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The BNLF-1 open reading frame of Epstein-Barr virus (EBV) encodes two related proteins, latent membrane
protein-1 (LMP-1) and lytic LMP-1 (lyLMP-1). LMP-1 is a latent protein required for immortalization of
human B cells by EBV, whereas lyLMP-1 is expressed during the lytic cycle and is found in the EBV virion. We
show here that, in contrast to LMP-1, lyLMP-1 is stable, with a half-life of >20 h in tetradecanoyl phorbol
acetate- and butyrate-treated B95-8 cells. Although lyLMP-1 itself has negligible effects on NF-kB activity, it
inhibits NF-kB activation by LMP-1 in a dose-dependent manner. The lyLMP-1 protein does not oligomerize
with LMP-1, and the negative effect of lyLMP-1 on NF-kB activation by LMP-1 does not result from lyLMP-
1-mediated disruption of LMP-1 oligomers. Modulation of LMP-1-activated signaling pathways is the first
identified biological activity associated with lyLMP-1, and this activity may contribute to the progression of
EBV’s lytic cycle.

Epstein-Barr virus (EBV), a ubiquitous human herpesvirus
causally associated with several human tumors (23), infects
resting B cells and establishes a latent infection resulting in
unlimited proliferation. Latent membrane protein-1 (LMP-1)
is an essential viral membrane protein required for immortal-
ization by EBV and acts by regulating key cell signaling path-
ways. Although EBV-infected B cells rarely enter the lytic cycle
and release virus (24, 30, 33), certain EBV-positive B-cell lines
can be induced to release infectious progeny through treat-
ment with agents such as tetradecanoyl phorbol acetate (TPA)
and sodium butyrate (10, 34, 35). Lytic cycle entry results in
temporally regulated expression of the majority of the viral
genome (;100 open reading frames [ORFs]) (2, 32).

One late lytic cycle promoter, EDL1A, lies within the
LMP-1 gene and drives the expression of a transcript encoding
a predicted ORF corresponding to an amino-terminally trun-
cated form of LMP-1 (11). A protein in infected cells of mo-
lecular weight predicted by this ORF has been termed lytic
LMP-1 (lyLMP-1) because of its expression during EBV’s lytic
cycle (1, 3, 7, 11, 29). The lyLMP-1 ORF begins at methionine
129 of the LMP-1 sequence and continues through the fifth
and sixth transmembrane domains and entire carboxy termi-
nus. lyLMP-1 shares none of LMP-1’s known biological or
biochemical properties (19, 31), and little is known about
lyLMP-1’s function in the infected cell. We reported previously
that lyLMP-1 is a component of the EBV virion and proposed
a function in the initial stages of infection and/or during the
lytic cycle (7). Its sequence identity with LMP-1 suggests that
lyLMP-1 may interact with LMP-1 itself or with effectors of
LMP-1 signaling. We have begun to characterize the biochem-
ical and biological properties of lyLMP-1, with the goal of
understanding its role in the virus life cycle, and have tested the
hypothesis that lyLMP-1 affects the ability of full-length
LMP-1 to activate cell signaling pathways.

De novo synthesis of lyLMP-1 in TPA- and butyrate-induced
B95-8 cells. Western blot analysis of permissive EBV-positive

B-cell lines induced to enter the lytic cycle often reveals a
ladder of LMP-1-immunoreactive proteins migrating with
lower apparent molecular weights than does LMP-1. Detection
of this LMP-1 ladder of bands depends upon the amount of
LMP-1 expressed in the cell (reference 7 and unpublished
observations). Whether these LMP-1-related proteins are de-
rived from proteolysis of LMP-1 (before or after cell lysis) or
from de novo translation initiating at internal methionines in
the LMP-1 ORF has been difficult to ascertain (18). The 45-
kDa LMP-1-immunoreactive protein, detected in induced
cells, migrates with a molecular mass consistent with that re-
ported for the migration of lyLMP-1 (1, 7) as determined by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE).

