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Members of the Herpesviridae family have large double-
stranded DNA genomes and replicate in the nucleus of the
host cell. Based on genomic organization and biological char-
acteristics, herpesviruses are classified into three subfamilies:
alpha, beta, and gamma (Fig. 1A). The gammaherpesviruses
replicate and persist in lymphoid cells, but some are capable of
undergoing lytic replication in epithelial or fibroblast cells.
These viruses can be subdivided into two genera: lymphocryp-
toviruses (gamma-1) and rhadinoviruses (gamma-2) (Fig. 1A).
The lymphocryptoviruses (gamma-1) include Epstein-Barr virus
(EBV) or Human herpesvirus 4, Lymphocryptovirus of rhesus
monkeys, and Herpesvirus papio of baboons, whereas the rhadi-
noviruses (gamma-2) include Herpesvirus saimiri (HVS), Kapo-
si’s sarcoma-associated herpesvirus (KSHV) or Human herpes-
virus 8, Rhesus monkey rhadinovirus (RRV), Equine herpesvirus
2, and Mouse herpesvirus 68 (Fig. 1B).

The gammaherpesviruses, including HVS, EBV, KSHV, and
RRV, are capable of establishing latent infection in lympho-
cytes. Both HVS and EBV have also been shown to transform
lymphoid cells and to induce lymphoproliferative diseases in
the natural or experimental host. EBV has been shown to be
associated with several diseases in humans (16, 40, 78). These
include infectious mononucleosis (IM), Burkitt’s lymphoma
(BL), nasopharyngeal carcinoma (NPC), Hodgkin’s disease
(HD), and T-cell lymphomas (1, 11, 65, 83, 84, 95, 96, 108, 116,
141). Primary EBV infection is usually asymptomatic, but a
proportion of EBV-infected individuals develop IM, a disease
characterized by lymphadenopathy and fatigue, later in life. A
rare disease called fatal IM or X-linked lymphoproliferative
(XLP) syndrome is an EBV-dependent malignancy character-
ized by uncontrolled immunoblastic lymphomas which are con-
sistently EBV positive (115). The genetic defect in XLP is in
the SLAM-associated protein, SAP. The mutated SAP protein
in XLP patients affects T/B-cell interactions induced by SLAM,
leading to an inability to control the B-cell proliferation caused
by EBV infections (123, 133). BL is a malignancy that princi-
pally affects children, especially those that live in regions of
Africa with a high incidence of malaria (16). The tumor cells of
these lymphomas are closely associated with EBV, with 100%
of the lymphomas scoring positive for EBV. In other areas of
the world, however, the occurrence of BL is more sporadic and
a lower percentage of these lymphomas are EBV positive (65).
BL is characterized by distinct chromosomal translocations of
the c-myc oncogene and immunoglobulin promoter sequences,
resulting in the deregulation of c-myc expression (23). Another

EBV-associated disease is NPC, a malignancy of the squamous
epithelium situated in the nasopharynx (117). EBV is consis-
tently present in cases of epithelial dysplasia, and it is thought
to have arisen from clonal expansion of latently infected cells
(113, 116). The incidence of NPC is high in Southern China,
Northern Africa, and Eskimo populations. HD is the most
common malignancy in the Western world, with about 30 to
90% of all HD lymphomas being EBV positive. Like NPC, the
EBV genomes in these tumor cells are monoclonal (139). EBV
is also present in about 70% of all immunoblastic lymphomas
in human immunodeficiency virus (HIV)-infected individuals
and in 100% of immunoblastic lymphomas of immune-sup-
pressed posttransplant patients. Recently, EBV, a primarily
B-cell-tropic virus, has been detected in different types of hu-
man T-cell lymphomas. About 100% of all nasal T-cell lym-
phomas in Southeast Asia and 100% of T-cell tumors in XLP
males contain EBV (65).

