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Abstract

Introduction: Prenatal and early-life dog exposure has been linked to reduced childhood allergy 

and asthma. A potential mechanism includes altered early immune development in response to 

changes in the gut microbiome among dog-exposed infants. We thus sought to determine whether 

infants born into homes with indoor dog(s) exhibit altered gut microbiome development.

Methods: Pregnant women living in homes with dogs or in pet-free homes were recruited 

in southeast Michigan. Infant stool samples were collected at intervals between 1 week and 
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18 months after birth and microbiome was assessed using 16S ribosomal sequencing. Perinatal 

maternal vaginal/rectal swabs and stool samples were sequenced from a limited number 

of mothers. Mixed effect adjusted models were used to assess stool microbial community 

trajectories comparing infants from dog-keeping versus pet-free homes with adjustment for 

relevant covariates.

Results: Infant gut microbial composition among vaginally born babies became less similar to 

the maternal vaginal/rectal microbiota and more similar to the maternal gut microbiota with age-

related accumulation of bacterial species with advancing age. Stool samples from dog-exposed 

infants were microbially more diverse (p = .041) through age 18 months with enhanced diversity 

most apparent between 3 and 6 months of age. Statistically significant effects of dog exposure on 

β-diversity metrics were restricted to formula-fed children. Across the sample collection period, 

dog exposure was associated with Fusobacterium genera enrichment, as well as enrichment of 

Collinsella, Ruminococcus, Clostridaceae and Lachnospiraceae OTUs.

Conclusion: Prenatal/early-life dog exposure is associated with an altered gut microbiome 

during infancy and supports a potential mechanism explaining lessened atopy and asthma risk. 

Further research directly linking specific dog-attributable changes in the infant gut microbiome to 

the risk of allergic disorders is needed.

GRAPHICAL ABSTRACT

Prenatal dog-keeping associates with lower rates of childhood allergic disorders. The gut 

microbiome was analysed longitudinally for 18 months among 75 infants whose mothers kept 

indoor dogs during pregnancy and 56 infants whose mother’s homes were pet-free. Dog-keeping 

was associated with increased gut bacterial diversity. Among formula-fed children, dog keeping 

was associated with altered microbial composition indicating enrichment of Collinsella stercoris. 

Ruminococcacea, Clostridiaceae and Lachnospiraceae. These data support a potential microbial 

mechanism for associations between dog keeping and decreased allergy risk.
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1 | INTRODUCTION

Vertical transfer of maternal microbes, together with environmental microbial exposures, 

shape the initial bacterial communities of the neonatal gastrointestinal tract.1–3 These 

inceptive microbes regulate immune function4,5 and influence trajectories of gut microbiome 

maturation during this critical period of development.6 Birth cohort studies have 

provided evidence that early-life gut microbiome perturbations, and subsequent metabolic 

dysfunction, is associated with increased risk of atopy and asthma in childhood.7–10 We 

previously reported that gut microbial profiles associated with protection against atopy and 

asthma were more likely among babies with prenatal and early life exposure to dogs.7,8

Indoor pet exposure during pregnancy and early childhood is associated with lower total 

immunoglobulin E (IgE) levels, lessened allergen sensitization, childhood wheeze and 

lower risk of allergic disorders including asthma.11–21Household pets, particularly dogs, 

influence household environmental microbes22–26 and contribute to variance in infant stool 

microbiota.27

These observations are consistent with potential gut microbiome-related mechanisms linking 

pets to lowered risk of allergy-related disorders. However, reports directly linking indoor pet 

keeping to culture-independent alterations of the early-life gut microbiome are lacking. This 

study compares longitudinal gut microbiota taxonomic developmental trajectories among 

infants living in homes with indoor dogs versus pet-free homes, permitting analyses as to 

whether dog exposure influences initial gut microbiome development.

2 | METHODS

2.1 | Study population

The Microbes, Asthma, Allergy and Pets (MAAP) birth cohort includes 141 maternal–child 

pairs from southeastern Michigan enrolled to evaluate potential differences in the early-life 

gut microbiome between children living in homes with indoor dogs versus those living in 

pet-free homes. Pregnant women ages 18 through 49 years, receiving healthcare from Henry 

Ford Health (HFHS) obstetricians with planned delivery at selected HFHS hospitals, who 

intended to remain in southeast Michigan for at least 2 years post-partum were recruited 

during their second or third trimester of pregnancy between January 2014 and August 2016. 