To confirm that the 45-kDa lyLMP-1 protein arises from de
novo translation of the EDL1A transcript, we asked if a pre-
cursor-product relationship existed between LMP-1 and the
45-kDa protein. B95-8 cells were cultured in 20 ng of TPA per
ml and 3.5 mM sodium butyrate for 48 h and starved in me-
thionine-free medium for 1 h, and then 1 mCi of Tran [35S]me-
thionine (ICN) per ml was added for an additional 20 min.
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FIG. 1. The half-life of the lyLMP-1 protein in B95-8 cells is .20 h. Forty-
eight hours after induction with TPA and butyrate, B95-8 cells were starved in
methionine-free medium for 1 h, pulsed with [35S]methionine for 20 min, and
chased in RPMI 1640 plus 10% bovine calf serum (R10C) medium for the times
indicated. LMP-1 proteins were immunoprecipitated from cell lysates with af-
finity-purified anti-LMP-1 antiserum raised against LMP-1’s carboxy terminus.
Immunoprecipitates were resolved by SDS-PAGE and visualized by autoradiog-
raphy. The hours of chase are the times prior to harvest following a 30-min pulse
with [35S]methionine; the upper and lower arrows indicate the migrations of the
62-kDa full-length and 45-kDa lyLMP-1 proteins, respectively. Molecular mass
markers are not shown.
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Following the pulse, cells were grown in RPMI 1640–10% calf
serum for up to 20 h. Cell pellets were solubilized in 53
radioimmunoprecipitation assay [RIPA] buffer (100 mM Tris
[pH 8.0], 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% deoxy-
cholate) and sonicated, and LMP-1 proteins were immunopre-
cipitated as described previously (21). Boiled samples were
precleared with protein G-agarose beads (Boehringer Mann-
heim), incubated with polyclonal LMP-1 antiserum, and pre-
cipitated with protein G-agarose beads. The LMP-1 antiserum
was raised in rabbits against an LMP-1 carboxy terminus–
glutathione S-transferase fusion protein. Immunoprecipitates
were resolved by SDS-PAGE and analyzed by autoradiography
(Fig. 1). If the 45-kDa lyLMP-1 protein arises de novo from its
own transcript, then it should be detectable by autoradiogra-
phy in cells labeled with [35S]methionine for short periods
without subsequent chase. [35S]methionine-labeled 45-kDa
lyLMP-1 was readily detectable after the 30-min pulse and
persisted, with a calculated half-life of at least 20 h (Fig. 1). In
contrast to lyLMP-1, 35S-labeled LMP-1 decreased over time
and was undetectable 20 h following the pulse. Consistent with
its reported rapid turnover in other cells (1, 20, 21), the half-
life of LMP-1 in TPA- and butyrate-treated B95-8 cells was
between 3 and 6 h. It is unlikely that radiolabeled lyLMP-1
results from LMP-1 degradation since a band comigrating with
lyLMP-1 was not seen in 35S-labeled uninduced B95-8 cells,
which express primarily LMP-1 (not shown). Also, unlike the
relationship between the loss of LMP-1 and the appearance of
the ;40-kDa LMP-1 immunoreactive protein, there was no
precursor-product relationship between LMP-1 and the 45-
kDa lyLMP-1 protein (Fig. 1). These results provide experi-
mental evidence for lyLMP-1’s de novo translation from the
EDL1A transcript in induced B95-8 cells. The difference in
half-lives of the two LMP-1 proteins suggests distinct turnover
mechanisms and is consistent with previous results demon-
strating a correlation between LMP-1’s biological activity and
rapid turnover (21). The long half-life of lyLMP-1 is consistent
with our observation that, once carried into the infected cell
with the virion, the protein remains detectable for ;48 h, in
the absence of de novo protein synthesis (7). The persistence
of lyLMP-1 protein in the cell early after infection may be
important for regulation of cellular signaling pathways in-
volved in establishment of immortalization.

Inhibition of LMP-1-stimulated NF-kB activity by lyLMP-1.
The high levels of lyLMP-1 expressed during lytic cycle pro-
gression in EBV-infected cells may affect the function of
LMP-1 and thereby contribute to the disruption of latency.
Expression of LMP-1 in certain cell lines results in upregula-
tion of NF-kB activity (20- to 50-fold) (9, 12, 26). Tumor
necrosis factor receptor-associated factor (TRAF) binding to
LMP-1’s carboxy terminus is required for NF-kB activation (4,
14), and LMP-1 oligomerization is proposed to be required for
both TRAF binding and NF-kB activation (8, 27). To deter-
mine whether expression of lyLMP-1 could affect LMP-1 ac-
tivity, we coexpressed the two proteins in the human embry-
onic kidney cell line 293 and assayed for NF-kB activity (Fig.
2). 293 cells were electroporated (Bio-Rad Gene Pulser) with
a luciferase reporter driven by the minimal fos promoter con-

