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Abstract

PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the 

maintenance of calcium and phosphate homeostasis as well as the development and maintenance 

of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a 

major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback 

on PTH secretion. The major function of PTH and major physiologic regulator is circulating 

ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium 

within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin 

D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in 

providing adequate mineral for normal bone formation. Both hormones act in concert with the 

more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate 

metabolism, which also participate in this closely knit feedback circuit. Of great interest are 

recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. 

Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular 

disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both 

hormones have direct effects on the endothelium, heart, and other vascular structures. How these 

effects of PTH and vitamin D interface with the regulation of bone formation are the subject of 

intense investigation.

Parathyroid Hormone

Introduction

Parathyroid hormone (PTH), a product of the parathyroid glands, embedded in the thyroid 

(in rodents) or located behind the thyroid (in humans), is a key regulator of calcium and 

phosphorus homeostasis through its effects on bone, kidney and intestine, and by regulating 

1α, 25-dihydroxyvitamin D (372). The serum concentration of PTH is derived both from 

the release of PTH stored in secretory granules and from de novo synthesis of PTH in 

response to alterations in the serum levels of calcium, phosphorus, and vitamin D (277). 

Acute regulation of PTH is accomplished by the release of stored PTH in response to 

ambient calcium level through the calcium sensing receptor expressed on the chief cells of 
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the parathyroid glands while long-term synthesis and release is dependent upon de novo 

synthesis through transcription and translation of mRNA encoding pre-pro-PTH (520, 521). 

PTH restores serum calcium by three different mechanisms: (i) release of calcium and 

phosphorus from the bones through stimulation of osteoclastic activity; (ii) decrease in 

calcium excretion and a concomitant decrease in phosphate reabsorption in the kidney; and 

(iii) increase dietary absorption of calcium and phosphorus in the gut (271) (Fig. 1).

Substantial advances made in the late 1970s and early 1980s to understand the biochemical 

and cellular regulation of PTH metabolism and mechanisms of action (278-282) led 

to the development of assays for the detection of PTH in the blood of humans and 

animals. These efforts uncovered the presence of multiple forms of immunoreactive PTH 

molecules in circulation adding a previously unappreciated complexity to PTH metabolism. 

Evidence suggests that the hormone is subjected to proteolysis both in the parathyroid 

gland and in end organs including liver and kidney. This review will focus on the structure, 

synthesis, secretion, and functions of the hormone and consider the pathophysiological, 

pharmacological, and treatment of abnormalities of biosynthesis and secretion of PTH.

History

Although evidence of pathologies now associated with the parathyroid glands can be 

documented as far back as ancient Egypt (164, 332), the existence of the parathyroid glands 

was not discovered until the second half of the nineteenth century, and their function not 

definitively explored until well into the twentieth century. The parathyroid glands went 

through numerous cycles of naming and discovery, and took several decades to gain traction 

in the scientific field. It was during the necropsy of a Great Indian Rhinoceros in 1852 that 

Sir Richard Owen of the Royal College of Surgeons first described the parathyroid glands 

(219, 497). Remak (544) and Wirchow (690) found the parathyroid glands in humans. 

Although it had been well established by the beginning of the twentieth century that 

removal of the glands from humans and animals caused death from tetany, intense debate 

still existed as to the function of the glands. It was even suggested that the parathyroid 

glands serve a detoxification purpose, much akin to the liver (409-411). At the turn of 

the twentieth century, the German pathologist Erdheim determined that patients undergoing 

thyroid surgery who developed tetany had undergone simultaneous accidental removal of the 

parathyroid glands (201, 655). In 1915, Schlagenhaufer, a Viennese physician, was the first 

to draw the conclusion that the osteitis fibrosa cystica observed in his patient was in fact due 

to an enlarged parathyroid, and not the other way around (332). While previous researchers 

had implicated a role of the parathyroid in calcium homeostasis, injection of parathyroid 

extract into animals with tetany failed to relieve the symptoms; thus, the precise relationship 

between parathyroid glands and calcium homeostasis remained unclear. It was not until 

Collip developed a method for extracting biologically active parathyroid hormone that the 

role of the parathyroid glands in calcium homeostasis began to emerge. Collip used a hot 

acid extraction method to purify potent parathyroid extracts that when injected back into 

parathyroidectomized animals restored muscle excitability to normal levels (160-162, 522, 

524). Although effective, the hot acid extraction was also harsh, and yielded fragmented 

portions of parathyroid hormone, which frustrated efforts to sequence the polypeptide in the 

1950s. In 1954, Handler et al. (284) summarized the frustrations of several scientists in a 
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report by stating that “(i) the active material in the gland may be large protein which in the 

course of isolation is degraded into fractions of varying size, each of which still has activity; 

(ii) the active molecule may not be a large molecule at all, but instead a small molecule 

which adheres to each one of these fractions.” In 1959, Aurbach (35) and Rasmussen 

and Craig (534) independently isolated the polypeptide and individual fragments without 

degradation using organic solvent extraction methods. Using standard protein sequencing 

techniques, they were able to determine the structure of bovine and human PTH. In the 

1970s with the development of molecular techniques, it became possible to determine the 

mechanisms for hormone synthesis, processing, and metabolism.

