, in ES cells [57,58], but the role of PRC1.6 in the regulation of meiotic prophase 

genes in the male germline in vivo remains to be determined. When spermatogenic 

differentiation is induced and the cells enter meiosis, these genes are upregulated by the 

transcription factors STRA8 and MEIOSIN [59,60]. Expression of Meiosin is facilitated 

by the deposition of the histone variant H2A.Z at the Meiosin gene locus, mediated 

by a chromatin remodeler ZNHIT1. ZNHIT1 also regulates meiotic prophase genes 

downstream of STRA8 and MEIOSIN [61]. Curiously, in early embryos and ES cells 
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where their meiotic prophase gene promoters are hypomethylated, PRC1.6 recruits the 

H3K9 methyltransferase SETDB1 and represses the meiotic prophase genes by depositing 

H3K9me3 [62], uncovering the layers of regulatory mechanisms of meiotic prophase genes.

Taken together, these observations show that epigenetic priming is evident in 

undifferentiated spermatogonia. Spermatogenic differentiation programs are predetermined 

at the chromatin level before the onset of differentiation akin to a lunch box, which contains 

a preprepared meal (Figure 2d).

Transcriptional burst of meiotic genes in pachytene spermatocytes

After entering meiosis, sequential cascades of gene activation take place. Genes that 

are upregulated in the preleptotene stages are required for the events in early meiotic 

prophase, while genes whose transcription is activated in the later pachytene stage mainly 

function in postmeiotic stages. Concomitant with the transcriptional burst that occurs at 

the pachytene stage, the chromatin state of the differentiating cells changes dynamically, 

including accessible chromatin and histone modifications [8–10,63]. The transcription factor 

A-MYB (MYBL1), which is expressed in the meiotic prophase, acts as a master regulator 

of the pachytene transcriptional burst [64]. It activates various loci, including pachytene 

Piwiinteracting RNA (piRNA) precursor loci [65], meiosis-specific super-enhancers (SEs) 

[10], and retrotransposon-derived enhancers [66]. As briefly discussed above, meiotic SEs 

are poised with H3K4me2 in spermatogonia (Figure 2b) [10], indicating that epigenetic 

priming with H3K4me2 presets later gene activation. Before the pachytene stage, Pol 

II is already loaded to the promoters of the A-MYB target genes in the leptotene and 

zygotene stages of the early meiotic prophase. At the later pachytene stage, A-MYB and the 

testis-specific bromodomain protein BRDT are loaded to activate the quiescent Pol II and 

trigger the transcriptional activation [67]. Consistent with this observation, Pol II pausing 

is shown to be essential for appropriate gene expression during spermatogenesis [68] The 

testis-specific transcription factor TCFL5 responds to A-MYB and forms a feedback loop 

with A-MYB [69]; thus, A-MYB drives a transcriptional network to coordinate the burst 

of pachytene transcription. Of note, ATF7IP2 (also known as MCAF2), a germline-specific 

partner of SETDB1, regulates H3K9me3 in meiotic prophase but also, counter-intuitively, 

binds and directly activates a large number of pachytene-activated genes [70]. On the other 

hand, a transcription factor ZFP541 suppresses a part of meiotic prophase genes to promote 

meiotic prophase exits [71–73]. However, it is unknown how or if these factors collaborate 

and how these gene regulatory mechanisms are coordinated to ensure meiotic progression.

Epigenetic priming of the male epigenome for the next generation

During the final stages of spermatogenesis, the chromatin states that are established at 

the pachytene stage are progressively remodeled to form condensed sperm nuclei [74]. 

Most histones are replaced with protamines, although a small portion of histones remain 

(1–8% in mice and 10–15% in humans) [75–79]. In mouse and human sperm, bivalent 

marks (H3K4me3 and H3K27me3) persist on gene promoters that are activated later in 

embryogenesis, suggesting that embryonic gene expression programs are epigenetically 

primed in the paternal epigenome before fertilization [80]. Several studies have examined 
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the functional significance of paternally derived H3K4me3 and H3K27me3 for embryonic 

development in the next generation. Over-expression of the histone H3K4 demethylase 

KDM1A in developing sperm impairs embryonic development in F1 (but F1 mice are 

viable), and the defect persists into F3 [11,14]. Although this phenotype appears to be 

independent of bivalent domains [81], H3K4me3 persists from sperm to early embryo 

to regulate gene expression [14]. Other studies showed that paternal deletion of the 

H3K27me3 demethylase KDM6A disturbs spermatogenic gene expression, leading to 

abnormal epigenetic inheritance and increased cancer susceptibility in the next generation 

[82,83]. In addition, reduction of H3K27me3 levels in testicular sperm through Scml2 
deletion causes abnormal gene expression in the next generation without the transmission 

of the mutant allele (because the X-linked Scml2 gene allele is not transmitted to male 

offspring), demonstrating SCML2-mediated epigenetic inheritance [13]. Thus, Scml2-KO 

mice are a good model for studying epigenetic inheritance from the paternal germline 

because all male pups sired from Scml2-KO males are genetically wild type. A recent 

study compared embryos derived from intracytoplasmic sperm injection using epididymal 

sperm and round spermatid injection using round spermatids and reported that paternal 

H3K27me3 is linked to gene expression changes in the early embryo [84]. These studies 

suggest that paternal H3K27me3 mediates intergenerational epigenetic inheritance. The 

underlying molecular mechanisms remain unknown, in part because the paternally derived 

histone variant H3.3, a major histone in sperm, is replaced in zygotes [85], and therefore, 

paternal H3K27me3 is erased in the early embryo [86]. Key outstanding questions in the 

field currently include to what extent the paternal epigenome contributes to embryonic 

development and how paternal epigenetic inheritance withstands the extensive remodeling of 

paternal chromatin that takes place after fertilization.