FIG. 2. Activation of NF-kB by LMP-1 is inhibited by coexpression of
lyLMP-1. 293 cells were electroporated with 1 mg of p1242 (luciferase reporter
driven by the minimal fos promoter with three upstream kB sites), 1 mg of
pRSV-lacZ, and 1.35 mg of pCMV-LMP-1, with and without increasing amounts
of pCMV-lyLMP-1. Forty-eight hours following transfection, cells were har-
vested and samples were assayed for LMP-1 expression and NF-kB activity.
Luciferase values were averaged for each sample and normalized to averaged
b-galactosidase values to yield relative light units. The relative light units were
averaged for each set of duplicate transfections. (A) LMP-1 activation of NF-kB
activity in the presence of lyLMP-1. Data are expressed as percentages of LMP-
1-stimulated NF-kB activity; the percent NF-kB activity attributed to lyLMP-1
alone (;20%) was considered background and subtracted from the percent
NF-kB activity when both proteins were coexpressed. Hatched bar, LMP-1
alone; open bar, 1.35 mg of pCMV-LMP-1 plus 4.05 mg of pCMV-lyLMP-1; filled
bar, 1.35 mg of pCMV-LMP-1 plus 24.3 mg of pCMV-lyLMP-1. The ratios of the
expression vectors (pLMP-1/pLyLMP-1) are indicated below the graph. Each
error bar represents the standard error of mean of results from three experi-
ments. The average fold induction for lyLMP-1 alone was 5, and that for LMP-1
alone was 25. (B) Western analysis of LMP-1 expression. Extracts of 2.5 3 103

cells from panel A were analyzed by Western blotting with anti-LMP-1 anti-
serum. 1, 1.35 mg of pCMV-LMP-1; 2, absence of the indicated LMP-1 expres-
sion vector; triangle, low (4.05 mg) and high (24.3 mg) amounts of introduced
pCMV-lyLMP-1; B95-8, extract of 5 3 104 B95-8 cells included as a marker for
migration of LMP-1 proteins; upper and lower arrows, migrations of full-length

and lyLMP-1 proteins, respectively. Sixty-eight- and 45-kDa markers are indi-
cated to the left of the blot. (C) Dose-dependent inhibition of LMP-1-stimulated
NF-kB activity by lyLMP-1 expression. Data are expressed as percentages of
LMP-1-stimulated NF-kB activity; activity from lyLMP-1 alone was not sub-
tracted from LMP-1 values. Open circles, NF-kB activity in cells expressing
lyLMP-1; filled squares, NF-kB activity in cells transfected with 1.35 mg of
pCMV-LMP-1 and increasing amounts of pCMV-lyLMP-1.
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taining three upstream kB binding sites (p1242 [26]), pRSV-
lacZ, and a constant amount of pCMV-LMP-1, together with
increasing amounts of pCMV-lyLMP-1. pCMV-lyLMP-1 and
pCMV-LMP-1 are pCDNA3-based expression vectors encod-
ing the lyLMP-1 and LMP-1 ORFs, respectively, under the
control of the cytomegalovirus promoter. Consistent with pre-
vious results, lyLMP-1 was deficient, relative to LMP-1, in its
ability to activate NF-kB (Fig. 2A and C) (12, 26). Coexpres-
sion of lyLMP-1 and LMP-1 resulted in the inhibition of LMP-
1-stimulated NF-kB activity. Maximal inhibition (;90%) of
LMP-1-stimulated NF-kB activity by lyLMP-1 occurred when
there was an ;18-fold excess of input pCMV-lyLMP-1 relative
to the input pCMV-LMP-1 (Fig. 2A and C). This ratio of input
DNA resulted in approximately equivalent expression levels of
the two LMP-1 proteins (Fig. 2B). LMP-1-stimulated NF-kB
activity was inhibited dose dependently by coexpression of
lyLMP-1 (Fig. 2C). These results demonstrate that lyLMP-1
can negatively regulate LMP-1 signaling in 293 cells. Consis-
tent with lyLMP-1’s potential to negatively regulate LMP-1
signaling in virus-infected cells is the finding that the ratio of
lyLMP-1 to LMP-1 required to block LMP-1 signaling in 293
cells (Fig. 2B) is roughly equivalent to the ratio of LMP-1
proteins in induced B95-8 cells (1, 7).