PTH gene regulation

Several proteins play a critical role in parathyroid gland development. These include glial 

cells missing (GCM), eyes absent (Eya1), and Hoxa3/Pax1 compound genes. However, 

there is very limited information available identifying activating and repressing factors 

that control the transcription of the PTH gene. Early studies suggested that extracellular 

calcium inhibited PTH gene transcription through a conserved negative calcium-response 

element (371, 487-489). More recent studies have elucidated an additional role for calcium 

in regulation of PTH through posttranscriptional repression. Rats that were fed low calcium 

diets were found to have increased levels of PTH mRNA, whereas rats that were fed low 

phosphate diets had decreased PTH mRNA expression (457). Low serum calcium and high 

serum phosphorus are signals that both increase PTH secretion by increasing PTH gene 

expression posttranscriptionally (60, 61). Additionally, 1,25-dihydroxy-vitamin D decreases 

PTH expression by decreasing PTH mRNA (471, 472). Vitamin D deficiency increases 

the PTH mRNA expression through two processes, (i) impaired calcium absorption leading 

to decreased extracellular calcium and (ii) removal of a known repressor of PTH gene 

transcription (369). Initial experiments determined that specific sequences in the 3′ UTR of 

PTH mRNA determine its rate of degradation (646). Calcium and phosphate were identified 

as regulating PTH posttranscriptionally, through alteration in the interaction of RNA binding 

protein with the 3′-UTR of the PTH transcript. Two of these proteins are AU-rich element 

binding factor 1 (AUF1) and KSRP (372). AUF1, an RNA-binding protein, enhances the 

PTH transcript stability by binding to the 3′UTR region in response to phosphate and 

calcium concentrations in the serum (61). KSRP destabilizes the PTH transcript through 

KSRP’s interactions with the 3’-UTR of PTH mRNA (239). Other proteins involved in PTH 
gene expression include hepatocyte nuclear factor 1β (HNF1β), which binds to the PTH 

promoter and acts as a translational repressor, as patients with a mutated HNF1β display 

hyperparathyroidism (223).

Several consensus sequences have been identified in PTH promoter region that regulate its 

gene expression. A cyclic AMP response element was identified at the transcription start site 

of the human, bovine, and murine PTH genes. A unique DNA repressor element that binds 

to the vitamin D receptor has also been identified in the human PTH gene promoter. Alimov 

et al. (19, 20) identified a highly conserved Sp1 element and a Sp3 element in the human 

and bovine PTH promoter. Sp1 strongly stimulates the transcription of wild-type bovine and 

human PTH promoters. The role of Sp3 promoter is not known.
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Structure and biochemical properties of PTH

The biosynthetic pathways involved in the synthesis, cellular transport, and metabolism of 

PTH has been extensively studied. These studies demonstrated that the mRNA encoding the 

PTH is translated as a 115 amino acid pre-pro-PTH on the rough endoplasmic reticulum 

(277, 343-346) (Fig. 2). The first two methionines are cleaved during translation by a 

methionyl amino peptidase releasing the signal peptide such that the protein is directed to 

a membrane vesicle. During the transit to the Golgi, the N-terminal signal sequence of 23 

amino acids is cleaved at the glycyl-lysyl bond to form an intermediate protein of 90 amino 

acids called the pro-PTH, which is an inactive precursor. The N-terminal six amino acids of 

the pro-PTH are proteolytically cleaved in the Golgi yielding the mature 84 amino acid PTH 

which is stored in granules to be released into the circulation by exocytosis after appropriate 

stimulus (282, 371, 598). Analysis of the region-specific radioimmunoassays demonstrated 

that pro-PTH constitutes only 7% of the total PTH in normal parathyroid glands and the 

rest is mostly mature PTH (283). The protein is further cleaved into smaller fragments by 

cathepsin-B in the parathyroid glands (227, 412, 413). The hormone and its fragments are 

removed from circulation by receptors predominantly in kidney but also in the bone (282).