3D chromatin structure in spermatogenesis

The application of genome-wide chromosome conformation capture methods during 

spermatogenesis has begun to provide insight into 3D genome organization during 

spermatogenesis [87–91]. Male germ cells undergo extensive remodeling of the 3D 

chromatin organization during meiotic prophase I [87,92] (Figure 2c). The number of 

chromatin loops and topologically associated domains (TADs) is reduced in pachytene 

spermatocytes compared with spermatogonia stages. Nevertheless, some persist into mature 

sperm, and their anchor sites and TAD boundaries tend to be modified by active (H3K4me3 

and H3K27ac) and repressive (H3K27me3) marks [87]. This raises the possibility that 3D 

chromatin carries cellular memories of gene expression programs in the male germline. Of 

note, GS cells have largely attenuated 3D chromatin features and distinct CCCTC-binding 

factor (CTCF) distributions compared with induced PGC-like cells, which represent PGCs 

[93]. This suggests that acquisition of the androgenic program after the PGC stage is 

accompanied by 3D chromatin remodeling. Our recent study shows that CTCF-mediated 3D 

chromatin predetermines the gene expression program required for spermatogenesis [94]. 

In undifferentiated spermatogonia, CTCF-mediated chromatin contacts on autosomes pre-

establish meiosis-specific super-enhancers, suggesting that CTCF-mediated 3D chromatin 

organization enforces epigenetic priming that directs unidirectional differentiation. These 
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results suggest that epigenetic priming during spermatogenesis involves 3D genome 

reorganization.

Are 3D chromatin structures passed on to the next generation? Do they contribute to the 

regulation of gene expression during embryogenesis? In the one-cell embryos, the paternal 

genome carries specific chromatin loops, which persist into the inner cell mass. Of note, 

these loops are already evident in sperm [95]. In the maternal genome, these loops are not 

detected until the eight-cell stage, suggesting the persistence of these loops from sperm 

to zygote. Furthermore, the inheritance of sperm chromatin structure has been examined 

in a mouse model in which pregnant female mice are exposed to bisphenol A (BPA), a 

compound mimicking estrogen [96]. BPA exposure altered chromatin accessibility at CTCF-

binding sites near the Fto gene in sperm over six generations, and this was correlated with 

the transmission of an obesity phenotype. Thus, it is tempting to speculate that paternal 3D 

chromatin structures could be transmitted transgenerationally, despite extensive remodeling 

of paternal chromatin. Nevertheless, a recent study raised possible technical issues in 

interpreting sperm Hi-C data [97], and ongoing debates continue in the field.

Perspectives

Akin to a lunch box, into which meals, snacks, and beverages are packed in the morning 

for use later in the day, epigenetic priming prepares future gene expression programs for 

later activation upon differentiation cues. During spermatogenesis, it ensures unidirectional 

differentiation to sperm and subsequent embryogenesis upon fertilization (Figure 2d). 

However, how epigenetic priming is initiated and how chromatin-based memories function 

to define male germ cell identity is currently unknown. To address these questions, key 

mechanisms surrounding chromatin regulation must be examined. Such mechanisms include 

extracellular and intracellular signaling pathways that direct male germ cell differentiation, 

transcription factor networks, and post-transcriptional regulation at the RNA level. For 

example, various germline-specific RNA-binding proteins determine germline identity [98], 

but it is unclear if and how epigenetic gene regulation interacts with post-transcriptional 

regulation to define cellular phenotypes. Further technical advances in next-generation 

sequencing-based methods, including single-cell analysis, will facilitate a more detailed 

study of epigenomic features and the heterogeneity between individual germ cells.
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Figure 1. 
The overview of male germline development in mice. PGCs emerge from the epiblast 

at E6.25. During their subsequent migration to the gonads, global DNA demethylation 

takes place. DNA de novo methylation and mitotic arrest occur approximately from E13.5 

to P0.5. After birth, prospermatogonia either undergo the first wave of spermatogenesis 

or give rise to a pool of foundational SSCs. Undifferentiated spermatogonia differentiate 

into differentiating spermatogonia in response to retinoic acid, and subsequently, they 

initiate meiosis and undergo two cell divisions, ultimately forming haploid sperm. Key 

transcriptional regulators are indicated at the bottom.
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Figure 2. 
Epigenetic priming in the male germline: the lunch box model. (a) Bivalent domains 

marked with both H3K4me2/3 and H3K27me3 are formed at promoters of embryonic 

developmental genes suppressed throughout the germline and somatic genes suppressed 

during late spermatogenesis. (b) Meiotic SEs, which facilitate the transcriptional burst in 

pachytene spermatocytes, are formed by A-MYB. (c) Alterations in 3D chromatin structure 

during spermatogenesis. (d) The lunch box model of epigenetic priming in spermatogenesis. 

The differentiation program of late spermatogenesis (especially the burst of gene expression 

in pachytene spermatocytes) is preset at the chromatin level in spermatogonia. This is akin 

to the meal that is already prepared in the lunch box. Once differentiation cues are received, 

differentiation is initiated. The lunch box lid is opened. Gene expression after fertilization is 

also preprogrammed in the germline at the chromatin level. The copyright of the illustration 

is attributed to Takashi Mifune (https://www.irasutoya.com/).
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