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Improved Latin hypercube 
sampling initialization‑based 
whale optimization algorithm 
for COVID‑19 X‑ray multi‑threshold 
image segmentation
Zhen Wang 1, Dong Zhao 1*, Ali Asghar Heidari 2, Yi Chen 3, Huiling Chen 3* & Guoxi Liang 4*

Image segmentation techniques play a vital role in aiding COVID‑19 diagnosis. Multi‑threshold image 
segmentation methods are favored for their computational simplicity and operational efficiency. 
Existing threshold selection techniques in multi‑threshold image segmentation, such as Kapur based 
on exhaustive enumeration, often hamper efficiency and accuracy. The whale optimization algorithm 
(WOA) has shown promise in addressing this challenge, but issues persist, including poor stability, 
low efficiency, and accuracy in COVID‑19 threshold image segmentation. To tackle these issues, we 
introduce a Latin hypercube sampling initialization‑based multi‑strategy enhanced WOA (CAGWOA). 
It incorporates a COS sampling initialization strategy (COSI), an adaptive global search approach 
(GS), and an all‑dimensional neighborhood mechanism (ADN). COSI leverages probability density 
functions created from Latin hypercube sampling, ensuring even solution space coverage to improve 
the stability of the segmentation model. GS widens the exploration scope to combat stagnation 
during iterations and improve segmentation efficiency. ADN refines convergence accuracy around 
optimal individuals to improve segmentation accuracy. CAGWOA’s performance is validated through 
experiments on various benchmark function test sets. Furthermore, we apply CAGWOA alongside 
similar methods in a multi‑threshold image segmentation model for comparative experiments on lung 
X‑ray images of infected patients. The results demonstrate CAGWOA’s superiority, including better 
image detail preservation, clear segmentation boundaries, and adaptability across different threshold 
levels.

Keywords COVID-19 X-ray, Multi-threshold image segmentation, Swarm intelligence, Whale optimization 
algorithm

Image segmentation is a critical stage in medical image processing and analysis that involves dividing pathological 
images into regions with distinct properties to preserve as much detail of the lesion as  possible1–3. Studies have 
shown that image segmentation has significant implications for improving COVID-19’s diagnostic  accuracy4, 
assisting physicians in developing treatment  plans5, and improving diagnostic  speed6 and medical  efficiency7. 
In the second chapter of this paper, the related work section, a brief summary of the advantages and drawbacks 
present in the existing image segmentation methods is presented.

Among various image segmentation methods, the multi-threshold image segmentation (MTIS) technique 
leverages the greyscale features of images. This method offers the advantages of simple computation and high 
operational efficiency. And the processing of thresholds significantly affects the performance of MTIS methods. 
Among them, Kapur’s entropy method is a notable work. Kapur’s entropy can effectively differentiate differ-
ent organizations and structures in an image by maximizing the entropy of image information between seg-
mented regions and dividing the image into regions with different features. However, Kapur’s entropy calculation 
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necessitates enumeration to determine the optimal threshold value, resulting in exponential growth in compu-
tational complexity as the number of thresholds and the search space  expand8–10.

An effective way to deal with this is to combine the swarm intelligent optimization  method11,12. Section 
"Related works" of this paper shows several real-life examples of swarm intelligent optimization algorithms 
combined with multi-threshold image segmentation methods. Numerous research results have shown that incor-
porating swarm intelligence optimization algorithms can improve the accuracy, speed, robustness, and self-
adaptability of MTIS methods. In addition, the performance of the swarm intelligence optimization algorithm 
can significantly affect the efficiency and results of image  segmentation13, so further optimization of the algorithm 
is needed to adapt and solve the optimization problems on different segmentation tasks when the algorithm is 
applied to the field of COVID-19 medical image segmentation.

Swarm intelligence optimization algorithms are a class of computational methods based on the intelligent 
behavior of populations in nature, mainly by stimulating the collaborative and adaptive behavior of biological 
or social groups in problem-solving to achieve optimization of goals. It has the features of a simple structure, 
fast convergence, and good global convergence. It is mostly applied to solve global search and large-scale multi-
objective optimization problems. Since its introduction, researchers have proposed a series of optimization algo-
rithms. Such as differential evolution algorithm (DE)14, ant colony optimization algorithm (ACO)15, wind driven 
optimization algorithm (WDO)16, moth-flame optimization algorithm (MFO)17, the Sine Cosine algorithm 
(SCA)18, colony predation algorithm (CPA)19, bat optimization algorithm (BA)20, hunger games search algorithm 
(HGS)21, Harris hawks optimization algorithm (HHO)22, particle swarm optimization algorithm (PSO)23, firefly 
optimization algorithm (FA)24, grey wolf optimization algorithm (GWO)25, and Runge Kutta optimizer (RUN)26 
and whale optimization algorithm (WOA)27.

Among the swarm intelligence optimization algorithms, WOA simulates the hunting behavior of humpback 
whale populations. The algorithm performs a parallel search through multiple candidate solutions and combines 
exploration and exploitation strategies during the exploration process to gradually approach the optimal solution. 
It is characterized by low parameter requirements, high adaptability, and global exploration capability. Based 
on the advantages of the WOA, researchers have proposed many WOA variants to solve optimization problems 
in various domains. For example, an improved WOA was applied to army planning and strategy  alignment28. 
To solve the global search problem, an improved WOA has been proposed by Chakraborty et al.29. Zhang et al. 
proposed an enhanced WOA for solving the traveler’s  problem30. Huang et al. introduced an improved WOA 
and used it for structural damage  identification31. An estimation method for short-term natural gas usage based 
on the Volterra adaptive filter and enhanced  WOA32. Pandey et al. use enhanced whale optimization for posture 
 detection33. Chen et al. introduced a WOA based on dual adaptive and stochastic  substitution34. Jia et al. intro-
duced a cloud computing task scheduling model based on the improved  WOA35. A large number of research 
results have shown that the improved whale optimization algorithm has good performance in dealing with 
optimization problems and finding the optimal values in the solution space. Therefore, WOA can be tried to 
solve optimization problems within the field of COVID-19 multi-threshold image segmentation.

Although numerous variants of the WOA have been proposed, they still experience slow convergence speed 
and low convergence accuracy when addressing complex high-dimensional problems. There is still a lot of room 
for improvement in the exploitation capability and algorithm adaptability of the WOA. And because of the 
theorem that there is no free lunch and Ref.36, no optimization algorithm can solve all optimization problems in 
all domains, it is necessary to further improve the WOA when it is applied to image segment-rays of X-rays of 
the lungs of patients with novel coronary pneumonia.

To further improve the segmentation efficiency and diagnosis of lung images in patients with novel coronary 
pneumonia, a new swarm intelligence optimization algorithm, CAGWOA, is proposed in this paper. CAGWOA 
introduces an adaptive global search strategy based on the WOA, using the optimal individual as a guide and 
introducing the random interindividual distance as a step size to increase the range of individual activities 
while improving the convergence speed and segmentation efficiency. Through the all-dimensional neighborhood 
mechanism, the backup population is exploited around the space near the optimal individual, which improves 
the convergence accuracy of the algorithm and the accuracy of segmentation results.

Furthermore, numerous swarm intelligence optimization algorithms encounter issues such as getting trapped 
in local optima and exhibiting slow convergence when addressing high-dimensional complex problems. This 
is largely caused by the uncertainty and instability of the algorithm’s initialization  method37,38. The traditional 
initialization method based on random numbers is memoryless. Its uncertain initial state distribution cannot 
effectively sample the features of the problem space. In particular, with a limited number of individuals, random 
initialization can have a significant negative impact on multimodal and mixed function optimization problems 
and complex optimization problems in threshold image  segmentation39–41. In contrast, the Latin hypercubic 
sampling (LHS)  method42,43, inspired by 2D Latin sampling, aims to recreate probability distributions with fewer 
samples by stratifying them. LHS ensures a uniform distribution of samples in each dimension, reduces the cor-
relation between samples, and can provide a favorable representation of the solution space in a relatively small 
number of sample points by efficiently utilizing the samples. Linking this to swarm intelligence optimization, 
the initialization using LHS can improve the exploration of the solution space through a more structured and 
informed  approach44. Therefore, in this paper, we design and introduce a COS sampling initialization method 
based on LHS to achieve uniform coverage of the sampling space with the same number of individuals to improve 
the stability of the segmentation model.