The naturally occurring PTH 1-37 and 1-34 fragments of PTH maintain full activity of 

the intact PTH 1-84. Osteoporosis patients treated with PTH1-34 have increased bone 

density suggesting that this fragment of PTH has all the anabolic activities of the intact 

1-84 PTH. Mutation analyses of the PTH molecule have identified amino acids critical for 

receptor signaling. Truncation of the first two amino acids (PTH 3-34) results in a partially 

active PTH while removal of the first six amino acids (PTH 7-34) results in a low-affinity 

antagonist. Further studies have demonstrated that the 17 to 34 amino acid residues are 

critical for high affinity receptor binding (468).

The structure of PTH has been partially defined through X-ray crystallography and NMR 

spectroscopy techniques (323). The secondary structure of PTH 1-34 differs depending upon 

whether it is in aqueous solutions, lipid solutions, or in the presence of secondary structure-

inducing solvents such as trifluorethanol (47, 91, 357, 478, 505, 614). X-ray crystallography 

studies have identified critical amino acids associated with specific structural qualities of 

PTH. PTH 1-34 has a multihelical structure with a bend between amino acid residues 

12 and 21 (323). Mutation analysis demonstrated that the helical structure around Gly12 

is important for biological activity and binding of the peptide to its receptor (149, 150). 

NMR studies have shown three helices between Ser3-Asn10, Ser17 to Lys27, and Asp30 

to Leu37 in the N-terminal. An additional poorly defined helix between Asn57 and Ser62 

was observed in the C-terminal with evidence of interaction between helix 1 and helix 2. 

The NMR studies also demonstrated a “U” or “V” shaped tertiary structure formed by the 

interaction between the N- and C-terminal helices which form a hydrophobic core (47, 141, 

270, 699).

Regulation of PTH synthesis, secretion, and metabolism

Mature PTH is stored in granules close to the plasma membrane. Electron microscopy of the 

parathyroid gland demonstrated that the granules containing mature PTH are limited while 

there are abundant immature vesicles present near the Golgi. These vesicles are transported 
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to the cell surface without incorporation into mature granules. Extracellular ionized calcium 

concentration is the major physiologic regulator of the synthesis and secretion of PTH (Fig. 

3A and B). Decreasing ionized calcium concentration by infusion of the calcium chelator, 

EGTA, in cows increases the synthesis and secretion of PTH within 20 s of infusion. The 

initial response to a 0.1 mg/dL decrease in calcium concentration is to release the preformed 

vesicles from the parathyroid gland (100). Chronic decreases in serum calcium will increase 

the rate of synthesis and release of PTH (101). Apart from serum calcium, epinephrine, 

calcitonin, vitamin D, magnesium, and phosphate regulate the synthesis and release of 

PTH in humans (105, 226). (Fig. 3C) An extracellular calcium receptor (CaSR) acting as 

a sensor for ionized calcium levels provides the critical link between circulating ionized 

calcium concentration and PTH secretion, maintaining calcium within a narrow range. High 

extracellular calcium levels sensed by the CaSR results in decreased PTH secretion and 

increased Ca++ excretion by the kidney (148, 474). Conversely, lower levels of plasma 

calcium stimulate PTH secretion and Ca++ reabsorption by the kidney (474-477, 671).

Plasma PTH levels exhibit significant fluctuations during the course of the day and about 

20% to 30% of its secretion is pulsatile (565). The circadian rhythm of PTH reaches a 

maximum at late morning, followed by two prominent peaks one in the afternoon and 

another in early morning (569). However, the maximum PTH secretion occurs at nighttime 

when the bone resorption activity is highest (202). Both nocturnal increases in PTH 

secretion and bone resorption can be prevented by administration of calcium in the evening 

(426). PTH concentration time profiles have revealed a rhythm of secretion consisting of 

seven secretory pulses per hour, accounting for approximately 30% of spontaneous PTH 

secretion and regulated by extracellular calcium (572). The mechanisms for the pulsatile 

secretion of PTH are not very well understood, nor are the functional consequences. It is 

proposed that the dense autonomic innervation of the parathyroid gland acts as neuronal 

pacemaker for PTH secretion (123, 208, 613). Acute disruption of sympathetic input by 

β-adrenergic receptor blockers increases the PTH pulse two fold and increases plasma PTH 

levels but does not eliminate the pulsatile oscillations (570, 571). It has been suggested that 

this cyclic release of PTH may be critical for the anabolic effects of bone mass by activating 

the cyclic AMP pathway while chronically elevated levels of PTH lead to bone destruction 

through PKC and RGS2-dependent pathways (312, 342). This is based, at least in part, 

on the observation that daily recombinant PTH injections, which results in exaggerated 

peaks of serum PTH levels, are an effective treatment for osteoporosis and bone repair, 

stimulating new bone production in postmenopausal women (75, 209). In contrast, sustained 

high levels of PTH seen in primary and secondary hyperparathyroidism tend to result in 

bone destruction. PTH secretion also is dependent upon seasonal fluctuations. It decreases 

by about 20% in summer and increases by about 20% in winter season (693).

