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Deep learning models 
for predicting the survival 
of patients with hepatocellular 
carcinoma based on a surveillance, 
epidemiology, and end results 
(SEER) database analysis
Shoucheng Wang 1, Mingyi Shao 2*, Yu Fu 3, Ruixia Zhao 4, Yunfei Xing 4, Liujie Zhang 1 & 
Yang Xu 1

Hepatocellular carcinoma (HCC) is a common malignancy with poor survival and requires long-term 
follow-up. Hence, we collected information on patients with Primary Hepatocellular Carcinoma in 
the United States from the Surveillance, Epidemiology, and EndResults (SEER) database. We used 
this information to establish a deep learning with a multilayer neural network (the NMTLR model) 
for predicting the survival rate of patients with Primary Hepatocellular Carcinoma. HCC patients 
pathologically diagnosed between January 2011 and December 2015 in the SEER (Surveillance, 
Epidemiology, and End Results) database of the National Cancer Institute of the United States were 
selected as study subjects. We utilized two deep learning-based algorithms (DeepSurv and Neural 
Multi-Task Logistic Regression [NMTLR]) and a machine learning-based algorithm (Random Survival 
Forest [RSF]) for model training. A multivariable Cox Proportional Hazards (CoxPH) model was also 
constructed for comparison. The dataset was randomly divided into a training set and a test set in a 
7:3 ratio. The training dataset underwent hyperparameter tuning through 1000 iterations of random 
search and fivefold cross-validation. Model performance was assessed using the concordance index 
(C-index), Brier score, and Integrated Brier Score (IBS). The accuracy of predicting 1-year, 3-year, 
and 5-year survival rates was evaluated using Receiver Operating Characteristic (ROC) curves, 
calibration plots, and Area Under the Curve (AUC). The primary outcomes were the 1-year, 3-year, 
and 5-year overall survival rates. Models were developed using DeepSurv, NMTLR, RSF, and Cox 
Proportional Hazards regression. Model differentiation was evaluated using the C-index, calibration 
with concordance plots, and risk stratification capability with the log-rank test. The study included 
2197 HCC patients, randomly divided into a training cohort (70%, n = 1537) and a testing cohort (30%, 
n = 660). Clinical characteristics between the two cohorts showed no significant statistical difference 
(p > 0.05). The deep learning models outperformed both RSF and CoxPH models, with C-indices of 
0.735 (NMTLR) and 0.731 (DeepSurv) in the test dataset. The NMTLR model demonstrated enhanced 
accuracy and well-calibrated survival estimates, achieving an Area Under the Curve (AUC) of 0.824 
for 1-year survival predictions, 0.813 for 3-year, and 0.803 for 5-year survival rates. This model’s 
superior calibration and discriminative ability enhance its utility for clinical prognostication in Primary 
Hepatocellular Carcinoma. We deployed the NMTLR model as a web application for clinical practice. 
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The NMTLR model have potential advantages over traditional linear models in prognostic assessment 
and treatment recommendations. This novel analytical approach may provide reliable information on 
individual survival and treatment recommendations for patients with primary liver cancer.

Keywords Primary liver cancer, Predictive model, SEER, Deep learning, Machine learning

Primary liver cancer, the sixth most common cancer globally in 2020 and the third leading cause of cancer 
death–accounted for approximately 906,000 new cases and 830,000 deaths. China is a high-incidence country 
for liver cancer, with the highest number of new and deceased primary liver cancer patients worldwide in  20201. 
Primary liver cancer includes hepatocellular carcinoma (accounting for about 80% of all primary liver cancer 
cases), intrahepatic cholangiocarcinoma, and other rare types. Major etiological factors for HCC include chronic 
infection with Hepatitis B or C viruses (HBV or HCV), exposure to aflatoxins, excessive alcohol consumption, 
obesity, diabetes, and smoking. Due to population aging, growth, and changes in major etiological factors, the 
incidence of liver cancer is expected to continue rising in most countries by  20302,3.

Therefore, constructing prognostic models for patients with hepatocellular carcinoma is crucial. Personalized 
predictive models can better assist clinicians in making treatment decisions or designing clinical trials. Previous 
studies have used various types of predictive models to forecast the survival of patients with HCC, including 
the AJCC TNM staging system, logistic regression analysis, and the Cox proportional-hazards  model4–7. The 
AJCC TNM staging system is currently the most widely used cancer staging system worldwide. It is mainly 
based on tumor size, number, lymph node involvement, and distant metastasis to stage patients and predict their 
 prognosis8. In these models, nomograms, which use the Cox proportional hazards (CoxPH) model to assess 
patient prognosis, are common. However, the Cox proportional hazards model assumes that each predictor 
has the same effect at different follow-up times, ignoring the variability in the impact of prognostic factors on 
individual patients over time. Additionally, these models adopt linear assumptions and do not consider non-
linear analyses in real-world clinical  aspects9,10. Thus, more accurate models are needed to fit survival data with 
non-linear functions better.