To validate the performance of CAGWOA, this paper conducted a series of comparison experiments on 
IEEE CEC 2014 benchmark  functions45, which contained ablation experiments, comparisons with some excel-
lent peers, and WOA variants. In addition to IEEE CEC 2014, comparison experiments with other improved 
algorithms were conducted on the more complex and challenging IEEE CEC  201946 and IEEE CEC  202247. The 
results demonstrate that the CAGWOA exhibits strong optimization performance. By integrating 2D Kapur’s 
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entropy, nonlocal means, and 2D distribution histograms, this paper proposes a multi-threshold image segmen-
tation model based on CAGWOA. To verify the model’s effectiveness in segmenting lung images of COVID-19 
patients, it is compared with several similar methods in image segmentation experiments.

The contributions of this paper are categorized as follows:

• A new COS sampling initialization strategy is proposed to achieve uniform sampling of the solution space 
with the same number of individuals.

• An enhanced whale optimization algorithm (CAGWOA) for image segmentation is proposed.
• The performance of CAGWOA is verified by comparing it with some excellent algorithms.
• CAGWOA is applied to multi-level thresholding for COVID-19 X-ray image segmentation.

The rest of the paper is organized as follows: In Sect. "Related works", the relevant segmentation methods for 
image segmentation are briefly introduced according to different segmentation methods. Section "Theoretical 
backgrounds" presents a 2D Kapur’s entropy image segmentation model based on CAGWOA, nonlocal means, 
and a 2D distribution histogram. And the background of the WOA, main update phases, and specific update 
formulas. The flowchart and pseudo-code for CAGWOA are provided in Sect. "The proposed CAGWOA", along 
with a description of the algorithm’s structure and optimization strategy. In Sect. "Benchmark experimental 
results and discussion", the performance of CAGWOA was tested on benchmark functions. Section "Segmenta-
tion experiments for COVID-19 X-ray image" tests the performance of the image segmentation model based 
on the CAGWOA. The conclusions and future work of this paper are presented in Sect. "Conclusion and future 
works". Some relevant experimental results are shown in the appendix.

Related works
As a fundamental task in medical image processing, image segmentation aims to identify and understand the 
content of an image by dividing a digital image into multiple sets of pixels with the same characteristics. Image 
segmentation methods mainly contain the following five categories: deep learning-based image segmentation 
 methods48, clustering segmentation  methods49, histogram segmentation  methods50, edge detection  methods51, 
and thresholding segmentation  methods52.

In recent years, deep learning-based image segmentation methods have garnered significant  attention53–55. 
For instance, a convolution-based modified adaptive k-means method has been  proposed56. Wang et al. intro-
duced a novel deep learning-based interactive segmentation framework for 2D segmentation of multiple organs 
in fetal MRI sections and 3D segmentation of brain tumor  cores57. Işın et al. explored deep learning techniques 
for brain tumor image segmentation and  diagnosis58. Isensee et al. developed nnU-Net, a deep learning-based 
segmentation method for medical image segmentation  applications59. Haque et al. reviewed the fundamentals 
of deep learning methods and their implementation in various medical  applications60. Furthermore, several 
approaches have been developed for COVID-19 diagnosis using medical imaging: IP-based SCA evolved deep 
convolutional neural networks for chest CT  scans61, improved deep convolutional neural networks using the 
chimp optimization algorithm for X-ray  images62, automatic COVID-19 diagnosis from chest X-ray images using 
a deep trigonometric convolutional neural  network63, and real-time COVID-19 diagnosis from X-ray images 
using deep CNN and extreme learning machines stabilized by the chimp optimization  algorithm64. However, 
deep learning-based image segmentation methods tend to have disadvantages such as high time complexity, 
inability to perform real-time segmentation, coarse utilization of global contextual information, and unfavorable 
application to 3D image  segmentation65,66.

A clustering segmentation method based on feature similarity division, such as a clustering-based approach 
using a hierarchical evolutionary algorithm, has been proposed for medical image segmentation. This method can 
automatically classify the image into appropriate classes, thereby avoiding the difficulty of determining the proper 
number of  classes67. Another new defect segmentation method leverages color features and a K-means clustering 
unsupervised  algorithm68. A K-means-based clustering technique has also been used for image segmentation in 
different color  spaces69. Additionally, Juang et al. proposed a tumor object tracking method for MRI brain images 
using a color-transformed segmentation algorithm and K-means clustering  technique70. Clustering methods can 
segment images into appropriately sized and compact blocks of pixels. However, it is easy to produce the wrong 
segmentation for objects with complex structures in the  image71,72.

Segmentation methods are based on histograms of image gray levels. An example is an image segmenta-
tion method combining weighted histogram equalization with adaptive gamma correction for homomorphic 
 filtering73. An improved FCM algorithm based on a given image  histogram74. Bonnet et al. proposed to obtain 
segmented images by linking membership classes with each pixel point to deblur the relaxed membership 
 classes75. To solve the problem of quantitative reduction of image data from histograms, a novel automatic peak 
detection algorithm was introduced by Sezan et al.76. Ni et al. proposed and analyzed a region-based, nonpara-
metric active contour model based on histograms for the segmentation of cluttered  scenes77. The segmentation 
method based on the histogram of the image gray level is suitable for images with high contrast and less complex-
ity, but is susceptible to noise interference, resulting in unsatisfactory segmentation  results78,79.

Edge detection method based on luminance and continuity segmentation. For example, Boskovitz et al. 
introduced an automatically adaptive neuro-fuzzy segmentation and edge detection  architecture80. Savant pro-
posed an improved method for range image segmentation on the basis of edge detection  techniques81. Bellon 
et al. proposed a region-based discontinuous edge detection segmentation  method82. Meftah et al. introduced a 
spiking neural network applied to image segmentation and edge  detection83. Singleton et al. developed a highly 
sensitive edge detector using an organizational classification of pixels based on their local neighborhood data 
 analysis84. Image segmentation methods based on edge detection often fail to achieve good segmentation results 
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when the differences in the size of gray values in edge regions are small. And in the segmentation process, it is 
easy to be interfered with by noise or other  information85,86.

Segmentation methods based on thresholding of foreground and background, like a technique for picture 
segmentation that employs a modified edge tracking  methodology87, and a new segmentation method with 
local thresholding applied to µC analysis of skeletal  samples88. An MTIS technique based on an enhanced ant 
colony optimization algorithm was proposed by Zhao et al.89. Al-amri et al. investigated image segmentation 
techniques using multiple thresholding  methods90. Abdel-Basset et al. used an enhanced heuristic algorithm 
for optimal threshold finding in thresholding image  segmentation91. The threshold-based segmentation method 
directly utilizes the grayscale characteristics of the image, which has the advantages of simple computation and 
high operational efficiency. However, it is sensitive to noise and cannot obtain accurate segmentation results 
for images with insignificant and overlapping grayscale differences. Moreover, the threshold value obtained by 
using only the gray value distribution only reflects the magnitude of the pixel gray level and does not reflect 
the spatial relationship between the pixel and the domain, which easily causes problems such as segmentation 
errors and a low signal-to-noise ratio. Table 1 gives a brief description of the advantages and drawbacks of the 
above-mentioned image segmentation methods.