LyLMP-1 does not disrupt LMP-1 oligomerization. LMP-1
is believed to activate signaling pathways as a constitutive
TRAF-binding oligomer (4, 5, 13). Overexpression of lyLMP-1
(relative to the level of LMP-1) may interfere with LMP-1
signaling by disrupting LMP-1 oligomerization. High levels of
lyLMP-1 may inhibit LMP-1 oligomerization by associating
with LMP-1 and preventing formation of full-length LMP-1
oligomers. To explore the mechanism by which lyLMP-1 in-
hibits LMP-1 signaling, we determined if lyLMP-1 either oli-
gomerizes with LMP-1 or alters LMP-1’s ability to homo-oli-
gomerize. To assess if lyLMP-1 associates with LMP-1, pCMV-
lyLMP-1 and pCMV-LMP-1myc were cotransfected into 293
cells and 48 h later cell extracts prepared as described by Gires
et al. (8) were assayed for oligomerization by coimmuno-
precipitation with the anti-myc monoclonal antibody 9E10
(Santa Cruz Biochemicals) (Fig. 3). pCMV-LMP-1myc was
constructed from pCMV-LMP-1 by insertion of the myc
epitope tag (EQKLISEEDL) at LMP-1’s carboxy terminus.
pCMV-CD55 is an expression vector encoding a mutant
LMP-1 lacking the last carboxy-terminal 55 amino acids and
has been described previously (22). The NP-40 soluble fraction
was precleared with protein G-agarose beads, and LMP-1 myc
was immunoprecipitated from the precleared supernatant with
anti-myc antibody (9E10; Santa Cruz). Complexes were recov-
ered by incubation with protein G-agarose beads, washed with
13 RIPA buffer, resuspended in 43 SDS sample buffer, and
analyzed by SDS-PAGE and Western blotting. lyLMP-1 was
not detectable in LMP-1 myc immunoprecipitates, despite the
large ($5-fold) excess of lyLMP-1 protein relative to the level
of LMP-1 myc protein (Fig. 3, lane 5). The inability of lyLMP-1
to coimmunoprecipitate with LMP-1 myc was not due to im-
munoprecipitation conditions or to the presence of the myc
epitope tag at LMP-1’s carboxy terminus since CD55, a mutant
LMP-1 lacking the last carboxy-terminal 55 amino acids, inter-
acted efficiently with LMP-1 myc (Fig. 3, lane 10). These results
are consistent with the work of Gires et al., demonstrating a
role for the amino terminus and transmembrane domains of
LMP-1 in oligomerization (8). Importantly, CD55 was detected
in LMP-1 myc immunoprecipitates from cells coexpressing
LMP-1 myc and lyLMP-1, indicating that lyLMP-1 did not
interfere with LMP-1’s ability to oligomerize (Fig. 3, lane 12).
These results demonstrate that lyLMP-1 does not associate
with LMP-1 and that it does not prevent LMP-1 from forming

homo-oligomers. It is unlikely, therefore, that lyLMP-1 inhibits
LMP-1 signaling via disruption of LMP-1 oligomerization.

Immortalization of human B cells by EBV is complex and
results from the expression of several viral gene products, one
of which is LMP-1. Since expression of LMP-1 proteins is
restricted to full-length LMP-1 in latently infected lymphoblas-
toid cell lines, we think it unlikely that lyLMP-1 plays a role in
the maintenance of immortalization. This conclusion is sup-
ported by the observation that lymphoblastoid cell lines in-
fected with recombinant EBV and expressing LMP-1 prolifer-
ate despite the presence in these cells of LMP-1
immunoreactive, smaller-molecular-weight proteins (15).
LMP-1 can activate divergent signaling pathways (6, 16, 17,
25). Not all LMP-1-activated pathways are likely to be required
for immortalization (16, 28), and overexpression of lyLMP-1
may not regulate all LMP-1-activated signaling.

The high level of expression of lyLMP-1 in virus-producing
cells suggests a function during the lytic cycle, and the presence
of lyLMP-1 protein in the EBV virion suggests a role shortly
after infection. lyLMP-1 can negatively affect LMP-1 function
in 293 cells without disrupting LMP-1 oligomerization. These
observations are consistent with a model in which the lyLMP-1
protein may downregulate NF-kB activation in the late stages
of lytic infection by negatively affecting the function of LMP-1.
In addition, lyLMP-1 has the potential to regulate signaling in
infected cells in an LMP-1-independent manner, i.e., upon
virus entry prior to LMP-1 expression (7). Studies are in
progress to determine the mechanism by which lyLMP-1 af-
fects LMP-1-regulated pathways and to identify the role of
lyLMP-1 in EBV’s life cycle.
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