In recent years, with the rapid development of artificial intelligence technology, AI applications, including in 
liver diseases, have increased. Deep learning, an emerging field, has been widely applied in the biomedical field. 
Deep learning algorithms can process a large amount of medical data, such as structured numeric data (e.g., 
vital signs and lab results), high-dimensional data from multi-omics studies, and digitalized images from various 
high-resolution radiological and histopathological studies, providing significant technical support for innova-
tive research in the medical  field11. At the same time, deep learning algorithms have provided more accurate 
prognostic assessments for cancer  patients12,13. Some studies found that the RSF model, a regression algorithm 
based on decision tree ensemble learning, outperforms the Cox proportional hazards (CPH) model regarding 
differentiation, calibration, clinical utility, and  performance14. NMTLR is a deep neural network survival analysis 
model based on a multi-task framework, which introduces a multilayer perceptron (MLP) to increase modeling 
flexibility. It can predict individual survival and risk functions based on feature vectors without assuming propor-
tional hazards or linear  combinations15. The DeepSurv model is a deep neural network-based Cox proportional 
hazards model that can accurately summarize the relationship between patient covariates and their risk of death 
and provide personalized treatment recommendations for physicians. DeepSurv and NMTLR have the potential 
to supplement traditional survival analysis methods and become standard methods for physicians to study and 
recommend personalized treatment  plans16.

Compared to previous studies, this research utilizes the Surveillance, Epidemiology, and End Results (SEER) 
database managed by the National Cancer Institute (NCI) to gather detailed clinical data on patients with hepa-
tocellular carcinoma. The SEER database, collecting data from 18 regional cancer registries, covers approximately 
28% of the U.S. population. It provides a representative and diverse sample base, enhancing the extrapolation of 
the research findings. Furthermore, the extensive longitudinal follow-up data within SEER are crucial for ana-
lyzing survival trends and assessing the effectiveness of treatment strategies. In this study, we employed the Cox 
proportional hazards model along with three machine learning models—Random Survival Forests (RSF), Nested 
Multistate Transition Logistic Regression (NMTLR), and DeepSurv—to develop predictive models for overall 
survival (OS) in patients with hepatocellular carcinoma. We compared the predictive performance of these mod-
els and selected the best-performing model to create an online calculator for real-time use by clinicians, thereby 
improving the efficiency and accuracy of clinical decision-making. In summary, this study leverages deep learning 
technologies to process and analyze large-scale cancer data, aiming to provide more accurate survival predictions 
for patients with hepatocellular carcinoma, thus offering a scientific basis for clinical decision-making.

Materials and methods
Study subjects and data source
This retrospective cohort study extracted HCC patients registered in the SEER database of the National Cancer 
Institute from 2000 to 2018 to construct the model. The SEER database collects information from 18 cancer 
registries, covering about 28% of the U.S. population. The dataset selected was the SEER Research Plus Data, 18 
Registries, Nov 2020 Sub, using SEER*Stat software (version 8.4.1) to extract training cases. Inclusion criteria 
were: (1) Morphology codes (8170/3–8175/3) according to the International Oncology Code 3rd Edition (ICD-
03); (2) Diagnosis year: 2010–2015; (3) Identified as a primary tumor (first malignant primary indicator = yes). 
Exclusion criteria were: (1) Incomplete follow-up information; (2) Incomplete clinical characteristic factors; (3) 
Unclear staging and grading; (4) Survival time less than or equal to one month; (5) Age under 18 years.
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Research variables and grouping
This research incorporates a variety of variables for analysis: demographic details such as gender, age, race, 
marital status, survival status, survival months; tumor characteristics including size, number, histological type, 
grading, T (AJCC 7th edition), N (AJCC 7th edition), M (AJCC 7th edition), biochemical markers encompass-
ing alpha-fetoprotein (AFP) and liver fibrosis score; and treatment specifics covering surgery, radiotherapy, and 
chemotherapy. Regarding liver fibrosis, patients are categorized using the Ishak scoring system into two groups: 
0–4 (no to moderate fibrosis) and 5–6 (advanced/severe fibrosis). AFP levels are classified into two categories: 
positive/elevated and negative/normal or within normal range. The selection of these variables is based on their 
potential significance in predicting the prognosis of patients with hepatocellular carcinoma.