Epidemiological studies from many laboratories, using anti-
body prevalence assays, PCR, and immunohistochemistry, sug-
gest that KSHV is the etiologic agent responsible for Kaposi’s
sarcoma (KS). KSHV DNA sequences have been widely iden-
tified in KS tumors from HIV-positive and HIV-negative pa-
tients (20, 93, 132). KSHV has also consistently been found in
specific lymphoproliferative diseases such as body cavity-based
lymphomas (BCBLs), also called pleural effusion lymphomas,
and lymphoblastic variants of multicentric Castleman’s disease
(MCD) (17, 46, 102, 112, 130). These are principally or exclu-
sively of B-cell origin. There are reasons to believe that the
abnormal cell proliferation in KS may differ from the tradi-
tional virus-transformed cell paradigms of other transforming
viruses. The KS lesion has a mixed cell phenotype. One un-
usual cell consistently present, and thought to be critical, is a
spindle-shaped cell believed to be of endothelial origin. While
cells cultured from KS lesions do not contain KSHV, spindle
cells in the KS lesion do contain KSHV genetic information.
Several studies have suggested a high level of cytokines and
chemokines within KS lesions and a dependence on these
cytokines and chemokines for maintenance of the lesion (20,
106). BCBLs were first identified in patients with AIDS and
were later found to have a high incidence of EBV and KSHV
coinfection, although some lymphomas were only positive for
KSHV (17, 69). BCBLs are thought to be monoclonal in origin
and lack many B-lymphocyte antigens like CD19, CD20, and
cell homing and adhesion markers (13, 34). MCD is an atypical
lymphoproliferative disorder that includes hyperplasia, lymph-
adenopathy, and splenomegaly. Both HIV-infected and -unin-
fected individuals develop MCD, although there is a high rate
of KSHV infection in the lymph nodes of HIV patients with
MCD (18, 66, 130). It has been demonstrated that viral inter-
leukin-6 (IL-6) acts as an autocrine or paracrine factor in the
lymphoproliferative processes common to both BCBLs and
MCD (111, 131). In addition, KSHV has been shown to im-

* Corresponding author. Mailing address: Department of Microbi-
ology and Molecular Genetics, New England Regional Primate Re-
search Center, Harvard Medical School, One Pine Hill Dr., Box 9102,
Southborough, MA 01772-9102. Phone: (508) 624-8083. Fax: (508)
786-1416. E-mail: jae_jung@hms.harvard.edu.

1593



mortalize primary human endothelial cells to long-term pro-
liferation and survival (43). Interestingly, KSHV is found to be
present in only a subset of cells, and paracrine mechanisms
have been shown to be responsible for the survival of unin-
fected cells (43).

Recently, a herpesvirus called RRV was isolated that is
related to but distinct from KSHV (30). Two homologues of
KSHV from two different macaque species have also been
identified in retroperitoneal fibromatosis (119). RRV repli-
cates lytically and to high titers in cultured rhesus monkey
fibroblasts. Complete DNA sequence analysis of this virus
shows that it is much closer to KSHV than to HVS or other
rhadinoviruses (4a, 127). A serological study showed that over
95% of rhesus monkeys are strongly positive for the presence
of antibodies to this herpesvirus, suggesting that rhesus mon-
keys are a natural host for RRV infection (31). While specific
diseases associated with RRV remain to be determined, some
of the naı̈ve seronegative rhesus macaques inoculated with
RRV developed lymphadenopathy and vascular hyperplasia
(85, 140) similar to that observed in KSHV-infected men (18,
66, 130). Furthermore, inoculated monkeys remained persis-
tently infected with RRV (85).

HVS resides in the T lymphocytes of its natural host, the
squirrel monkey, without causing any disease (29). However,
HVS infection of other New World primates, e.g., common
marmosets, tamarins, and owl monkeys, results in rapidly pro-

gressing lymphomas, lymphosarcomas, and leukemias (26, 27,
41). Subgroups A and C are highly oncogenic and are able to
immortalize common marmoset T lymphocytes to IL-2-inde-
pendent growth in vitro (27, 35, 62). In addition, HVS sub-
group C is further capable of immortalizing human, rabbit, and
rhesus monkey lymphocytes into continuously proliferating
T-cell lines (2, 8, 35, 91). Because of the presence of a permis-
sive cell culture system and in vitro and in vivo transformation
assays, HVS provides a unique opportunity to investigate the
mechanisms of cancer induction by oncogenic herpesviruses.