An enrolment requirement included either: (1) living with a dog(s) kept indoors at least 12 

h daily for at least 6 months prior to pregnancy with plans to keep the dog for the study’s 

duration or (2) living in furred pet-free homes for at least 2 years prior to pregnancy with 

no plans to obtain pets or have contact with pets for more than 4 h weekly for the study’s 

duration.

Women were required to communicate in English sufficient to provide written informed 

consent. The study was approved by the Henry Ford Hospital IRB.

2.2 | Data collection

Women were interviewed prenatally and at 1 week, 6 months, and 18 months post-delivery. 

Questionnaires included: household demographics, tobacco smoke exposure, medication 
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use, parental allergic history, pet keeping and questions related to their offspring’s 

health. Mothers completed dietary calendars to track weekly changes to their infant’s 

diet (breastfeeding, formula feeding and solid food introduction). When calendars were 

incomplete or missing, dietary information was utilized from questionnaires. Formula 

feeding included any formula use since the previous maternal contact. Breastfeeding 

duration was calculated as the total number of weeks of breastfeeding (whether exclusive 

or partial). First introduction of solid food was defined as the first week of life that any 

type of solid food was introduced. Pregnancy and delivery information were obtained from 

electronic health records. Allergen sensitization at 18 months was defined as sIgE ≥ .35 ku/L 

to at least one of following allergens: ragweed, dust mite, grass, cat, dog or mould mixture.

2.3 | Specimen collection

Maternal vaginal/rectal swabs (Epicentre Catch-All™) were collected by their obstetrician 

within 6 weeks before delivery or on the day of delivery using the standard process for 

Group B Streptococcus screening. Swabs were stored in RNAlater at 4°C for at least 24 h, 

and then transferred to −80°C.

Maternal stool was collected during the last trimester and at approximately 1 week, 6 

months and 18 months post-partum.

Infant stool was collected at approximately 1 week, 1 month, 3 months, 6 months and 18 

months after birth.

Soiled diapers and maternal stool specimens were transported or mailed to the laboratory in 

insulated containers with ice packs and then stored at −80°C.

2.4 | 16S ribosomal RNA Sequencing

2.4.1 | DNA extraction—Punch biopsies (4 mm) (VWR International) were used to 

transfer ~0.3 g of frozen stool to Lysing Matrix E tubes (LME; MP Biomedicals). Vaginal/

rectal swabs in RNAlater were thawed on ice and transferred to LME tubes. RNAlater was 

transferred into a sterile tube and centrifuged at 16,000 × g for 5 min at 4°C. Pellets were 

re-suspended using cetyltrimethylammonium bromide (CTAB) and transferred to the LME 

tube containing the swab. All prepped LME tubes were stored at −80°C. Genomic DNA was 

extracted using a modified CTAB buffer protocol.7

2.5 | Sequencing preparation, data processing and quality control

Sequencing preparation methods are described in the supplemental material. Following 

preparation, paired-end sequences were merged using flasH (v1.2.11), demultiplexed by 

barcode. Reads that contained two or more unexpected errors were discarded. Unique 

sequences were clustered at 97% identity into operational taxonomic units (OTU) and 

chimeras removed using USEARCH. USEARCH was used to map all raw quality filtered 

reads to the unique sequence OTUs at 97% identity. Sequences were aligned using PyNast 

and the alignment was filtered to remove gaps. A bacterial phylogenetic tree was built using 

FastTree. The OTU table was filtered to remove unaligned sequences and taxonomy was 

assigned using Greengenes database (v13_5). NTCs were assessed to determine potential 
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contamination. OTUs present in over half of NTCs were removed from samples. For OTUs 

present in less than half of NTCs, the highest read count was determined and subtracted 

from samples. To denoise the OTU table, taxa with less than 1/1000 of a percent of the 

total read count across all samples were removed. To normalize read depth across samples, 

data were rarefied 100 times to a read depth of 60,503 reads, using a multiple rarefaction 

algorithm.7 This depth was chosen because it was a high rarefying depth that resulted in 

little sample loss (stool N = 36, swabs N = 4) and Procrustes analysis indicated the distances 

in this rarefied matrix were closer (lowest M2 values) to the non-rarefied matrix compared 

to other rarefying depths. For timing of stool sample collection and mean number of stool 

samples contributed per infant, refer to Table S1 and Table 2.