Data preprocessing
Numeric variables were processed using data standardization methods, and the optimal cutoff values for patient 
age and tumor size were selected using x-tile software. Other data processing and statistical analysis were per-
formed using R software (version 4.2.3). Continuous variables were represented by mean and standard deviation, 
categorical variables by percentage and frequency, and group comparisons were made using the chi-square test. 
All tests were two-sided, with a significance level set at p < 0.05. When two features showed a strong mutual 
correlation, collinearity emerged. Highly correlated features should be avoided as they increase computational 
costs and workload and potentially overcomplicate the model. Therefore, we used the cor function in the stats R 
package to calculate correlations between features. A Pearson correlation value of 0.7 indicated a high degree of 
collinearity. Additionally, univariate and multivariate Cox regression models were used to assess the importance 
of potential features.

Model construction
Python was used for model construction. The primary outcome was the overall survival rate (OS). Four algo-
rithms were selected for training, two based on machine learning (DeepSurv, Neural Multi-Task Logistic Regres-
sion [NMTLR], Random Forest [RSF]), and compared with the Cox survival regression model (coxph). The 
dataset was randomly divided into a training dataset and a test dataset in a 7:3 ratio. Finding the optimal con-
figuration for our model, including network architecture and hyperparameter values, was crucial. We adjusted 
hyperparameters through 1000 iterations of random search and fivefold cross-validation on the training set. The 
performance of models with different hyperparameter combinations was assessed using the concordance index 
(C-index).The difference between the two models’ C-index was tested using Kang’s  method17. Model accuracy was 
assessed using the C-index, and we applied the Brier score to represent the mean squared difference between the 
observed patient state and the predicted survival probability. We also calculated the Integrated Brier Score (IBS) 
to determine the model’s overall performance. Calibration plots were used to calibrate 1-year, 3-year, and 5-year 
OS, comparing expected and actual survival rates. To assess the time-dependence, sensitivity, and specificity 
of the model, Receiver Operating Characteristic (ROC) curves were generated, and the Area Under the Curve 
(AUC) values for 1-year, 3-year, and 5-year survival rates were calculated. To establish the relationship between 
individual features and model performance, we used a random replacement method to assess the importance of 
each feature in the test set. First, the model performance was quantified using the concordance index, and then 
calculations were made using the replaced dataset to evaluate each feature’s contribution to model performance. 
To assess the risk stratification efficacy of the model exhibiting optimal performance, the procedure commences 
with the calculation of risk probabilities utilizing the algorithm that demonstrated superior efficacy. Optimal 
threshold values for these probabilities are ascertained through the application of X-tile software. Following this, 
patients are classified into low, intermediate, and high-risk categories according to the established thresholds. 
The final phase involves the comparison of survival curves across these risk groups, employing the log-rank test 
to discern statistically significant differences.

Model application
The best-performing algorithm was deployed using the Streamlit package in Python to create a web-based 
interactive tool for practical use.

Ethics statement
Since the SEER database comprises de-identified patient data that is publicly accessible, the use of this database 
for our project did not necessitate review by an ethics committee.
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Results
Data description
In this study, 35,444 HCC patients were screened from the SEER database between 2010 and 2015, with 2197 
patients meeting the criteria for inclusion. Table 1 shows the patients’ main baseline clinical characteristics 
(eTable 1 in the Supplement). Among the 2197 participants, 70% (n = 1548) were aged 66 years and below, 
23% (n = 505) were between 66 and 77 years old, and 6.6% (n = 144) were over 77 years old. Male participants 
accounted for 78% (n = 1915), while females represented 22% (n = 550). In terms of race, the majority of partici-
pants were White, accounting for 66% (n = 1455), followed by Asians or Pacific Islanders at 22% (n = 478), Black 
individuals at 10% (n = 228), and Native Americans/Alaskan Natives at only 1.6% (n = 36). Regarding marital 
status, 60% (n = 1319) were married, and the remaining 40% (n = 878) were of other marital statuses. Histologi-
cally, most participants (98%, n = 2154) were of type 8170. Additionally, 50% (n = 1104) of the patients were grade 
II differentiated, 18% (n = 402) were grade III, 1.0% (n = 22) were grade IV, and 30% (n = 669) were grade I. In 
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Characteristic