Gammaherpesviruses share an ability to transform lympho-
cytes in natural or experimental hosts. The correlation between
gammaherpesviruses and disease induction in primates enables
a study of the contributions of individual herpesvirus genes to
cell growth transformation in a meaningful fashion. A striking
feature of these four gammaherpesviruses is that they contain
distinct open reading frames (ORFs) at the left and right ends
of their respective genomes. Each of these ORFs is involved in
lymphocyte signaling events. At the left end of each viral ge-
nome are located ORFs encoding distinct transforming pro-
teins. These include the saimiri transformation protein (STP)
of HVS, latent membrane protein 1 (LMP1) of EBV, K1 of
KSHV, and R1 of RRV. These proteins do not share sequence
relatedness, with the exception of limited structural homology
between R1 and K1, which is reflective of the fact that RRV is
the rhesus homologue of KSHV. In addition, the STP, LMP1,

FIG. 1. Classification of herpesviruses. (A) Phylogenetic tree depicting the three subfamilies of herpesviruses: alpha, beta, and gamma. The phylogram was
constructed using the viral DNA polymerase gene by parsimony analysis with the neighbor-joining method. The number of amino acid changes can be determined using
the scale shown at the bottom of the tree. (B) Cladogram of the gammaherpesvirus subfamilies. A cladogram of gamma-1 (lymphocryptoviruses) and gamma-2
(rhadinoviruses) herpesviruses was constructed by using the conserved glycoprotein B (gB) gene and a distance analysis. HHV6 and -7, human herpesvirus 6 and 7;
MHV68, mouse herpesvirus 68.
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and K1 proteins show high sequence divergence among indi-
vidual isolates from the same species (29, 31, 63, 71, 103, 105,
107, 143). This may be a consequence of their proximity to the
terminal repeats of the viral genome, a region of high muta-
genicity arising from the fact that these repetitive sequences
undergo homologous recombination at an increased fre-
quency. In contrast, in a limited survey, the R1 protein did not
appear to be highly divergent (24, 127).

EBV LMP1

EBV was the first human gammaherpesvirus to be discov-
ered and hence has been studied extensively. The first ORF
of EBV encodes a well-characterized transforming protein,
LMP1. The LMP1 protein has six transmembrane-spanning
domains and a 199-amino-acid cytoplasmic domain. LMP1 has
been shown to transform rodent fibroblasts and to be essential
for the immortalization of primary B lymphocytes to lympho-
blastoid cell lines (5, 137, 138). LMP1 has recently been shown
to mimic the B-lymphocyte activation antigen CD40 (47, 53,
67). Like CD40 and other members of the tumor necrosis

factor (TNF) receptors, the carboxy-terminal domain of LMP1
is capable of interacting with TNF receptor-associated factors
(TRAFs) and with the TNF receptor-associated death domain
(TRADD) (32, 33, 37, 38, 56, 122) (Fig. 2). The interaction of
LMP1 with TRAFs and TRADD has been shown to be essen-
tial for the activation of the NF-kB pathway and for EBV-
induced immortalization of B lymphocytes (56, 57, 64). However,
unlike CD40, the transduction of signals occurs in the absence of
extracellular ligands or cross-linking. This is caused by multimer-
ization of the LMP1 protein through its transmembrane domains,
a property that mimics ligand-induced CD40 receptor aggrega-
tion (Fig. 2). Multimerization generates a constitutively active
signal that results in pleiotropic effects, including the activation of
NF-kB and JNK activity, and induction of bcl-2, bclx, mcl1, and
A20 gene expression (37, 39, 42, 53–57, 73). Hence, by mimicking
the function of the B-lymphocyte CD40 receptor, LMP1 contrib-
utes to EBV-induced transformation of B lymphocytes.