2.6 | Statistical analysis

Statistical significance for main and interaction effects was set at p < .05. ANOVA and 

chi-square tests were used to compare maternal and child characteristics across groups 

by prenatal indoor dog keeping (yes/no). Metrics describing α-diversity were calculated 

using the R packages vegan and picante. Mixed effect models were used to fit stool 

α-diversity trajectories. Exact age at stool collection was used rather than targeted collection 

time (Figure S1). Best-fitting shape (linear vs. quadratic) was determined by Bayesian 

information criterion (BIC). Effect modification by age at time of stool sample collection, 

child sex, mode of delivery, household income and formula feeding were selected a priori 

for evaluation. The effect of dog keeping was assessed before and after adjusting for pre-

specified potentially confounding covariates: maternal reported race, household income, 

maternal age at birth, mode of delivery (vaginal vs. caesarean-section), child sex and 

whether child was firstborn.

β-diversity metrics were calculated using the R packages phyloseq and vegan. Principal co-

ordinates analysis (PCoA) was performed using the R package labdsv on baby stool samples 

with each β-diversity metric. The first through fourth principal co-ordinates were extracted 

and used as outcomes in mixed effect models to assess compositional differences by dog 

exposure, before and after covariate adjustment, as described previously for α-diversity. 

Compositional differences in cross-sectional data sets were assessed using PERMANOVA, 

before and after covariate adjustment.

Differences in OTU and genera abundance trajectories by age and prenatal indoor dog 

exposure were fit using generalized linear mixed effect models with the R package 

glmmADMB. Each taxon was first modelled with the random subject effect and a time 

covariate only (continuous, actual age at sample collection); negative binomial versus zero-

inflated negative binomial models were compared for best fit using BIC (unless only one 

of the two models were able to be estimated; if neither model was able to be estimated, 

results were not examined). Upon determining the best-fitting model, main effects of dog 

exposure and interaction effects with time were obtained (with subgroup effects reported 

for significant interactions) with p-values rate-adjusted for false discovery (pFDR <.05 

considered significant). All models testing dog effects were adjusted for the pre-specified 

confounding covariates. Taxa tested included only those present in ≧10% of baby stool 

samples. For OTU models, interaction effects were added for potentially effect modifying 
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covariates, as suggested by β-diversity results. All analyses were performed using R version 

3.6.1 or SAS version 9.4.

3 | RESULTS

3.1 | Cohort description and participant samples

Of 141 children at 18 months of age (81 dog/60 pet-free), seven were sensitized to common 

inhalants (four dog vs. three pet-free), seven had parentally-reported, doctor diagnosed 

asthma (five dog vs. two pet-free), and 35 had reported eczema/atopic dermatitis by 

18-months (24 dog vs. 11 pet-free). A total of 660 fecal samples across 134 maternal–

child pairs were successfully sequenced; 131 offspring (93%) had at least one infant stool 

sample successfully sequenced. The number of samples successfully sequenced during each 

collection period are displayed in Table 1.

The analysed 131 children were similar to the full cohort and 57% of the samples were 

from participants residing with a dog (Table 2). The contribution of at least one infant 

stool sample (chi-square p = .87) and the number of samples sequenced per child did 

not differ by dog exposure (Kruskal–Wallis p = .506). Several factors were significantly 

associated with dog ownership: Mothers with dogs were less likely to self-identify as 

African American (10.7% vs. 28.6%, p = .009) and more likely to have mid-level household 

incomes ($40,000–$80,000; p = .006), and live in single family homes (90.4% vs. 64.3%, p 
< .001).

3.2 | Infant gut microbiota development over advancing chronological age

Previous studies indicate that infant gut microbiota composition changes with advancing 

chronological age.8,28 We first examined relationships between gut microbiota development 

and infant age. The gut microbiota exhibited increasing bacterial richness and diversity and 

age-related compositional changes over the first 18 months of life (Figure 1A and Figure 

2). Using vaginal/rectal swab and maternal stool microbiota profiles for reference, we noted 

that infant gut microbiota were similar to maternal vaginal/rectal microbiota at delivery, but 

became increasingly similar to the maternal gut microbiome with advancing age (Figure 

1A [all samples] and Figure 1B [vaginally born infants with paired maternal samples]), 

indicating compositional maturation.