Overall Univariate Cox Multivariate Cox

N =  2197a HRb 95%  CIb p-value HRb 95%  CIb p-value

Age < 0.001 < 0.001

 ≤ 66 1548 (70%) – – – –

 > 66, ≤ 77 505 (23%) 1.32 1.16, 1.49 1.22 1.07, 1.39

 > 77 144 (6.6%) 2.23 1.85, 2.69 1.67 1.37, 2.04

Race  < 0.001 0.082

 American Indian/Alaska Native 36 (1.6%) – – – –

 Asian or Pacific Islander 478 (22%) 0.71 0.47, 1.08 1.36 0.88, 2.10

 Black 228 (10%) 1.05 0.68, 1.62 1.64 1.05, 2.56

 White 1455 (66%) 0.91 0.61, 1.36 1.47 0.97, 2.24

Marital_status  < 0.001  < 0.001

 Married 1319 (60%) – – – –

 Other 878 (40%) 1.38 1.24, 1.54 1.27 1.13, 1.42

Histological_type  < 0.001 0.002

 8170 2154 (98%) – – – –

 8171 2 (< 0.1%) 1.94 0.49, 7.78 3.26 0.79, 13.5

 8172 3 (0.1%) 0.00 0.00, Inf 0.00 0.00, Inf

 8173 3 (0.1%) 27.5 8.77, 86.3 7.91 2.46, 25.5

 8174 34 (1.5%) 1.25 0.84, 1.88 1.55 1.02, 2.35

 8175 1 (< 0.1%) 4.97 0.70, 35.4 6.37 0.88, 46.1

Grade  < 0.001  < 0.001

 Moderately differentiated; Grade II 1104 (50%) – – – –

 Poorly differentiated; Grade III 402 (18%) 1.55 1.35, 1.79 1.32 1.14, 1.54

 Undifferentiated; anaplastic; Grade IV 22 (1.0%) 1.86 1.17, 2.98 1.36 0.84, 2.19

 Well differentiated; Grade I 669 (30%) 0.95 0.84, 1.08 0.81 0.71, 0.92

Stage  < 0.001  < 0.001

 I 1054 (48%) – – – –

 II 642 (29%) 1.23 1.08, 1.41 1.53 0.85, 2.73

 III 344 (16%) 3.26 2.83, 3.77 2.20 1.34, 3.61

 IV 157 (7.1%) 5.59 4.64, 6.74 3.33 1.79, 6.16

T  < 0.001  < 0.001

 T1 1079 (49%) – – – –

 T2 677 (31%) 1.25 1.10, 1.43 0.85 0.49, 1.50

 T3a 260 (12%) 2.98 2.54, 3.49 0.79 0.48, 1.28

 T3b 124 (5.6%) 5.24 4.27, 6.43 1.33 0.80, 2.19

 T4 57 (2.6%) 4.64 3.51, 6.13 1.30 0.75, 2.25

N  < 0.001 0.083

 N0 2114 (96%) – – – –

 N1 83 (3.8%) 3.55 2.81, 4.49 0.67 0.42, 1.06

M  < 0.001 0.89

 M0 2090 (95%) – – – –

 M1 107 (4.9%) 4.53 3.68, 5.56 1.04 0.64, 1.67

AFP  < 0.001 0.050

 Negative/normal; within normal limits 753 (34%) – – – –

 Positive/elevated 1444 (66%) 1.39 1.23, 1.56 1.13 1.00, 1.28

Tumor_size  < 0.001  < 0.001

 ≤ 62 mm 1629 (74%) – – – –

 > 62 mm 568 (26%) 2.28 2.04, 2.56 1.74 1.50, 2.01

Surgery  < 0.001  < 0.001

 Lobectomy 704 (32%) – – – –

 Local tumor destruction 311 (14%) 1.91 1.59, 2.30 2.32 1.92, 2.81

 No 753 (34%) 4.80 4.15, 5.54 4.25 3.61, 4.99

 Wedge or segmental resection 429 (20%) 1.32 1.10, 1.58 1.29 1.07, 1.56

Chemotherapy  < 0.001 0.005

Continued
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terms of tumor staging, 48% (n = 1054) of participants were at stage I, 29% (n = 642) at stage II, 16% (n = 344) 
at stage III, and 7.1% (n = 157) at stage IV. Regarding the TNM classification, 49% (n = 1079) were T1, 31% (n 
1 = 677) were T2, 96% (n = 2114) were N0, and 95% (n = 2090) were M0. 66% (n = 1444) of the participants had a 
positive/elevated AFP. 70% (n = 1532) showed high levels of liver fibrosis. 92% (n = 2012) had a single tumor, while 
the remaining 8.4% (n = 185) had multiple tumors. 32% (n = 704) underwent lobectomy, 14% (n = 311) under-
went local tumor destruction, 34% (n = 753) had no surgery, and 20% (n = 429) underwent wedge or segmental 
resection. Finally, 2.1% (n = 46) received radiation therapy, with 62% (n = 1352) not receiving chemotherapy 
and 38% (n = 855) undergoing chemotherapy. The average overall survival (OS) in months for participants was 
45 ± 34 months, with 1327 (60%) surviving at the end of follow-up.