To solve the above-mentioned problems in image segmentation techniques, this paper uses a 2D distribution 
 histogram92 combining grayscale values and nonlocal mean values for thresholding to improve the accuracy and 
noise immunity of  segmentation93. Additionally, entropy measures the disorder or randomness in a system. In 
an image, uniform regions correspond to minimal entropy, while non-uniform regions exhibit maximal entropy. 
Therefore, high entropy in a segmented image indicates better separation between the target and background 
regions. Based on this concept, Shannon entropy, Rényi entropy, Tsallis entropy, Cross entropy, and Kapur 
entropy have been proposed as popular entropy calculations for threshold image segmentation. Among them, 
the Kapur maximum entropy  method94 maximizes the information entropy of the image by seeking the globally 
optimal segmentation threshold to make the segmentation result more informative. And the method does not 
need to make prior assumptions about the characteristics of the image or pre-set the number of segmentation 
thresholds. This makes it more universal and can be applied to various types of images without relying on specific 
a priori knowledge. However, the computation of the traditional Kapur entropy requires traversing all possible 
segmentation thresholds and selecting the set of thresholds that maximize the Kapur entropy as the final set of 
segmentation thresholds, whose complexity rises exponentially with the increase of the thresholds and the size 
of the image.

Numerous studies have demonstrated that optimization-based algorithms for selecting the optimal set of 
thresholds are highly effective. However, the performance of these algorithms, particularly their global search 
capability and ability to avoid local optima, significantly impacts the efficiency and outcomes of image segmenta-
tion. This paper introduces an improved WOA, called CAGWOA, designed to find the optimal threshold vector 
for Kapur’s entropy. The 2D Kapur’s entropy serves as the objective function for CAGWOA, providing an optimal 
threshold set for the image segmentation model.

Theoretical backgrounds
In this section, a Kapur’s entropy MTIS model based on a 2D histogram is illustrated. In addition, the algorithmic 
structure and theoretical foundation of the whale optimization algorithm are briefly described.

MTIS method
In this paper, we construct an image segmentation model that aims to solve the problem of noise sensitivity 
in MTIS. First, the original image is grayscale processed to generate a grayscale image. Then, a nonlocal mean 
filtering process is applied to the grayscale image to obtain the filtered image. In order to avoid segmentation 
errors due to inconspicuous grayscale differences and overlapping regions, the nonlocal mean filtered image and 
the grayscale image are combined to form a 2D distribution histogram. Then, the 2D distribution histogram is 
thresholded using Kapur’s entropy to generate the set of entropy values. Finally, CAGWOA is used as the objec-
tive function to find the best threshold vector in Kapur’s entropy threshold set.

Table 1.  Summaries of image segmentation techniques.

Image segmentation techniques

Methods Advantages Disadvantages

Deep learning-based Ability to handle complex image segmentation tasks
Has strong generalization ability

High time complexity
Inability to perform real-time segmentation
Coarse utilization of global contextual information

Clustering-based Relatively high accuracy and adaptability Difficult to deal with objects with complex structures in 
the image

Histogram-based Can efficiently process images with higher contrast and lower complexity Susceptible to be interference by noise
Unsatisfactory segmentation results

Edge detection-based Effective retention of local features in images Sensitivity to differences in grey values in edge regions
Easy to be interfered by noise or other information

Thresholding-based Simple calculation and high operational efficiency
Sensitive to image noise, grey scale differences and image 
overlapping
Cannot reflect the spatial relationship
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Nonlocal means and 2D histogram
As an effective method of removing noise from an image, nonlocal mean filtering is achieved by taking all the 
pixels in an image, in pixels or blocks of pixels, and applying a weighted average based on similarity. The nonlocal 
mean filtering technique treats the image with high definition and without loss of details.

If I(q) and I(p) are used to denote the grayscale values of two pixels q and p in image I produced by image 
grayscale processing, Eq. (1) can be used to determine the pixel point p ’s nonlocal mean value. It can be indi-
cated by the notation O(p) . The weight between two pixels, p and q , is represented by ω(p, q) in Eq. (2), and σ 
is the standard deviation. In Eq. (3), L(p) denotes a block of pixels of size m ∗m centered at pixel point p . L(q) 
denotes a block of pixels centered at pixel point q in Eq. (4). µ(p) and µ(q) indicate the local means of two pixel 
points q and p.

The grayscale image I(x, y) of size M × N  with gray levels in the range [0, L− 1] is processed by nonlocal 
mean filtering, and the image g(x, y) of the corresponding size and gray level range can be obtained. Using i to 
denote the grayscale value of pixels in the grayscale image I(x, y) and j to denote the nonlocal mean of pixels in 
the nonlocal mean image g(x, y) , i and j can be integrated to form a 2D distribution histogram h(i, j) . The final 
2D distribution histogram is obtained after normalizing h(i, j) using Eq. (5). This image segmentation model, the 
flow, is shown in Fig. 1. A plan view of the normalized 2D distribution histogram is shown in Fig. 2.
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Figure 1.  Image segmentation flow chart.
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2D Kapur’s entropy
According to Fig. 1, the 2D distribution histogram’s primary diagonal includes the majority of the image’s 
data. In order to streamline the computation, the Kapur’s entropy of MTIS is only computed for the n areas 
on the major diagonal. In the 2D distribution histogram design shown in Fig. 2, the gray levels are denoted by 
{t1, t2, t3 . . . L− 1} , and the nonlocal mean is calculated using {S1, S2, S3 . . . L− 1}.

The 2D Kapur’s entropy corresponding to the 2D distribution histogram can be calculated by Eq. (6). Where, 
Pij denotes the corresponding point on the 2D distribution histogram. The gray level {t1, t2, t3 . . . L− 1} is taken 
as the objective function, and the 2D Kapur’s entropy ϕ(s, t) is maximized as the optimal threshold by CAGWOA.

The overview of WOA
Whale optimization algorithm (WOA) inspired by the behavior of whale populations has become a typical 
representative of swarm intelligence optimization algorithms with its simplicity and efficiency. After the indi-
viduals in the WOA population are randomly initialized, the positions of the individuals in the population are 
randomly updated through the following three phases in each iteration. These three phases are: searching for 
prey, surrounding prey, and attacking prey.

The equation for updating the position of the individual during the phase of searching for prey can be 
described as Eq. (7).

The position of the individual in the solution space can be represented as X in Eq. (7), the current number 
of iterations is denoted as it . Xrand denotes the random individuals in the population. D denotes the distance 
between the current individual X and the random individual Xrand . In Eq. (8), C is the weight of the random 
individual Xrand . C ∈ [0,2] , which is used to control the distance between X and Xrand . A is a random value, 
and A ∈ [−2,2] . According to the value of A , individuals within the population randomly choose to search or 
surround the prey. When A < −1 , or A > 1 . In the current iteration, the position of individual Xit+1 in the 
population is updated by searching for prey. In addition, if −1 < A < 1 , the individual enters the prey encircle-
ment phase.

In the surround prey phase, the position of the individuals is updated by Eq. (9).

In Eq. (9), Xbest represents the best optimal individual in the current iteration. In the update phase of prey 
encirclement, individuals will randomly contract toward Xbest . In addition to the two location update ways above. 
the individuals in the population randomly chooses to feed in a spiral contraction to get closer to the optimal 
individual Xbest . The prey attack and spiral search phases can be described as Eq. (10).

(5)Pij =
h(i, j)

M × N
.
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.

(7)Xit+1 = Xrand − A× D,

(8)D = |C × Xrand − Xit |.

(9)Xit+1 = Xbest − A× |C × Xbest − Xit |.

Figure 2.  Plan view of the 2D distribution histogram.
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Equation (10) abstracts the behavior of a whale bubble net attack, where the whales produce bubbles that 
spiral upward to wrap around their prey. Dbest indicates the distance between the best optimal individual posi-
tion Xbest in the current iteration and the current individual position Xit as Eq. (11). The logarithmic spiral’s 
shape is determined by the constant b , and b = 1 . l  is a random number and l ∈ [−1,1] . During the prey attack 
phase, the individuals within the population gradually approach the optimal individual by contracting in spiral.

The proposed CAGWOA
The CAGWOA mentioned in this paper is based on WOA and combines the COS sampling initialization strat-
egy (COSI), adaptive global search strategy (GS), and all-dimensional neighborhood mechanism (ADN). The 
introduction of the COSI solves the problem that WOA tends to fall into the local optimum when dealing with 
multimodal and complex mixed functions to enhance the stability of the image segmentation model. In addi-
tion, the GS expands the search range of individuals and enhances the exploration capability of the algorithm 
to improve the segmentation efficiency. The ADN further explores the optimal individual adjacency region. It 
enhances the algorithm’s capacity for local exploration and helps increase the accuracy of the result to enhance 
the accuracy of the image segmentation model.