We next sought to identify bacterial genera related to chronological age. Of the 57 genera 

with a prevalence of >10%, 48 (84%) were significantly associated with infant age at the 

time of sample collection. Of these 48 genera, 29 increased and 19 decreased in relative 

abundance with advancing age (Figure S2, Table S3, pFDR < .05). Twelve genera found 

to have the largest absolute effect size associated with advancing age are shown in Figure 

S2. Eleven of these genera increased in relative abundance with age and Staphylococcus 
decreased in relative abundance. These findings are consistent with previous observations 

of infant gut microbiota development over the first year of life and with age-related 

accumulation of bacterial species over this developmental period.2,7,9,29
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3.3 | Dog-ownership and gut microbial α-diversity metrics

We examined the relationship between dog ownership and infant gut microbiota richness, 

evenness and diversity trajectories. For richness and evenness trajectories, linear modelling 

was the best fit (Table S2). The overall dog effect was not statistically significant prior 

to covariate adjustment (Table 3, p = .094 and p = .54 respectively) nor following full 

adjustment (p = .080, p = .89). Interactions between dog exposure and the pre-specified 

effect modifiers were non-significant for richness and evenness (Table S4).

A quadratic trajectory model best-fit Faith’s phylogenetic diversity (Table S2). There were 

significant overall dog effects in the fully adjusted model, where diversity was on average 

0.78 units higher in dog-exposed children across the observation period (Table 3; p = 

.041). Covariates including maternal race and delivery mode magnified the effect size of 

dog exposure, while household income and maternal age at birth diminished the effect 

size. However, the final multivariable model demonstrated that full covariate adjustment 

resulted in a 20% increase in effect size. A statistically significant dog exposure by time 

interaction was identified for diversity (Table S4; p = .012 and Figure 2). While phylogenetic 

diversity was greater in dog-exposed children for most of the trajectory, the curves were 

most divergent at 3 and 6 months (3 months: β = 1.08, p = .006; 6-months: β = 1.63, p < 

.001). By 18 months, the effect greatly diminished (β = 0.24, p = .64). Due to sparse data, 

estimates beyond 18 months should be interpreted with caution.

Assessment of potential confounding or effect modification by cat exposure was not possible 

as only dog-containing homes were allowed to have cats. We did examine the effect of cats 

on α-diversity trajectories from the 19 dog-containing homes that also contained a cat. Cats 

did not affect evenness (β (SE) = 0.024 (0.018), p-value = .19), while non-significant trends 

were observed for richness (β (SE) = 18.1 (9.2), p-value = .051) and phylogenetic diversity 

(β (SE) = 1.09 (0.56), p-value = .055).

3.4 | Dog ownership and gut microbiota composition

Several cross-sectional associations of gut microbial composition (β-diversity) to indoor 

dogs were observed as listed in Table S5. However, to best understand how dog exposure 

may impact gut microbiota composition over time, we examined β-diversity trajectories 

using principal co-ordinates. The first principal co-ordinate of unweighted UniFrac was 

positively correlated with richness: r = .69 at 1 week, r = .80 at 1 month, r = .88 at 3 

months, r = .89 at 6 months and r = .80 at 18 months. Although dog exposure was associated 

with overall compositional structure in some unadjusted models, effects were non-significant 

after covariate adjustment (Table S6). Effects were not time-dependent (Table S4; all dog 

× time interaction p ≥ .058). Other effect modifiers were non-significant except for formula-

feeding on the first principal co-ordinate of unweighted UniFrac (interaction p = .036) 

and Canberra (interaction p = .039) distances. Specifically, the effect of dog ownership on 

β-diversity trajectory was apparent among formula-fed children only (Figure 3).

3.5 | Indoor dogs and specific taxa

We next identified gut bacterial taxa differing between infants living with indoor dogs 

versus in pet-free homes. Among 120 genera, 57 were detected in >10% of samples. 
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Following covariate adjustment, one genus, Fusobacterium (Figure 4), was significantly 

enriched among children living with dogs.

Of 1286 individual OTUs detected, 439 were prevalent in >10% of samples. After covariate 

adjustment, four were significantly related to living with a dog (Figure S3; Table S7). 

Specifically, Collinsella stercoris (OTU 93), Ruminococcus (OTU 1822) Lachnospiraceae 
(OTU 575) and Clostridiaceae (OTU 1099) were enriched in dog-exposed children.