Feature selection
Following univariate Cox regression analysis, we identified several factors significantly correlated with the 
survival rate of hepatocellular carcinoma patients (p < 0.05). These factors included age, race, marital status, 
histological type, tumor grade, tumor stage, T stage, N stage, M stage, alpha-fetoprotein levels, tumor size, 
type of surgery, and chemotherapy status. These variables all significantly impacted patient survival in the 
univariate analysis. However, in the multivariate Cox regression analysis, we further confirmed that only age, 
marital status, histological type, tumor grade, tumor stage, and tumor size were independent factors affect-
ing patient survival (p < 0.05) (Table 1). Additionally, through collinearity analysis, we observed a significant 
high degree of collinearity between tumor staging (Stage) and the individual stages of T, N, and M (Fig. 1). 
This phenomenon occurs primarily because the overall tumor stage (Stage) is directly determined based on 
the results of the TNM assessment. This collinearity suggests the need for cautious handling of these variables 
during modeling to avoid overfitting and reduced predictive performance. Despite certain variables not being 
identified as independent predictors in multivariable analysis, we incorporated them into the construction of 
our deep learning model for several compelling reasons. Firstly, these variables may capture subtle interactions 
and nonlinear relationships that are not readily apparent in traditional regression models, but can be discerned 
through more sophisticated modeling techniques such as deep learning. Secondly, including a broader set of 
variables may enhance the generalizability and robustness of the model across diverse clinical scenarios, allow-
ing it to better account for variations among patient subgroups or treatment conditions. Based on this analysis, 
we ultimately selected 12 key factors (age, race, marital status, histological type, tumor grade, T stage, N stage, 
M stage, alpha-fetoprotein, tumor size, type of surgery, chemotherapy) for inclusion in the construction of the 
predictive model. We divided the dataset into two subsets: a training set containing 1537 samples and a test set 

Table 1.  Univariate and multivariate Cox regression analyses of main characteristics. Significant values are in 
bold. a n (%); mean (SD). b HR Hazard ratio, CI Confidence interval.

Characteristic

Overall Univariate Cox Multivariate Cox

N =  2197a HRb 95%  CIb p-value HRb 95%  CIb p-value

 No/Unknown 1352 (62%) – – – –

 Yes 845 (38%) 1.52 1.37, 1.70 0.84 0.74, 0.95

Figure 1.  Correlation coeffcients for each pair of variables in the data set.
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Table 2.  Main characteristic distribution of data in training sets and test sets. a n (%); mean (SD).

Characteristic

Overall Train Test

p-valueN =  2197a N =  1537a N =  660a

Age (%) 0.094

 > 66, ≤ 77 505 (23%) 355 (23%) 150 (23%)

 > 77 144 (6.6%) 112 (7.3%) 32 (4.8%)

 ≤ 66 1548 (70%) 1070 (70%) 478 (72%)

Race (%) 0.470

 American Indian/Alaska Native 36 (1.6%) 29 (1.9%) 7 (1.1%)

 Asian or Pacific Islander 478 (22%) 323 (21%) 155 (23%)

 Black 228 (10%) 157 (10%) 71 (11%)

 White 1455 (66%) 1028 (67%) 427 (65%)

Marital status (%) 0.298

 Married 1319 (60%) 924 (60%) 395 (60%)

 Other 878 (40%) 613 (40%) 265 (40%)

Histological type (%) 0.944

 8170 2154 (98%) 1507 (98%) 647 (98%)

 8171 2 (< 0.1%) 2 (0.1%) 0 (0.0%)

 8172 3 (0.1%) 3 (0.2%) 0 (0.0%)

 8173 3 (0.1%) 1 (< 0.1%) 2 (0.3%)

 8174 34 (1.5%) 23 (1.5%) 11 (1.7%)

 8175 1 (< 0.1%) 1 (< 0.1%) 0 (0.0%)

Grade (%) 0.719

 Moderately differentiated; Grade II 1104 (50%) 765 (50%) 339 (51%)

 Poorly differentiated; Grade III 402 (18%) 288 (19%) 114 (17%)

 Undifferentiated; anaplastic; Grade IV 22 (1.0%) 17 (1.1%) 5 (0.8%)

 Well differentiated; Grade I 669 (30%) 467 (30%) 202 (31%)

T (%) 0.713

 T1 1079 (49%) 751 (49%) 328 (50%)

 T2 677 (31%) 484 (31%) 193 (29%)

 T3a 260 (12%) 176 (11%) 84 (13%)

 T3b 124 (5.6%) 84 (5.5%) 40 (6.1%)

 T4 57 (2.6%) 42 (2.7%) 15 (2.3%)

N (%) 0.726

 N0 2114 (96%) 1477 (96%) 637 (97%)

 N1 83 (3.8%) 60 (3.9%) 23 (3.5%)

M (%) 0.370

 M0 2090 (95%) 1452 (94%) 638 (97%)

 M1 107 (4.9%) 85 (5.5%) 22 (3.3%)

AFP (%) 0.576

 Negative/normal; within normal limits 753 (34%) 533 (35%) 220 (33%)