COS sampling initialization strategy
Traditional initialization methods are created based on random numbers and are memoryless. The state of 
previous individuals is not taken into account when generating new individuals, and the distribution is highly 
uncertain. It is easy to cause the aggregation of the population in the initial state, which leads the algorithm to fall 
into local optimum easily in solving multimode functions and complex optimization problems. In Fig. 3, Figure 
a show the distribution results of creating 100 individuals by the traditional random number-based population 
initialization method in the range of [0,1] under the two-dimensional space. The individuals do not cover the 
entire solution space uniformly, producing the aggregation phenomenon in the red circle.

The main idea of LHS is the stratification of probability distributions. The solution space is divided into equal 
subspaces by stratification. Subsequently, a random sample is selected in each stratification using a probability 
density function. Generalizing this concept to arbitrary dimensions ensures that each sample is unique in the 
axial hyperplane containing him. In swarm intelligent optimizations algorithms, the LHS-based initialization 
method can effectively avoid the problems of the initialization and iteration processes that are prone to local 
optimums and deception of the objective  function44. In Fig. 3, Figure b shows the LHS-based initialization results. 
Compared with the traditional random number-based initialization method, the individuals in the sampling 
space achieve a more uniform distribution and reduce aggregation.

However, the LHS-based initialization method is limited by the number of samples and the range of the 
solution space. When the number of individuals in the population is limited or the range of the solution space 
is large, its performance is greatly affected, at which time the initialization method based on random numbers 
is more  advantageous95,96. Therefore, it is necessary to introduce a certain degree of randomness based on LHS. 
In this paper, COSI is designed. It can be described as Eq. (12).

(10)Xit+1 = Dbest × ebl × cos(2π l)+ Xit ,

(11)Dbest = |Xbest − Xit |.

Figure 3.  Comparison chart of sampling results.
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Xi is the position of the initialized ith individual in the population. The dimension D of the problem is taken 
as the number of strata in the LHS, and the population size N is taken as the number of samples in the LHS. pi is 
the sequence of LHS corresponding to the individual Xi generated by the LHS, pi = [pi,1, pi,2, pi,3 . . . pi,D] . Where 
any dimension component pi,j is not only unique in pi , but still unique on the corresponding jth dimension 
component p:,j = [p1,j , p2,j , p3,j . . . pN ,D] of the LHS sequence. b is a random number to control the randomness 
of the initialization. b ∈ [0,1] , generated independently on each dimension component. ub and lb are the upper 
and lower bounds of the search space.

In this paper, we propose COSI, which improves the metaheuristic algorithm’s random number-based initiali-
zation method by combining the advantages of LHS-based and random number-based initialization methods. 
To some extent, the algorithm achieves better solution space coverage with the same number of individuals. It 
helps to reduce the aggregation phenomenon of the initialization state of the population, improve the stability 
of the algorithm on multimode functions and complex optimization problems, and avoid the algorithm from 
falling into the local optimum easily.

Adaptive global search strategy
The GS is used to enhance the global search capability of WOA. According to Eq. (13), Xj

i is the position of ith 
individual Xi in jth dimension. The position of Xj

i is updated by the best individual position Xj
best in the same 

dimension and two different random individual positions Xj
rand1 and Xj

rand2 in the population.

The parameter C is used to control the weights of random individuals, C ∈ [0,2e] . C gradually increases as the 
number of assessments increases. To prevent individuals from stagnating in the local optimum, the exploration 
step is increased in the later assessment stages. b is a random number, b ∈ [0,1].

In the early stage of algorithm evaluation, the optimal individual has more influence on the result; however, 
as the number of evaluations increases, the influence of random individuals gradually increases, which helps 
avoid the algorithm from falling into local optimum.

All‑dimensional neighborhood mechanism
To further improve the exploration ability of individuals in WOA. We try to introduce the ADN. The first pro-
posal of the ADN was applied to PSO to enhance the local search ability of PSO individuals for adjacent  spaces97. 
Inspired by this, we introduce the ADN into WOA.

ADN creates a agent of 2× dim individuals to explore the space adjacent to the dth dimension of the optimal 
individual Xd

best . When k = d , the individual’s ordinal number k is equal to the current dimension d . The agent 
individuals update by Eq. (15) and Eq. (16). L is the step size of the individual’s exploration of the adjacent space. 
individuals in the ADN agent population enhance the local exploration around the optimal individual by adding 
a random step size to the positions adjacent to the optimal individual.

When k  = d , the individuals in the ADN population are updated by Eqs. (17) and (18). The individuals in 
the ADN backup population retain the position information of the optimal individual corresponding to the 
dimension.

The exploration step L has three types of updates: contraction, expansion, and maintenance of the current 
state. s is the contraction factor of the exploration step L . In the contracted state of step L , the individuals in the 
ADN population gradually approach the optimal individuals. This further increases the convergence speed of 
the algorithm.

If L < Lmin , L expands outward according to Eq. (14). L0 is the value of the initial state of L . r is a random 
number, r ∈ [0,1] . When the step size L shrinks to a certain degree, L will expand outward and reinitialize a 
random step size. The problem of local optimum caused by too close to the optimal individual is avoided.

(12)Xi = cos

(

π ×

(

1

2
− pi

)

× b

)

× (ub− lb)+ lb.

(13)X
j
i = X

j
best + 2× C × (X

j
rand1 − X

j
rand2)

(14)C = 2× b× e
FEs

MaxFEs

(15)NPd2×k−1 = Xd
best + L,

(16)NPd
2×k = Xd

best − L.

(17)NPd
2×k−1 = Xd

best ,

(18)NPd
2×k = Xd

best .

(19)L = L× s.

(20)L = L0 × r.
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The design of step size L effectively improves the local exploitation ability of the population around the opti-
mal individuals. Then the better fitness values and positions of individuals within the original and ADN agent 
populations are retained by greedy selection.

Overall algorithm
In this section, the improved CAGWOA based on WOA is introduced in detail. CAGWOA introduces COS 
sampling initialization, an adaptive global search strategy, and an ADN based on the standard WOA to improve 
the phenomenon of population aggregation in the initial state of WOA and the defects of easy fall into local 
optimum and poor exploitation ability during iteration, to cope with the problems of low segmentation accuracy, 
slow efficiency and poor stability exhibited by WOA in image segmentation modeling. The three mechanisms 
introduced in CAGWOA are shown in Fig. 4. The three mechanisms introduced in CAGWOA are shown in 
the flowchart of the algorithm by highlighting them in yellow. The details of the algorithm are shown in the 
pseudocode of Algorithm 1 CAGWOA.

First, CAGWOA uses the COSI proposed in Sect. "COS sampling initialization strategy" to replace the ran-
dom number-based initialization method in WOA. COS sampling initialization ensures uniform coverage of 
the search space by the CAGWOA population to enhance the quality of the initial population solution and avoid 
the problems of not covering the global search space and falling into local optimality caused by population 
initialization aggregation in high-dimensional complex problems. In multi-threshold image segmentation, the 
initialization state of the algorithm has a great influence on the subsequent convergence process and affects the 
stability of the segmentation results.

Second, CAGWOA introduces the GS introduced in Sect. "Adaptive global search strategy" before the update 
phase of WOA, searching for prey and enclosing prey. The GS expands the local scope of individuals and ensures 
the algorithm’s ability to explore the solution space. And as the iterative process advances, the search weights 

Figure 4.  Flow chart of proposed CAGWOA.
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are subsequently reduced, which lays the foundation for the subsequent algorithm development. The increased 
convergence speed of the algorithm helps to improve the segmentation efficiency of multi-threshold image 
segmentation.