HVS STP

Before the discovery of KSHV, HVS had been the most
extensively studied gamma-2 herpesvirus (58). Based on the

FIG. 2. Schematic representation of the LMP1, STP, K1, and R1 proteins. Interactions with cellular partners and activation of cellular pathways are indicated. Y-P
represents the presence of phosphorylated tyrosine residues in K1 and R1.
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extent of sequence divergence at the left end of the HVS
genome, the virus has been further classified into subgroups A,
B, and C (86). Subgroup A and C strains immortalize common
marmoset lymphocytes, but none of the subgroup B strains
scored positive in in vitro immortalization assays. The first
ORF of the HVS genome codes for highly related STPs in all
three subgroups (27, 28, 70, 99). Deletion of the STP genes
from subgroup A and C viruses results in viruses that are
capable of replication but unable to induce lymphomas in
common marmosets and unable to transform primary T lym-
phocytes in vitro (35, 99). STPs of HVS subgroups A and C
have transforming and tumor-inducing activities independent
of those of the rest of the herpesvirus genome. Specifically, the
STP of HVS subgroup C, STP-C, can transform Rat-1 cells,
resulting in apparent loss of contact inhibition, formation of
foci, growth at reduced serum concentrations, and formation
of invasive tumors in nude mice. The STP of HVS subgroup A,
STP-A, is less potent than STP-C in its transforming ability.
Furthermore, transgenic mice expressing STP-A developed pe-
ripheral pleomorphic T-cell lymphomas, while transgenic mice
expressing STP-C developed extensive epithelial cell tumors
(62, 99).

Both STP-A and STP-C proteins are predicted to have three
distinct domains: an acidic amino terminus, collagen-like re-
peats in the central region, and a hydrophobic carboxy termi-
nus (Fig. 2). The primary amino acid sequence of STP-A11 has
nine copies of a collagen-like motif (Gly-X-Y, where X and/or
Y is a proline residue) that are not contiguous. In STP-C488,
it is directly repeated 18 times and comprises more than 50%
of the protein. These collagen-like repeats are found to be a
primary determinant for the transforming activity of the STP
gene (J. K. Choi and J. U. Jung, unpublished data). STP-A and
STP-C also contain a hydrophobic stretch at their carboxy
termini sufficient for a membrane-spanning domain.

As a result of its essential role in HVS transformation,
STP-C has been extensively studied. It has been shown to
associate with cellular Ras (59), and this interaction is critical
for its transforming activity in cell culture (Fig. 2). Further-
more, oncogenic v-ras can complement the HVS STP onco-
gene to induce lymphocyte transformation and does so more
efficiently than normal c-ras (52). STP-C has also been shown
to activate NF-kB transcriptional activity by interacting with
TRAFs 1, 2, and 3 (75) (Fig. 2). While STP-A can also interact
with these TRAFs, it is unable to upregulate NF-kB transcrip-
tional activity (75). To add more complexity, STP-A does not
interact with Ras but interacts with Src family kinases through
its SH2 binding motif, YAEV/I (74). However, the potential
role for the Src-STP-A interaction in transformation remains
to be elucidated.

KSHV K1

At a position equivalent to that of the STP of HVS and the
LMP1 of EBV, KSHV contains a distinct ORF called K1 (71,
77, 143). K1 is a 46-kDa transmembrane glycoprotein. Se-
quence analysis has recently demonstrated that the K1 gene is
extremely variable, showing as much as 40% divergence at the
amino acid level (143). While the amino-terminal extracellular
domain of K1 is extremely variable, the carboxy-terminal short
cytoplasmic tail is relatively well conserved (63, 77, 103, 143).
This carboxy-terminal cytoplasmic tail contains a functional
immunoreceptor tyrosine-based activation motif (ITAM) (72,
76) (Fig. 2). The ITAM is capable of transducing signals to
induce cellular activation, calcium mobilization, and tyrosine
phosphorylation, events that are indicative of lymphocyte ac-
tivation (72, 76). However, unlike other ITAM-based signal

transduction events which require a ligand-receptor interac-
tion, K1 signaling appears to occur constitutively (72). The K1
protein has been shown to interact with several cellular signal
transduction proteins that include Vav, p85 and Syk kinase
(76) and to induce nuclear factor of activated T cells (NFAT)
activity (72) (Fig. 2). In addition to the transformation of
rodent fibroblasts, K1 can also functionally replace STP in
HVS for the immortalization of common marmoset T lympho-
cytes to IL-2-independent growth and for the induction of
lymphomas in common marmosets (77).