 Positive/elevated 1444 (66%) 1004 (65%) 440 (67%)

Tumor size (%) 0.387

 > 62 mm 568 (26%) 406 (26%) 162 (25%)

 ≤ 62 mm 1629 (74%) 1131 (74%) 498 (75%)

Surgery (%) 0.843

 Lobectomy 704 (32%) 485 (32%) 219 (33%)

 Local tumor destruction 311 (14%) 221 (14%) 90 (14%)

 No 753 (34%) 526 (34%) 227 (34%)

 Wedge or segmental resection 429 (20%) 305 (20%) 124 (19%)

Chemotherapy (%) 0.525

 No/unknown 1352 (62%) 953 (62%) 399 (60%)

 Yes 845 (38%) 584 (38%) 261 (40%)

Survival months (mean (SD)) 45 (34) 45 (34) 46 (34) 0.606

Status (%) 0.625

 Alive 870 (40%) 603 (39%) 267 (40%)

 Dead 1327 (60%) 934 (61%) 393 (60%)
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Figure 2.  Loss convergence graph for (A) DeepSurv, (B) neural network multitask logistic regression 
(N-MTLR) models.

Table 3.  Performance of four survival models. Significant values are in bold.

Models

C-index

Train Test IBS 1-year AUC 3-year AUC 5-year AUC 

CoxPH 0.6895 0.6837 0.1789 0.762 0.772 0.737

Deepsurv 0.7504 0.7317 0.1632 0.807 0.808 0.800

NMTLR 0.7445 0.7353 0.1598 0.824 0.813 0.803

RSF 0.7449 0.7336 0.1648 0.812 0.810 0.795

Table 4.  Comparative analysis of discriminative ability (C-index) between CoxPH and machine learning 
models (DeepSurv, N-MTLR, RSF).

Model 1 Model 2 p-value

CoxPH NMTLR  < 0.01

CoxPH RSF  < 0.01

CoxPH DeepSurv  < 0.01
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containing 660 samples (Table 2). By training and testing the model on these data, we aim to develop a model 
that can accurately predict the survival rate of hepatocellular carcinoma patients, assisting in clinical decision-
making and improving patient prognosis.

Hyperparameter optimization and model comparison results
Initially, we conducted fivefold cross-validation on the training set and performed 1000 iterations of random 
search. Among all these validations, we selected parameters that showed the highest average concordance index 
(C-index) and identified them as the optimal parameters. Figure 2 displays the loss function graphs for the two 
deep learning models, NMTLR and DeepSurv. This set of graphs reveals the loss changes of these two models 
during the training process.

When comparing the machine learning models with the standard Cox Proportional Hazards (CoxPH) model 
in terms of predictive performance, Table 3 presents the performance of each model on the test set. In our analy-
sis, we employed the log-rank test to compare the concordance indices (C-index) across models. The results 
indicated that the three machine learning models—DeepSurv, N-MTLR, and RSF—demonstrated significantly 
superior discriminative ability compared to the standard Cox Proportional Hazards (CoxPH) model (p < 0.01), as 
detailed in Table 4. Specifically, the C-index for DeepSurv was 0.7317, for NMTLR was 0.7353, and for RSF was 
0.7336, compared to only 0.6837 for the standard CoxPH model. Among these three machine learning models, 
NMTLR had the highest C-index, demonstrating its superiority in predictive performance. Further analysis of 
the Integrated Brier Score (IBS) for each model revealed that the IBS for the four models were 0.1598 (NMTLR), 
0.1632 (DeepSurv), 0.1648 (RSF), and 0.1789 (CoxPH), respectively (Fig. 3). The NMTLR model had the lowest 
IBS value, indicating its best performance in terms of uncertainty in the predictions. Additionally, there was no 
significant difference between the C-indices obtained from the training and test sets, suggesting that the NMTLR 
model has better generalization performance in the face of real-world complex data and can effectively avoid 
the phenomenon of overfitting.

Through calibration plots (Fig. 4), we observed that the NMTLR model demonstrated the best consistency 
between model predictions and actual observations in terms of 1-year, 3-year, and 5-year overall survival rates, 
followed by the DeepSurv model, RSF model, and CoxPH model. This consistency was also reflected in the 
AUC values: for the prediction of 1-year, 3-year, and 5-year survival rates, the NMTLR and DeepSurv models 
had higher AUC values than the RSF and CoxPH models. Specifically, the 1-year AUC values were 0.803 for 
NMTLR and 0.794 for DeepSurv, compared to 0.786 for RSF and 0.766 for CoxPH; the 3-year AUC values were 
0.808 for NMTLR and 0.809 for DeepSurv, compared to 0.797 for RSF and 0.772 for CoxPH; the 5-year AUC 
values were 0.819 for both DeepSurv and NMTLR, compared to 0.812 for RSF and 0.772 for CoxPH. The results 
indicate that, in predicting the survival prognosis of patients with hepatocellular carcinoma, the deep learning 
models—DeepSurv and NMTLR—demonstrate higher accuracy than the RSF and the classical CoxPH models. 
The NMTLR model significantly exhibited the best performance in multiple evaluation metrics.