Finally, CAGWOA introduces the ADN introduced in Sect. "All-dimensional neighborhood mechanism" 
after the three update phases of the original WOA are completed. The ADN is adapted to develop around the 
space of near-optimal solutions around the optimal individuals in the population to obtain higher-quality solu-
tions. The quality of the solution determines the segmentation accuracy of multi-threshold image segmentation.

Algorithm 1.  Pseudocode of CAGWOA.

CAGWOA’s time complexity is mainly determined by the maximum number of iterations (E) , the popula-
tion size (N) , the dimension size (d) and the calculation of objective function value (F) . By analysis, the overall 
algorithmic time complexity of CAGWOA is O (CAGWOA) = O (COSI) + O (Initialize the objective function 
value of the population) + E × (O (GS) + O (Update the position of the population) + O (Calculate the objective 
function value of the population) + O (Update the objective function value of the population) + O (ADN) + O 
(Make a greedy choice between ADN’s population and original population)).
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The time complexity of COSI is O(N × d) . The time complexity required to initialize the objective function 
value of the population is O(N × F) . The time complexity of GS is: O(N) . The time complexity required to update 
the positions of the population is: O(N × d) . The time complexity of calculate the objective function value of the 
population is: O(N × F) . The time complexity required to update the objective function value is: O(N) . The time 
complexity required for the ADN is O

(

(2× d)2
)

 . The time complexity required to make a greedy choice between 
ADN’s population and original population is: O(2× d) . Therefore, the overall time complexity of CAGWOA is: 
O(CAGWOA) = O

(

N × (d + F)+ E × (N × (2+ d + F)+ (2× d)2 + 2× d)
)

.

Benchmark experimental results and discussion
In this section, to validate the performance of the proposed CAGWOA, CAGWOA was subjected to a range of 
experiments, including ablation experiment, comparison with traditional algorithms, comparison with some 
improved algorithms, and comparison with well-known WOA variants.

Experimental settings
The benchmark function experiments were conducted using the IEEE CEC  201445, IEEE CEC  201946, and IEEE 
CEC  202247 test sets. IEEE CEC 2014, a classical test set, includes 30 single-objective functions. IEEE CEC 2022 
offers 12 more complex functions. These functions fall into four categories: single-modal, simple multimodal, 
hybrid, and composite. Single-modal functions contain only one minimum value, used to test the algorithm’s 
exploitation capability. Simple multimodal functions contain multiple local minima and one global minimum, 
used to test the algorithm’s exploration and local optima avoidance. Hybrid functions and composite functions 
are concatenated and combined based on single-modal functions and simple multimodal functions, used to 
test the algorithm’s ability to handle depth and complexity. The relevant details of the functions are shown in 
Table A.1 in the Appendix.

The experiments in this paper were conducted under the limit of the maximum number of evaluations 
( MaxFEs ), and to ensure the fairness of the experiments, all the algorithms involved in the comparison were 
evaluated by adding one to the number of FEs after one separate fitness value calculation. All experiments were 
conducted in the same environment and settings. The algorithms involved in the comparison in the experiments 
all used the best parameters set in their original papers.

In this paper, the maximum number of evaluations MaxFEs is set to 300,000 and the size of the population 
is set to 30. To reduce the effect of randomness in the experimental results, all algorithms are tested on the 
benchmark function set 30 times. In addition, in order to evaluate the experimental results comprehensively 
and further validate the performance of the CAGWOA, the experimental results were further analyzed using 
average value (AVG), standard deviation (STD), Wilcoxon signed-rank (WSRT)98 and Friedman test (FT)99.

In addition, to ensure the same experimental environment for all experiments, the experiments were con-
ducted on Windows Server Windows 11. The processors were coded using an Intel i5-12500H with a 12-core 
processor (2.50 GHz) and 16 GB of RAM, using Matlab2021b.

Sensitivity analysis of parameter ρ
In this section’s experiments, a parameter sensitivity analysis of the execution probability ρ of AND was con-
ducted within the range [0.1,1.0] with an interval of 0.1. Appendix Table A2 illustrates the AVG and STD values 
of convergence results on benchmark functions for different settings of ρ values in various versions of CAGWOA. 
Bold data highlight the ρ settings with the highest precision and stability in specific test functions. By assessing 
the significance of performance differences among all CAGWOA versions on different benchmark functions, FT 
ranks all CAGWOA versions for each benchmark function. The average ranking and final ranking of algorithm 
performance across all benchmark functions are calculated to present FT’s statistical results in Table 2.

Specifically, Avg displays the average ranking of CAGWOA versions with different settings of ρ values across 
all benchmark functions. The similar average rankings of all CAGWOA versions indicate that CAGWOA is not 
sensitive to the setting of the ρ parameter. The final ranking results reveal that the algorithm performs best when 
ρ is set to 1.0. Therefore, in the experimental process, the ρ value is set to 1.0.

Ablation experiment
The experiments in this section are used to compare the effect of different introduced strategies on the per-
formance of the algorithm and further analyze the role of different strategies. This is due to the fact that the 
combination of different strategies is not a simple superposition of effects. The combination of core formulas 
between different strategies may have either a negative or positive impact on the performance of the algorithm. To 
evaluate the effect of the combination between different strategies on WOA, this experiment was designed. And 
the COS sampling initialization strategy, the adaptive global search strategy, and the all-dimensional neighbor-
hood mechanism are named ‘COSI’, ‘GS’ and ‘AND’, respectively. Eight different versions of these three strategies 
combined with WOA are shown in Table 3. Where, ‘0’ means that the strategy is not introduced in WOA, and ‘1’ 

Table 2.  The results of the FT analysis of the parameter ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Avg 5.267 4.667 4.933 4.967 5.000 4.900 4.700 4.633 4.567 4.167

Rank 10 4 7 8 9 6 5 3 2 1



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13239  | https://doi.org/10.1038/s41598-024-63739-9

www.nature.com/scientificreports/

means that the strategy is introduced. For example, the column ‘COSI’ in AGWOA is ‘0’, while the columns ‘AND’ 
and ‘GS’ are ‘1’ means that the all-dimensional neighborhood mechanism and adaptive global search strategy 
are introduced in AGWOA, but the COS sampling initialization strategy is not introduced.

Table A.3 in the Appendix presents the experimental results of eight variants of the WOA algorithm com-
bined with three strategies under the 30 benchmark functions of IEEE CEC 2014. The AVG and STD for each 
test functions reflect the stability and accuracy of the algorithm’s search. The algorithm with smaller STD values 
exhibited more stable search performance, while the algorithm with smaller AVG values showed higher preci-
sion. The result shows that CAGWOA has better stability and better accuracy than other variants of WOA on 
most of the 30 benchmark functions.

In Table 4, ‘ + /–/ = ’ is the test result of WSRT in the experiment, Mean is the analysis result of FT, which 
indicates the average rank of the algorithm’s result among the 30 benchmark functions, and Rank indicates the 
rank of the algorithm among all the participating comparison algorithms. In the table, ‘ + ’ indicates that CAG-
WOA outperforms the compared algorithms, and ‘-’ indicates that CAGWOA underperforms the compared 
algorithms. ‘ = ’ indicates that the performance of CAGWOA is comparable to the compared algorithms. In the 
test results of FT, CAGWOA ranked first. Among the 30 benchmark functions, CAGWOA outperforms CGWOA 
in 6 benchmark functions, is inferior to CGWOA in 3 benchmark functions, and has comparable performance 
with CGWOA in 18 benchmark functions. The results show that CAGWOA has the best performance by intro-
ducing COSI, GS and ADN in WOA.

Figure 5 shows the iterative images of WOA and WOA combined with 7 variants of 3 strategies on 9 functions, 
which are F1, F5, F9, F13, F16, F17, F18, F19, and F20. CAGWOA has the fastest convergence speed and excellent 
convergence results on F1, F5, F16, F17, and F20 and is able to obtain more excellent convergence results. From 
the convergence curve of F16, when the number of evaluations is between 5,000 and 15,000, the other algorithms 
have a slower convergence rate and poorer exploration ability, but CAGWOA still maintains a faster convergence 
rate and jumps out of the local optimum. The convergence result of CGWOA is second only to CAGWOA, 
which shows that the introduction of the ADN effectively enhances the exploitation ability of the WOA. On the 
iteration curves of F9, F13, F18, and F19 functions, the convergence speed of some WOA variants is similar to 
that of CAGWOA, but CAGWOA always gains more accurate convergence results and higher quality solutions.