RRV R1

Like that of KSHV, the first ORF of the RRV genome also
encodes a transforming gene, R1 (24). R1 shows limited se-
quence homology to K1 in its extracellular domain. The amino-
terminal extracellular domains of both K1 and R1 closely
resemble those of members of the immunoglobulin receptor
superfamily (24, 77). R1 has also been shown to transform
rodent fibroblasts and to functionally replace STP-C of HVS in
immortalizing common marmoset peripheral blood mononu-
clear cells to IL-2-independent growth in vitro (24). Injection
of R1-expressing rodent fibroblasts into nude mice resulted in
the formation of multifocal and disseminated tumors in these
mice (24). While the extracellular domains of R1 and K1 struc-
turally resemble each other, the cytoplasmic tail of R1 is sig-
nificantly longer than that of K1 and contains several po-
tential SH2 binding motifs which function as ITAMs (Fig. 2)
(24a). Further biochemical studies are needed to determine
the detailed mechanisms of the alteration of cellular signaling
pathways by R1 and K1 and their contribution to virus-induced
cell growth transformation.

With the exception of the HVS tyrosine kinase-interacting
protein (Tip) gene which is expressed as a bicistronic transcript
with STP in HVS subgroup C, the genes for EBV LMP2a,
KSHV K15, and RRV R15 are located at the right ends of the
viral genomes. The LMP2a, K15, and Tip proteins are all
capable of associating with the major B- or T-cell receptor-
associated kinases and blocking their signaling activity. Cross-
linking of the B-cell antigen receptor (BCR) and the T-cell
antigen receptor (TCR) triggers a signal transduction cascade
that leads to the activation of B and T lymphocytes, respec-
tively. The EBV LMP2a, KSHV K15, and HVS Tip proteins
can antagonize these signaling events, thus potentially prevent-
ing the reactivation of viral lytic infection from latently in-
fected cells.

EBV LMP2A

LMP2a is expressed in B cells latently infected with EBV.
LMP2a contains 12 transmembrane domains linked by loops
and a short stretch of amino-terminal and carboxy-terminal
domains (Fig. 3). LMP2a is expressed in aggregates in the
plasma membranes of latently infected B cells. The amino-
terminal cytoplasmic region of LMP2a has been shown to
contain three tyrosine-based SH2 domain binding sites, two of
which form a functional ITAM (45). This motif is tyrosine
phosphorylated and is required for LMP2a association with the
SH2 domain of the Lyn, Fyn, Syk, and Csk kinases (Fig. 3) (15,
79, 124). This interaction has been shown to be necessary for
intracellular calcium mobilization and cytokine production by
LMP2a (7). It has also been suggested that LMP2a is phos-
phorylated at serine residues by MAP kinases (109). While
LMP2a is dispensable for EBV immortalization of B lympho-
cytes (80–82), its expression blocks normal BCR signaling in
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EBV-negative B cells (90). In addition, studies using EBV-
positive B lymphocytes have shown that this signaling block
prevents the reactivation of lytic replication, indicating that
EBV LMP2a may play a significant role in the establishment
and maintenance of viral latency in vivo (88, 89).