Model feature importance
In the feature analysis of deep learning models, the impact of a feature on model accuracy when its values are 
replaced with random data can be measured by the percentage decrease in the concordance index (C-index). A 
higher decrease percentage indicates the feature’s significant importance in maintaining the model’s predictive 
accuracy. Figure 5 shows the feature importance heatmaps for the DeepSurv, NMTLR, and RSF models.

In the NMTLR model, the replacement of features such as age, race, marital status, histological type, tumor 
grade, T stage, N stage, alpha-fetoprotein, tumor size, type of surgery, and chemotherapy led to an average 
decrease in the concordance index by more than 0.1%. In the DeepSurv model, features like age, race, marital 
status, histological type, T stage, N stage, alpha-fetoprotein, tumor size, and type of surgery saw a similar average 
decrease in the concordance index when replaced with random data. In the RSF model, we found that features 

Figure 3.  Prediction error curve.
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including age, race, tumor grade, T stage, M stage, tumor size, and type of surgery significantly impacted the 
model’s accuracy, as evidenced by a noticeable decrease in the C-index, averaging a reduction of over 0.1% when 
replaced with random data.

Figure 4.  The receiver operating curves (ROC) and calibration curves for 1-, 3-, 5-year survival predictions. 
ROC curves for (A) 1-, (C) 3-, (E) 5-year survival predictions. Calibration curves for (B) 1-, (D) 3-, (F) 5-year 
survival predictions.
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Risk stratification capability of the NMTLR model
In the training cohort, the NMTLR model was employed to predict patient risk probabilities. Optimal thresh-
old values for these probabilities were determined using X-tile software. Patients were stratified into low-risk 
(< 178.8), medium-risk (178.8–248.4), and high-risk (> 248.4) categories based on these cutoff points. Statisti-
cally significant differences were observed in the survival curves among the groups, with a p-value of less than 
0.001, as depicted in Fig. 6A. Similar results were replicated in the external validation cohort, as shown in Fig. 6B, 
underscoring the robust risk stratification capability of the NMTLR model.

Figure 4.  (continued)
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Model deployment
The web application developed in this study, primarily intended for research or informational purposes, is pub-
licly accessible at http:// 120. 55. 167. 119: 8501/. The functionality and output visualization of this application are 
illustrated in Fig. 7 and eFigure 1 in the Supplement.

Discussion
Accurately predicting the survival rate of hepatocellular carcinoma (HCC) patients is crucial for their treatment 
planning and follow-up. Historical studies have revealed various prognostic factors affecting the survival time of 
HCC patients, including age, tumor size, histological type, tumor grade, metastatic status, and HBV  infection18. 
Researchers have developed various models to improve prediction accuracy, such as the BCLC staging, COX 
proportional hazards model, and  RSF14,19,20. However, the traditional CoxPH model’s limitations become apparent 
when dealing with real-world clinical data, particularly in its assumption of a linear relationship between death 
risk and  variables21. Thus, deep learning algorithms have started to show their advantages. These algorithms can 
reveal complex non-linear relationships between factors, hence widely used in survival prediction. This enables 
a more comprehensive and precise prediction of the survival expectancy of HCC patients. Recent studies have 
delved into radiomic and genomic data of HCC patients to more accurately identify liver cancer and predict 
survival rates, achieving significant  progress22–25. Therefore, we constructed two deep learning models to predict 
the survival rate of HCC patients and compared their performance with two classic prediction models.

Figure 5.  Heatmap of feature importance for DeepSurv, neural network multitask logistic regression (NMTLR) 
and random survival forest (RSF) models.

http://120.55.167.119:8501/
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Firstly, we performed statistical descriptions and COX regression analysis on 2197 patients extracted from 
the SEER database to determine risk factors affecting their prognosis. Eventually, we chose factors such as age, 
race, marital status, histological type, tumor grade, T stage, N stage, M stage, alpha-fetoprotein, tumor size, type 
of surgery, and chemotherapy to build the model. In the analysis presented in Table 4, the three machine learning 
models—DeepSurv, N-MTLR, and RSF—demonstrated significantly higher discriminative abilities compared 
to the traditional CoxPH model. This result suggests that these machine learning models are potentially more 
effective in handling complex survival analysis tasks, particularly in scenarios involving high-dimensional data 