3.6 | Dog exposure in formula-fed infants and taxa trajectories

Noting significant interaction with formula feeding in the β-diversity trajectory models, 

we examined individual OTU trajectories contributing to this interaction. Seventy OTUs 

significantly contributed to the dog by formula-feeding interaction (interaction pFDR < .05; 

Table S8) with 60 exhibiting enrichment among formula-fed children. Of the four OTUs 

with a significant main effect of dog exposure (Table S7), Collinsella stercoris (OTU 93) 

exhibited a stronger effect of living with a dog in formula-fed versus non-formula-fed 

children (Table S8). Nearly all Ruminococcaceae and Lachnospiraceae OTUs having a 

significant dog exposure by formula-feeding interaction also showed greater enrichment 

with dog exposure among formula-fed children (Table S8). Many Ruminococcaceae OTUs 

were identified as Faecalibacterium prausnitzii or Oscillospira, while Lachnospiraceae OTUs 

included Dorea sp.

4 | DISCUSSION

We observed 131 infants over the first 18 months of life that exhibited gut microbial 

developmental trajectories consistent with published studies describing increasing richness 

and progression towards and adult-like gut microbiome.2,30 These microbial developmental 

trajectories indicated that compared to infants living in homes without furred pets, those 

living with dogs had elevated gut bacterial phylogenetic diversity over the first 18 months of 

life. Early life represents a critical period of immunological development when low diversity 

or inappropriate assembly of the gut microbiota is associated with adverse respiratory health 

outcomes.31–33 Our results lend support to hypotheses linking dog exposure to decreased 

risks of atopy, allergy and asthma11,12,16,18,34,35 through an impact of dog exposure on the 

developing gut microbiome.

For phylogenetic diversity, we observed a statistically significant dog exposure by time 

interactions with the most robust associations at 3 and 6 months of age; a common period 

of complementary food introduction also known to influence the repertoire of local and 

circulating microbial metabolic products known to shape immune function and development 

of atopy and asthma.7,9,36–38 Whether diversification of the gut microbiota, specifically at 

this key point in development results in differences in the functional pathways or metabolic 

output of the gut microbiome or associated effects on immune function merits further study.

Several taxa enriched in infants living with dogs compared to pet-free homes included 

Collinsella stercoris, Ruminococcus sp., Lachnospiraceae sp. and Clostridiaceae sp. Gut 

Ruminococcus enrichment was also reported in 3–4-month-old infants exposed to furry 

pets.39 We previously reported Ruminococcaceae, Lachnospiraceae and Clostridiaceae 
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enrichment in the gut of mice orally supplemented with house dust collected from dog-

containing homes and resulting in microbiota restructuring associated with protection 

against allergic airway inflammation.40 This effect appeared mediated, in part, by 

alteration of the serum metabolome including increased concentrations of circulating anti-

inflammatory polyunsaturated fatty acids that reduced bone marrow-derived dendritic cell 

activation and inflammatory cytokine production in vitro.41 Thus suggesting that dog 

exposure enriches gut microbes that can down-regulate responses to inflammatory stimuli.

The impact of dog cohabitation on gut microbiota was greatest among formula-fed infants, 

revealing enrichment of OTUs such as Collinsella stercoris (OTU 93) and Dorea sp. (OTUs 

1015). Both have been identified in breast milk42 with Collinsella abundance highest in the 

gut of actively breastfeeding infants.2 Whereas breast milk contains bacterial communities43 

capable of colonizing the infant gut44–47 and influencing community composition,2,47 

formula fails to provide these microbial exposures. Perhaps, in the absence of breast 

milk, dogs provide an alternative source of environmental microbes for the developing gut 

microbiome of formula-fed infants. Supporting this concept, Dorea was found to be depleted 

in stool from dust mite-sensitized, 4–5-year-old children with allergic rhinitis compared to 

healthy controls with Dorea relative abundance negatively correlated to fecal IgE levels.48 

Dorea is also underrepresented in the gut microbiota food-allergic children.49

Faecalibacterium prausnitzii was also enriched in the formula-fed infants living with a dog. 

F. prausnitzii is an abundant and key inhabitant of the human gut capable of blocking 

nuclear factor kB activation and enhancing anti-inflammatory, antigen-specific T cell 

proliferation and IL-10 expression.50,51 Its loss from the gut microbiota is characteristic 

of infants at high risk of developing allergies and asthma in childhood and in adults with 

chronic inflammatory conditions such as inflammatory bowel disease.7,8,52 Exposure of 

formula-fed infants to dogs in early life may serve to increase the presence of this species in 

early infancy.