HVS TIP

The HVS Tip gene is only present in HVS subgroup C virus,
not in HVS subgroups A and B. HVS Tip has been shown to
associate with a major T-cell tyrosine kinase, Lck, and this
interaction inhibits the TCR-mediated signal transduction
pathway (Fig. 3). Two motifs of Tip are responsible for inter-
acting with Lck. These include the carboxy-termini of Src-
family kinases (CSKH) motif and the SH3 binding motif (60,
61). Cell lines stably expressing Tip show a reduced level of
TCR signal transduction (61). This negative effect on Lck-
mediated TCR signal transduction has been shown to be en-
hanced by a point mutation in Tip which enhances Lck-binding
affinity (51). In contrast, a mutation in the Lck-binding motif of
Tip that abolishes Lck binding augments the transforming ac-
tivity of HVS C488 in vitro and in vivo (36). This suggests that
an interaction of Tip with Lck modulates the transforming
ability of HVS. In addition, Tip has been shown to interact with
the nuclear RNA export factor, Tap (Tip-associated factor),
independently of Lck binding (49, 142). Expression of Tip and
Tap in T cells upregulates surface expression of cellular adhe-
sion molecules, leading to lymphocyte aggregation (142). How-
ever, the relevance of the Tip-Tap association for viral trans-
formation remains to be elucidated.

KSHV K15

KSHV encodes a distinct ORF called K15 or latency-asso-
ciated membrane protein (LAMP) which is located in the same
genomic position as the EBV LMP2a (22, 48, 114). While K15
isolates exhibit a complex splicing pattern, they all consist of 4
to 12 transmembrane spanning domains and a short stretch of
cytoplasmic domain (Fig. 3) (22, 48, 114). K15 is weakly ex-
pressed in latently infected BCBLs, and the level of its expres-
sion was significantly increased by tetradecanoyl phorbol ace-
tate stimulation (22, 48). K15 proteins from different KSHV
isolates exhibit dramatic sequence variation, showing as much
as 60 to 70% divergence at the amino acid level (114). Like
EBV LMP2a, the cytoplasmic domain of K15 contains signal-
ing motifs that are highly conserved in most isolates (114).
These include potential SH2 and SH3 binding motifs and a
YASIL sequence (20, 48, 114). The cytoplasmic domain of K15
is constitutively tyrosine phosphorylated, and the tyrosine res-
idue within the putative SH2 binding motif is a major site of

phosphorylation by cellular tyrosine kinases (22). In addition,
experiments with CD8-K15 chimeras demonstrate that unlike
that of EBV LMP2a, the cytoplasmic domain of K15 is unable
to elicit cellular signal transduction upon antibody stimulation.
However, like EBV LMP2a, it is capable of inhibiting BCR
signal transduction (22). Thus KSHV K15 is likely to be a
distant evolutionary relative of EBV LMP2a.

RRV contains a gene named R15 at a genomic location
equivalent to that of KSHV K15. R15 also contains multiple
transmembrane domains and a cytoplasmic tail containing sig-
nal-transducing motifs (unpublished data). The functional role
of R15 remains to be deciphered.

FUNCTIONAL COMMONALTIES

Except for the limited homology of the structural motifs
seen between KSHV K1 and RRV R1, there is no discernible
homology between the proteins encoded by the first ORFs at
the left ends of the gammaherpesvirus genomes. The most
interesting property they share is their ability to self-oligomer-
ize (Fig. 2). EBV LMP1 has been shown to aggregate through
its membrane-spanning domains, mimicking a ligand-induced
activated CD40 receptor (47, 67). KSHV K1 and RRV R1
have also been shown to oligomerize through disulfide bonding
of their extracellular domains (24, 71, 76, 77). The STP-C
protein is capable of oligomerizing through its collagen re-
peats, and the integrity of this domain has been demonstrated
to be essential for the transforming function of the protein (59;
Choi et al., unpublished data). However, as an alternative,
oligomerization of these proteins may be caused by endoge-
nous ligands. In addition, both LMP-1 and STP-C488 can ac-
tivate the NF-kB pathway through the binding of TRAFs (32,
33, 37, 38, 57, 75, 122), while the K1 and R1 proteins interact
with Syk, a B-cell specific kinase, to induce cellular tyrosine
phosphorylation and B-cell activation events (24a, 72, 76). Thus,
these proteins share the ability to interact with host factors and
to activate cellular signaling pathways. Such similarities exist in
the lack of any discernible sequence homology as to imply that
these first ORFs are not ancestral herpesvirus genes but have
been recently acquired by the individual viral genomes. In
either event, through self- or ligand-induced oligomerization
and interaction with host cellular factors, these viral transform-
ing proteins appear to have adopted and modified cellular
pathways as a means of transforming T and B lymphocytes
(Fig. 2).