Figure 6.  Kaplan–Meier curves evaluated the risk stratification ability of NMTLR model.
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or non-proportional hazards. The superior performance of these models could be attributed to their enhanced 
ability to capture nonlinear interactions and complex relationships within the data, which are often present in 
clinical datasets but may not be adequately modeled by traditional methods like CoxPH. Further analysis of the 
Integrated Brier Score (IBS) reveals that the NMTLR model demonstrates the lowest IBS value (0.1598), outper-
forming the DeepSurv, RSF, and CoxPH models. A lower IBS value indicates reduced uncertainty in the predic-
tion outcomes, marking an important metric for assessing the quality of model predictions. This underscores the 
NMTLR model’s superior accuracy in forecasting patient survival outcomes. The calibration plots further confirm 
the superior consistency of the NMTLR model in predicting overall survival rates at 1-year, 3-year, and 5-year 
intervals compared to observed outcomes. This consistency is also reflected in the Area Under the Curve (AUC) 
values, an important metric that measures a model’s ability to predict survival at various time points. The NMTLR 
and DeepSurv models exhibit higher AUC values than both the RSF and CoxPH models at all considered time 
points. Specifically, the AUC values at 1-year, 3-year, and 5-year intervals are notably superior in the NMTLR 
and DeepSurv models, highlighting their enhanced performance in predicting the prognosis of hepatocellular 
carcinoma patients. The NMTLR model performed best in all machine learning models, suggesting its potential 
application value in clinical practice. These findings provide valuable scientific evidence for further improving 
the prognosis prediction of HCC patients and advancing precision medicine. By comparing the differences in 
feature importance among the three models (DeepSurv, NMTLR, RSF), we can see that although each model 
differs in data processing and prediction methods, certain essential features like age, race, tumor size, T stage, 
and type of surgery show significant importance in all models. This indicates that regardless of the model used, 
these features are key factors affecting the accuracy of prognosis prediction in primary liver cancer patients. 
The NMTLR model predicts patient risk probabilities within the training cohort, effectively stratifying patients 
into low-risk (< 178.8), medium-risk (178.8–248.4), and high-risk (> 248.4) groups. This stratification not only 
provides a quantitative estimation of patient risk but also serves as a practical tool to assist in clinical decision-
making. Moreover, statistically significant differences in survival curves between any two groups (p < 0.001) 
are demonstrated in Fig. 6A. This indicates the high efficacy of the NMTLR model in risk stratification, clearly 
differentiating between patients with varying levels of survival prognosis. Additionally, identical results were 
obtained in the internal validation cohort, as shown in Fig. 6B, further validating the generalizability and stabil-
ity of the NMTLR model.DeepSurv and NMTLR models demonstrated superior performance in predicting the 
survival rate of HCC patients. To apply these models in real-world scenarios, we deployed the two deep learning 
models into a web-based application, which can be freely accessed via [http:// 120. 55. 167. 119: 8501/]. Through 
this web application, doctors and medical professionals can conveniently use these deep learning models to make 
personalized predictions of the survival rate of HCC patients. This will help doctors formulate precise treatment 
plans and conduct more effective follow-up observations.

Our study still has certain limitations. Some critical information such as chemotherapy type, medication 
kind, patients’ psychological status, religious beliefs, education level, and family cancer history were not fully 
collected in the SEER database, which might affect the accuracy of predicting the survival rate of HCC patients. 
Additionally, the data of this study only came from some regions of the United States and did not use external 
data to validate the prediction models, limiting their universal applicability. Future studies could incorporate 
data from broader regions and longer-term follow-ups, including patient data from other countries, to further 
improve the predictive accuracy and relevance of the models. The prognosis of HCC patients is a long-term and 
complex process, and our study data only covered a period after the patients’ diagnosis. Therefore, longer-term 
follow-up data is crucial for accurately assessing patients’ survival rates and prognosis. This will help validate 
and update the prediction models more comprehensively to reflect patients’ actual situation better.

Additionally, although the two deep learning models demonstrated specific predictive capabilities in this 
study, their black-box nature limits our complete understanding of their computational processes and constraints, 

Figure 7.  The online web-based application of NMTLR model.

http://120.55.167.119:8501/
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posing new challenges for future research. Overall, the outcomes of this study are still subject to factors such as 
data quality and completeness, and the generalizability of the models needs to be verified on a broader range of 
datasets. To optimize the performance of the models, future studies might consider incorporating more types 
of data, such as genomics and proteomics, to enhance prediction accuracy and explore how to integrate predic-
tive models with existing treatment strategies for personalized treatment. This will provide substantial scientific 
evidence for the predictive assessment and precision medicine of HCC patients.

Data availability
The original contributions presented in the study are included in the article, further inquiries can be download 
from https:// github. com/ shouc henghu/ HCC.
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