In summary, CAGWOA has better results in terms of convergence speed and convergence accuracy compared 
to other WOA combinatorial variants.

Comparison with some excellent peers
In order to compare the differences between CAGWOA and other advanced optimization algorithms in deal-
ing with different functions. In this section, we compare the enhanced WOA with seven other well-known 
metaheuristics and the original WOA. These seven algorithms are: (PSO)23, Sine Cosine algorithm (SCA)18, bat 
optimization algorithm (BA)20, gray wolf optimization algorithm (GWO)25, firefly optimization algorithm (FA)24, 
wind driven optimization algorithm (WDO)16, and moth-flame optimization algorithm (MFO)17. Table A.4 in 
the appendix shows the AVG and STD of CAGWOA and the other eight methods. The data in the table show that 
CAGWOA has stable search performance on most unimodal functions, better stability on multimodal functions, 
and the ability to obtain better quality solutions.

According to Table 5’s average ranking, CAGWOA performs noticeably better than the other algorithms. 
Based on the result of ‘ + /–/ = ’, it can be concluded that CAGWOA outperforms other algorithms on most 
functions.

Figure 6 shows the convergence curves of CAGWOA with other algorithms for the 9 functions F2, F5, F10, 
F18, F19, F23, F28, F29, and F30 out of the 30 benchmark functions of IEEE CEC 2014. Observing the graphs, it 
can be concluded that the CAGWOA can find the optimal solution quickly throughout the operation, showing an 
efficient search capability. The algorithm finds the optimal solution in the initial state when processing F23 and 
F28. With F10, we can see that CAGWOA still maintains a strong exploration capability when other algorithms 
fall into local optimum and no longer converge.

Table 3.  Versions of various CAGWOAs.

CAGWOA AGWOA CGWOA CAWOA GWOA AWOA CWOA WOA

COSI 1 0 1 1 0 0 1 0

GS 1 1 1 0 1 0 0 0

ADN 1 1 0 1 0 1 0 0

Table 4.  Ablation experiment results of WSRT and FT.

CAGWOA WOA CWOA AWOA GWOA CAWOA CGWOA AGWOA

 + /–/ =  ~ 27/1/2 18/6/6 23/1/6 18/1/11 13/7/10 6/3/21 17/0/13

Mean 2.3333 6.9667 4.4000 5.7333 4.9000 3.7000 2.7667 4.8667

Rank 1 8 4 7 6 3 2 5
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Figure 5.  Convergence image of the partial function of the ablation experiment.

Table 5.  The analysis results of WSRT and FT.

CAGWOA WOA PSO SCA BA GWO FA WDO MFO

 + /-/ =  ~ 28/1/1 19/9/2 29/0/1 20/6/4 20/8/2 30/0/0 19/6/5 26/2/2

Mean 2.5733 5.2833 4.0478 7.1911 4.3300 4.0289 7.5589 4.5467 5.4400

Rank 1 6 3 8 4 2 9 5 7
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To sum up, CAGWOA compares with other algorithms. It has stronger exploration and exploitation ability, 
and can effectively avoid falling into local optimum.

Comparison with other improved algorithms
To measure the performance of CAGWOA with other improved algorithms in dealing with different functions. 
In this section, in order to completely validate the performance difference of CAGWOA compared to other 
improved algorithms, in addition to the 30 classic test function functions of IEEE CEC 2014, this section is 
supplemented with comparative experiments on a total of 22 more complex and challenging test functions of 
IEEE CEC 2019 and IEEE CEC 2022. The experiments are compared with eight other excellent improved algo-
rithms. These eight algorithms are fusion optimization algorithm for SCA and PSO (ASCA_PSO)100, chaotic bat 
algorithm (CBA)101, Cauchy and Gaussian improved sine cosine optimization algorithm (CGSCA)102, hybrid 
grey wolf optimizer  (HGWO103, adaptive mutation improved fruit fly optimization algorithm (AMFOA)104, the 
opposition-based learning improved positive cosine optimization algorithm (OBSCA)105, the chaotic fruit fly 

Figure 6.  Convergence curve of CAGWOA with excellent peers.
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optimization algorithm (CIFOA)106, and the optimization algorithm for fusion of DE and MFO (DSMFO)107. 
Table A.5 presents the results of CAGWOA and eight other algorithms on 30 functions of IEEE CEC 2014, includ-
ing STD and AVG values. The analysis shows that CAGWOA has the smallest variance and mean value among 
most of the benchmark functions. This indicates that CAGWOA has a more stable optimization efficiency and 
can obtain more accurate optimization results compared to the other eight algorithms.

Table 6 shows the WSRT and FT analysis results of CAGWOA and the other 8 algorithms. From the results of 
FT, it can be seen that CAGWOA ranks first. Among the results of WSRT, CAGWOA has better optimization 
results than AMFOA on 29 of the 30 benchmark functions of IEEE CEC 2014 compared to AMFOA.

Figure 7 shows the iteration curves of CAGWOA with the other eight improved algorithms on the nine 
benchmark functions of IEEE CEC 2014. From the results in the figure, CAGWOA has a stronger ability to search 
and obtain better solutions compared to the other algorithms. From the convergence curves of F5, F8, F9, F10, 
F11, and F12, compared with other improved algorithms, CAGWOA relies on its strong exploration ability to 
obtain relatively optimal solutions in the early stage of convergence, and maintains its exploitation ability when 
other algorithms gradually fall into local optimality in the later stage. In F1 and F16, although the CAGWOA did 
not find better solutions in the early stage, and relied on its strong exploitation ability, the accuracy and quality 
of the solutions obtained by CAGWOA were gradually higher than those of other algorithms. And this strong 
exploitation capability is maintained throughout the evaluation process.

In summary, CAGWOA compares with other improved algorithms. It has stronger global exploration ability 
and relies on the stable exploration ability to obtain higher quality solutions.

Table A.6 presents the AVG and STD values derived from the comparative analysis between CAGWOA and 
other enhanced algorithms at IEEE CEC 2019&2022. Notably, despite the heightened complexity of the optimi-
zation problems, CAGWOA consistently demonstrates smaller mean and variance values across a majority of 
the function problems. This underscores the robustness and superiority of CAGWOA, sustaining its competi-
tive edge over the other eight optimization algorithms even when confronted with increasingly intricate and 
demanding optimization challenges.

In Table 7, the WSRT and FT results from the comparative experiments at IEEE CEC 2019&2022 are pre-
sented. Even as the complexity of the optimization objectives escalates, CAGWOA’s FT performance consistently 
secures the top position. When juxtaposed with the WSRT experimental outcomes involving the comparison 
algorithms at IEEE CEC 2014, CAGWOA continues to maintain an advantageous position across most function 
problems. While the margin over ASCA_PSO, CBA, CGSCA, and HGWO has narrowed, this still substantiates 
the adaptability of CAGWOA across optimization challenges of varying complexity levels.

Figure 8 illustrates the convergence curves of CAGWOA juxtaposed with other algorithms across a selection 
of the 22 test functions from IEEE CEC 2019&2022. Notably, in comparison to the reference algorithms, CAG-
WOA exhibits pronounced exploratory capabilities on functions F3, F11, F16, and F19. It manifests a propen-
sity for precise solution exploration early in the optimization process. Conversely, on F7 and F22, where many 
algorithms tend to converge prematurely towards local optima, CAGWOA distinguishes itself with its robust 
exploratory prowess. Leveraging this strength, CAGWOA demonstrates a consistent developmental trajectory, 
with its convergence accuracy progressively enhancing as the iterative process unfolds.