EBV LMP2A, KSHV K15, and HVS Tip also share a com-
mon function in the absence of any sequence homology. All
three proteins contain SH2-binding and/or SH3-binding motifs
that are capable of interacting with either the Src or Syk family

FIG. 3. Schematic representation of the LMP2a, Tip, and K15 proteins. Interactions with cellular partners and activation of cellular pathways are indicated. Y-P
represents the presence of phosphorylated tyrosine residues in these proteins. Blue-colored T-bar, blocking of signal transduction.
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kinases (Fig. 3). These motifs appear to be involved in the
down-regulation of lymphocyte receptor signaling. The impair-
ment of cellular signal transduction pathways by these viral
proteins may help to reduce or delay the onset of aberrant lytic
replication as a result of cellular proliferation triggered by
external signals.

OTHER GROWTH-DEREGULATING GENES OF
GAMMAHERPESVIRUSES

Herpesviruses have large genomes containing a wide array
of genes. Although the first ORFs in these gammaherpesvi-
ruses have oncogenic potential, other viral genes may also play
a role in viral transformation. These viral genes can be
classified into two groups, those that are homologous to
cellular genes and those that are unique to the virus. EBV
encodes several unique viral genes, e.g., EBNA-1, EBNA-2,
and EBNA-3, which all appear to play a role in viral oncogen-
esis (15, 80, 81, 87, 89, 110, 118, 134, 136). Another such gene
is the KSHV K12 (Kaposin) gene, which has been shown to
have transforming ability (97), although its contribution to
viral pathogenesis is not yet clear. Furthermore, the K12 gene
has been shown to undergo a complex translation program
(121).

The second set of potential growth-deregulating genes en-
coded by these viruses are those that resemble cellular genes.
EBV, HVS, KSHV, and RRV all harbor a viral Bcl-2 gene that
has anti-apoptotic activity in cell culture (21, 25, 98, 127, 135;
Alexander et al., submitted). While EBV induces expression of
IL-6, cyclin D, complement-control protein (CCP), and IL-8
receptor expression (10, 14, 68, 128, 129, 135), the three rhadi-
noviruses appear to have come prepared with their own viral
homologues of cellular genes: v-cyclin, v-CCP, and v-IL-8R (3,
4, 4a, 19, 100, 101, 120). In addition, the rhadinoviruses contain
genes encoding a latency-associated nuclear antigen (LANA)
and a FLICE-inhibitor protein (v-FLIP) (3, 4, 120, 127). Fur-
thermore, KSHV and RRV encode genes for viral IL-6, inter-
feron regulatory factors (v-IRFs), and viral chemokines (v-
MIP-I, -II, and -III) (12, 50, 92, 102, 104, 125–127). Thus, the
proteins encoded by genes near the ends of the gammaherpes-
virus genomes may act in concert with a number of other
virus-encoded protein products to achieve cell growth trans-
formation.

CONCLUSION
Infected hosts induce numerous antiviral responses that in-

clude apoptosis, immune activation, and cell growth arrest.
The Gammaherpesvirinae have evolved means of altering these
signal transduction pathways by deregulating expression of a
subset of cellular signaling genes or encoding their own viral
counterparts to these genes. Thus, acting in concert with other
viral genes, STP and Tip of HVS, LMP1 and LMP2a of EBV,
K1 and K15 of KSHV, and R1 and R15 of RRV are capable of
modulating cellular signals such that cell proliferation and viral
replication occur at the appropriate times in the viral life cycle.
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