Few studies have examined the relationship between household pets and the infant gut 

microbial composition and prior studies were limited by small sample size, lack of pet-free 

controls and/or examination at a single time point.39,53,54 Our inclusion of infants from 

pet-free homes allowed comparison of the impact of dog-associated exposures on early gut 

microbiota trajectories. Frequent longitudinal stool collection also allowed us to determine 

whether the impact of dog on the developing gut microbiome was associated with specific 

windows of microbial divergence while detailed surveys permitted adjustment for key, 

potentially confounding covariates. However, unmeasured, residual confounding is possible 

and should be further explored in larger studies. To the best of our knowledge, this study 

is the first to conduct longitudinal analyses examining the impact of dog exposure and the 

interaction of dog exposure and other early-life factors on infant gut microbiota trajectories.

Our study has several limitations. The limited cohort size and assessment of non-high-risk 

infants for less than 2 years limits the statistical power to directly assess whether the 

observed dog-attributable microbes are linked to differences in relevant allergic outcomes 

and also limits statistical power to assess potential associations among some subgroups. 

MAAP participants assessments at age 5–8 years are ongoing and may provide an 
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opportunity to address some of these potential associations. Although low DNA yields from 

the vaginal/rectal swabs contributed to a high sequencing failure rate, this limitation did 

not impact analyses relating dog keeping to the infant gut microbiome since these samples 

were used solely as adult microbiota references to compare with the infant’s developing gut 

microbiome. Our study allowed dog-containing homes to also contain cats, whereas cats 

were not allowed in pet-free homes. This precluded the ability to examine confounding or 

effect modification by cat exposure. Although, cats within dog-containing homes did not 

significantly alter α-diversity trajectories, a trend for enhanced richness and phylogenetic 

diversity was observed. The possibility that cats, or other furred pets could have partially 

contributed to the altered gut microbiota of dog-exposed infants was not excluded. Finally, 

while fungi or viruses may play an important role as inhabitants of the gut microbiome 

and influence immune development, we were limited in our study to only 16 S ribosomal 

sequencing of gut bacteria.

5 | CONCLUSIONS

Prenatal dog-keeping associates with altered infant gut microbial community trajectories 

including higher microbial diversity, particularly at 3 and 6 months of age. The strongest 

dog-associated compositional effects were observed among formula-fed infants and 

involved enhancement of key immunomodulatory gut bacteria. These data support ongoing 

hypotheses positing that associations of dog exposure and decreased allergy may be related 

to early-life gut microbiome development. Additional, appropriately scaled future studies are 

needed to definitively link dog-attributable changes in the infant gut microbiome to effects 

on immune development that causally explain lowered risk of allergy among dog-exposed 

infants.
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Key Messages

• Prior studies indicate prenatal and early-life dog exposure associates with 

lower IgE production and allergy.

• Infants of mothers that lived with dogs during pregnancy exhibit an altered 

gut microbiome.

• An altered infant gut microbiome may explain associations of early-life dog 

exposure on allergy-related outcomes.
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FIGURE 1. 
PCoA based on an unweighted Unifrac dissimilarity matrix showing bacterial community 

composition of infant stool samples (7 days and 1, 2, 6 and 18 months), maternal stool 

samples (pre-delivery, 7 days, 6 and 18 months), and maternal vaginal/rectal swabs (pre-

delivery and delivery) (A). Mean unweighted Unifrac distance of delivery maternal vaginal/

rectal swabs or 6 months maternal stool to paired, vaginally born infant stool samples at 

each time point (B).
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FIGURE 2. 
Fitted Faith’s phylogenetic diversity trajectories by prenatal indoor dogs. Model adjusts for 

maternal race, household income, maternal age at birth, mode of delivery, child sex and 

first-born child, and includes a term for the dog × time interaction, as this was statistically 

significant (p = .012).
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FIGURE 3. 
Trajectories of unweighted UniFrac and Canberra metrics (first principal co-ordinate), by 

prenatal dog exposure and type of feeding. Brackets show the difference between dog-

exposed and unexposed children, among children who are formula fed (dotted lines) versus 

not (solid lines).
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FIGURE 4. 
Fusobacterium was the only genus significantly associated with prenatal dog exposure 

(pFDR < .05), after covariate adjustment. Estimates shown represent the difference in log-

transformed mean abundance, comparing infants living with dogs versus pet-free homes.
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