In summary, CAGWOA compares to other improved algorithms. Both on the classic IEEE CEC 2014 function 
test set and on the more complex and challenging IEEE CEC 2019 and IEEE CEC 2022 show some advantages. 
During the convergence process, CAGWOA demonstrates enhanced global exploration capabilities, comple-
mented by its stable exploitation prowess, culminating in the acquisition of superior-quality solutions.

Comparison with other WOA variants
To estimate the differences between CAGWOA and other WOA variants, in this section compared CAGWOA 
with seven other WOA variants and the original WOA. Include: the improved WOA with backward learning 
(OBWOA)108, the improved WOA fusing Lévy flight strategy and quadratic interpolation method (MWOA)109, 
the improved WOA with Lévy flight (LWOA)110, the WOA with artificial swarm hybrid (ACWOA)111, improved 
WOA with chaotic local search (BWOA)112, improved WOA based on chaotic initialization strategy, Gaussian 
variation and chaotic local search strategy (CCMWOA)113and improved WOA based on learning (BMWOA)114.

Table A.7 in the Appendix shows the AVG and STD values of the WOA variants on the 30 benchmark func-
tions of IEEE CEC 2014. CAGWOA achieves the smallest mean and variance on most of the benchmark func-
tions. This indicates that CAGWOA has higher stability compared to other WOA variants. Table 8 demonstrates 
the comparison results of WSRT and FT. The ‘ + /–/ = ’ from Table 8 shows the significant advantage of CAG-
WOA. For example, when comparing MWOA, the result is ‘30/0/0’, which indicates that CAGWOA outperforms 
MWOA for each of the 30 benchmark functions of IEEE CEC 2014. in terms of the average ranking of the results, 
CAGWOA ranks first, which indicates that CAGWOA compared to the other WOA variants is the best choice.

Table 6.  The analysis results of WSRT and FT.

CAGWOA ASCA_PSO CBA CGSCA HGWO AMFOA OBSCA CIFOA

 + /–/ =  ~ 25/1/4 21/3/6 24/6/0 25/3/2 29/1/0 28/1/1 23/7/0

Mean 2.4206 3.8844 3.9489 4.3761 4.1844 7.9756 5.7867 6.7550

Rank 1 2 3 5 4 9 7 8
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Figure 7.  Convergence curve of comparison improved algorithms at IEEE CEC 2014.

Table 7.  The analysis results of WSRT and FT on IEEE CEC 2019&2022.

CAGWOA ASCA_PSO CBA CGSCA HGWO AMFOA OBSCA CIFOA DSMFO

 + /–/ =  ~ 12/7/3 18/2/2 15/2/5 13/6/3 21/0/1 19/1/2 20/0/2 20/0/2

Mean 2.0909 3.5455 5.5455 4.0000 3.0000 8.5000 4.7727 7.1364 6.0909

Rank 1 3 6 4 2 9 5 8 7
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From the convergence curves in Fig. 9, CAGWOA has the fastest convergence speed and the best convergence 
results on F1, F2, F4, F5, F9, F11, F17, F18, and F19 of IEEE CEC 2014. It can be seen from F2, F4, F5, F9, F11, 
F18, and F19 that all other algorithms fall into local optimum at the late stage of iteration, while CAGWOA relies 
on its strong exploration ability to obtain the optimal solution at the initial stage of iteration. The convergence 
curves of F1 and F17 show that CAGWOA maintains a stable exploitation ability at the late iteration when other 
algorithms gradually fall into local optimum. The convergence result of LWOA is second only to CAGWOA, but 
CAGWOA outperforms LWOA in terms of convergence speed and results obtained. in summary, CAGWOA 
outperforms other WOA improvement algorithms in terms of both the exploration ability in the early stage of 
evaluation and the exploration ability in the late stage.

Segmentation experiments for COVID‑19 X‑ray image
To verify the segmentation effectiveness of CAGWOA, and the adaptability under different thresholds. In this 
section, CAGWOA was compared with six other segmentation algorithms, namely WOA, HHO,  IWOA115, 
 BLPSO116,  CLPSO117, and  SCADE118, in segmentation experiments using six X-ray images based on patients 
with COVID-19. The experiments were performed not only at levels 4, 6, and 8, which represent low threshold 
levels, but also at entropy levels 10, 12, and 14, which represent high threshold levels.

Figure 8.  Convergence curve of comparison improved algorithms at IEEE CEC 2019&2022.

Table 8.  WOA variants comparison results of WSRT and FT.

CAGWOA OBWOA MWOA LWOA ACWOA BWOA CCMWOA BMWOA WOA

 + /–/ =  ~ 21/2/7 30/0/0 15/6/9 26/2/2 21/5/4 23/7/0 28/0/2 27/0/3

Mean 2.5594 4.1933 8.9211 3.3833 5.7294 4.1822 6.0467 5.2511 4.7333

Rank 1 4 9 2 7 3 8 6 5
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Experimental setup and data set
The data used in the experiments were obtained from six lung X-ray images of COVID-19 patients from the 
public dataset collected by J.P. Cohen et al.119. The corresponding raw images and 2D distribution histograms 
for A, B, C, D, E, and F are shown in Fig. 10.

During the experiments conducted, all experiments were performed for 100 iterations to ensure the fairness 
and reliability of the experimental results, and the size of the segmented images was set to 512× 512 . In the 
process of selecting the optimal segmentation threshold set by maximizing Kapur’s entropy based on optimiza-
tion algorithms. The algorithm’s population size was set to 20. To eliminate the randomness of the experiments, 
all experiments were run independently 30 times.

The selection of an appropriate threshold number holds paramount importance in image segmentation, 
directly influencing both result accuracy and computational efficiency. A threshold set too low may culminate in 
under-segmentation, whereas an overly high threshold may precipitate over-segmentation, leading to resource 
wastage. In the realm of medical image processing, meticulous experimentation and validation are typically 

Figure 9.  Convergence curve of CAGWOA compared with WOA variants.
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undertaken to ascertain the optimal threshold number. In this study, the threshold numbers were judiciously 
selected based on general guidelines as  referenced78,120. Specifically, lung X-ray images of COVID-19 patients 
were segmented using thresholds of 4, 6, and 8, denoting low threshold levels, as well as thresholds of 10, 12, 
and 14, representing high threshold levels. This approach provides a comprehensive exploration across varying 
threshold ranges, facilitating a nuanced understanding of segmentation outcomes.

Performance evaluation parameters
In this paper, to comprehensively analyze the results of lung X-ray image segmentation of novel coronavirus 
patients by BDFXHGS, the experimental results were evaluated on three criteria: peak signal-to-noise ratio 
(PSNR)121, structural similarity index (SSIM)122, and feature similarity index (FSIM)123. Among them, PSNR 
is an image quality index that combines noise and accuracy, and a higher value indicates a higher quality for 
segmentation. SSIM describes the similarity before and after segmentation. The higher value of the segmenta-
tion result indicates that the difference after segmentation is smaller and the segmentation result is closer. FSIM 

Figure 10.  Original image and 2D distribution histogram.
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evaluates the feature similarity between the segmented image and the original image, and a higher value indicates 
that the segmentation result is better at preserving the features of the original image. Table 9, provides more 
details on these three criteria.

Experimental analysis at low threshold levels
In this section, we focus on evaluating the image segmentation effect of CAGWOA at low threshold levels. Based 
on the image segmentation algorithms in Sect. "Theoretical backgrounds", a total of seven algorithms, CAGWOA 
and WOA, HHO, IWOA, BLPSO, CLPSO, and SCADE, using thresholds 4, 6, and 8, respectively, were used to 
perform segmentation experiments on the six images in Fig. 6.

To further evaluate the experimental results and comprehensively assess the algorithm performance, the 
segmentation results were evaluated using PSNR, SSIM, and FSIM, and the results were further examined using 
the mean and variance and Wilcoxon signed rank tests. The evaluation results of PSNR, SSIM, and FSIM for six 
images at low threshold levels of 4–6 are given in Table 10 and Tables A.8, A.9 in the Appendix. From the experi-
mental results, CAGWOA ranks first in both PSNR, SSIM and FSIM. This indicates that CAGWOA outperforms 
the other algorithms in terms of comprehensive performance of image segmentation at low threshold levels on 
4, 6, and 8 thresholds. In addition, Fig. 11 shows the convergence curves of the segmentation experiments of 
CAGWOA and other compared algorithms for image A at a threshold value of 4. From the curves, CAGWOA 
converges the fastest and is less likely to fall into local optima during the convergence process, resulting in a 
greater 2D Kapur’s entropy.

Figure 12 shows the segmentation results and color mapping results of all segmentation algorithms for 
COVID-19 patient chest radiograph A under threshold 4. From the results, it can be seen that CAGWOA has 
relatively clear boundaries and better detail retention compared to the segmentation results of other comparison 
algorithms. According to the comparative analysis of the above experimental results, the CAGWOA outperforms 
other algorithms at low threshold levels.

Experimental analysis at high threshold levels
To further verify the performance of CAGWOA in the field of image segmentation, six images, A, B, C, D, E, 
and F, were subjected to experiments at threshold levels 10, 12, and 14 representing high thresholding. Table 11 
and Tables A.10 and A.11 in the Appendix give the results of the WSRT of the PSNR, SSIM, and FSIM means for 
the experimental results of CAGWOA and other algorithms at the high threshold level, respectively. From the 
experimental results, CAGWOA ranked first in all thresholds. And the segmentation results for the six images A, 
B, C, D, E and F are better or equal to other algorithms. This indicates that CAGWOA has stronger performance 
compared to other algorithms at high threshold levels.

Figure 13 shows the convergence curves of the segmentation experiments of CAGWOA and the other com-
pared algorithms for image A at a threshold value of 14. From the curves, CAGWOA has the ability to converge 
quickly at the beginning of the convergence and maintains a stable exploitation ability during the convergence 
process, thus obtaining a larger 2D Kapur’s entropy and better experimental results.

Table 9.  Introduction of image segmentation performance evaluation parameters.

Indicators Formulation Remark

PSNR PSNR = 20 · log10
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Table 10.  Results of PSNR analysis at low threshold levels.

Threshold CAGWOA WOA HHO IWOA BLPSO CLPSO SCADE

4

 + /–/ =  ~ 2/0/4 2/0/4 1/0/5 4/0/2 1/0/5 5/0/1

Mean 1.5000 4.3333 4.0000 2.5000 5.5000 4.0000 6.1667

Rank 1 5 3 2 6 3 7

6

 + /–/ =  ~ 1/0/5 3/0/3 2/0/4 3/0/3 3/0/3 6/0/0

Mean 1.3333 2.3333 4.8333 4.3333 5.1667 3.1667 6.8333

Rank 1 2 5 4 6 3 7

8

 + /–/ =  ~ 2/0/4 5/0/1 4/0/2 2/0/4 4/0/2 6/0/0

Mean 1.6667 2.1667 5.5000 4.0000 3.8333 4.0000 6.8333

Rank 1 2 6 4 3 4 7
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From the segmentation results for image A under threshold 14 shown in Fig. 14, CAGWOA is better than 
other algorithms in preserving local features of the image, retains more image detail and has higher accuracy. 
According to the analysis of the above experimental results, CAGWOA shows good adaptability to image seg-
mentation with high thresholds, and the segmentation performance is better than other comparative algorithms.

Analysis of experimental results of image segmentation
Figures 15, 16 and 17 show the average values of the CAGWOA and other comparison algorithms for the three 
evaluation criteria of 4, 6, 8, 10, 12, and 14 threshold levels on pictures A, B, C, D, E, and F. The model achieves 
optimality for all three criteria. Therefore, the CAGWOA has stable results with different threshold levels and 
has excellent performance.

The analysis of the experimental results concludes that CAGWOA shows better thresholding adaptability and 
stability in image segmentation, finding better thresholds at both low and high threshold levels. Combining the 
evaluation results of PSNR, SSIM and FSIM, when CAGWOA is applied to image segmentation experiments, 
it can clearly delineate the boundaries of features while retaining more local details, making the segmentation 
results closer to the original image.

Conclusion and future works
To improve the efficacy of lung segmentation on X-ray images of novel coronavirus patients, in this paper, an 
image segmentation model centered on the improved whale optimization algorithm (CAGWOA) is introduced. 
The proposed algorithm is based on a COS sampling initialization strategy, an adaptive global search strategy, 
and an all-dimensional neighborhood mechanism. Among them, the COS sampling initialization strategy is 
presented to take the role of the original method of random initialization, which enhances the performance of 
WOA on complex multimodal and mixed functions. The all-dimensional neighborhood mechanism enhances 
the ability of WOA to exploit optimal individuals. And in order to prevent WOA from falling into local optimum, 
the global search method is utilized to improve its ability to search globally. Benchmark function experimental 
results show that CAGWOA has faster convergence speed, higher convergence accuracy, and a stronger ability 
to avoid jumping out of the local optimum. CAGWOA and a series of comparison algorithms are applied to 
an image segmentation model based on 2D Kapur’s entropy and non-local mean two-dimensional distribution 
histograms. COVID-19 multi-threshold image segmentation experiments show that the multi-threshold image 
segmentation model based on CAGWOA exhibits some adaptability with better quality segmentation results 
under different threshold levels.

This paper aims to improve medical diagnosis by improving the efficiency and effectiveness of lung X-ray 
image segmentation in patients with novel coronavirus pneumonia. Since image segmentation is only a basic 

Figure 11.  Convergence curve of segmentation of image A under threshold 4.
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Figure 12.  Comparison of segmentation results of image A under threshold 4.

Table 11.  Results of PSNR analysis at high threshold levels.

Threshold CAGWOA WOA HHO IWOA BLPSO CLPSO SCADE

10

 + /–/ =  ~ 2/0/4 5/0/1 5/0/1 3/0/3 5/0/1 6/0/0

Mean 1.3333 2.0000 4.8333 5.5000 3.1667 4.1667 7.0000

Rank 1 2 5 6 3 4 7

12

 + /–/ =  ~ 1/0/5 5/0/1 6/0/0 5/0/1 3/0/3 6/0/0

Mean 1.3333 1.6667 4.1667 6.0000 4.3333 3.5000 7.0000

Rank 1 2 4 6 5 3 7

14

 + /–/ =  ~ 0/0/6 5/0/1 6/0/0 4/0/2 5/0/1 6/0/0

Mean 1.3333 1.6667 4.5000 5.1667 4.0000 4.5000 6.8333

Rank 1 2 4 6 3 4 7
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task for medical diagnosis, we will continue our efforts in feature extraction, selection, and classification of 
X-ray lung images of patients with novel coronavirus infections to further improve the accuracy and efficiency 
of medical diagnosis. These beneficial efforts will help to better understand and respond to diseases such as 
novel coronavirus pneumonia and provide more comprehensive information to improve treatment options for 
patients. In addition, the image segmentation model delineated in this study, anchored by CAGWOA, is poised 
to be extended to medical image segmentation across a broader spectrum of diseases. Such an advancement 
holds promise for making substantial strides in the medical arena. Concurrently, the optimization prowess 
inherent to CAGWOA, characterized by its efficiency as an optimization algorithm, will be harnessed in diverse 
applications. Anticipated applications encompass challenges posed by expansive datasets and real-time applica-
tions. Moreover, CAGWOA is anticipated to play an instrumental role in diverse domains, including scheduling 
quandaries, feature selection, and engineering optimization challenges, further amplifying its potential impact 
across various scientific and technological disciplines.

Figure 13.  Convergence curve of segmentation of image A under threshold 14.
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Figure 14.  Comparison of segmentation results of image A under threshold 14.
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Figure 15.  Average PSNR assessment results at all threshold levels.

Figure 16.  Average FSIM assessment results at all threshold levels.

Figure 17.  Average SSIM assessment results at all threshold levels.
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Data availability
The data involved in this study are all public data, which can be downloaded through public channels: https:// 
github. com/ ZhenW angjy qj/ Data- avail abili ty- state ment- of- CAGWOA.
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