Berson and Yalow demonstrated immunochemical heterogeneity of plasma PTH for the 

first time and suggested that this may be due to postsecretory modifications of the 

hormone (70-72). Later studies confirmed the observations of Berson and Yalow and by 

using RIA demonstrated that the majority of fractions are C-terminal fragments of the 

hormone (468). Habener et al. demonstrated that direct intravenous injection of intact bovine 

PTH into calves led to the accumulation of C-terminal fragments generated by peripheral 

metabolism of the administered hormone (278). In 1973 Canterbury et al. identified N-

Khundmiri et al. Page 5

Compr Physiol. Author manuscript; available in PMC 2024 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terminal fragments of PTH that were biologically active (117). This observation was later 

confirmed by several studies. The N-terminal fragments were found to be more short-lived 

than the C-terminal fragments. The discovery of biologically active N-terminal fragments 

led to the hypothesis that peripheral metabolism of secreted PTH is required for biological 

activity (503). However, this was disproved by the observations of Glotzman et al. who 

demonstrated that intact PTH could activate adenylate cyclase (260, 507). Fang and Tashjian 

(215) were the first to demonstrate the contribution of liver in clearance of intact PTH from 

circulation. This was later confirmed by several studies [reviewed in (468)]. Recent studies 

demonstrated that the Kupffer cells take up intact PTH, a process that is dependent on amino 

acids 28-48, and generate C-terminal fragments by proteolysis of the intact hormone (173, 

174). Daugaard et al. (183, 184) demonstrated that only C-terminal biologically inactive 

fragments were generated during liver perfusion. Bringhurst et al. (110-112) demonstrated 

that the N-terminal fragments are degraded in the Kupffer cells. The demonstration that 

both intact and fragmented circulating forms of PTH are increased in patients with renal 

disease (71, 179, 443) and nephrectomized animals (118, 313, 431, 432) suggests that 

kidneys play a major role in PTH clearance. A portion of PTH is cleared independent of 

glomerular filtration, through peritubular uptake by binding to PTH1R and involve receptor-

mediated endocytosis at the basolateral membrane of the tubule cells (185, 432). Recent 

studies suggest that megalin/cubulin-dependent endocytosis plays an important role in PTH 

clearance from urine independent of PTH1R (273, 298).

PTH receptors

Three distinct receptors for PTH viz., PTH1R, PTH2R, and PTH3R have been described 

in literature. The most common and the classical receptor, the PTH1R, a type II G-protein 

coupled receptor, is expressed widely, both in the classic PTH target tissues, bone and 

kidney, as well as many others. PTH1R is activated by both PTH and the PTH-related 

peptide, a protein that shares the name with PTH but is not derived from the same gene. 

PTH2R is expressed in very low levels in most tissues, except for the limbic system 

and the hypothalamus (148). PTH2R is activated by PTH and an unrelated protein, the 

tuberoinfundibular peptide of 39 amino acids (TIP39). The PTH3R was cloned from 

zebrafish and is activated 20 times more potently by PTHrP than PTH. The mammalian 

homologues of PTH3R have not yet been discovered.

The PTH1R is the best studied PTH receptor. Jüppner et al. in 1991 identified a 585 

amino acids protein from COS7 and opossum kidney (OK) cells using 125I-[Tyr36]hPTHrP 

(1-35)NH2 binding (329). This protein was characterized as type II G-protein-coupled 

receptor, characterized by the presence of an ~ 150 amino acid N-terminal extracellular 

domain with four N-glycosylation sites, eight conserved extracellular cysteine residues 

forming four disulfide bridges, seven transmembrane regions, and a large (150-190 amino 

acid) intracellular C-terminal tail (148, 362, 578) (Fig. 4A). The PTH1R gene resides on the 

short (p) arm of chromosome 3 between positions 22 and 21.1 (3p22-p21.1). The PTH1R 

is encoded by a rather large 22 kb gene that contains 15 exons and 14 introns. The mature 

transcripts exhibit an extensive poly A tail at the 3′ end (366). Examination of the genomic 

map of the PTH1R gene has led to the identification of potential splice donor and acceptor 

sequences (148, 327, 366), and multiple promoters in the 5′ regulatory regions of the mouse, 
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rat, human, and porcine PTH1R resulting in the production of multiple transcripts which 

show regulation at the developmental and tissue level (327, 441, 442, 595). The mouse, rat, 

and porcine transcripts have two promoter regions (P1 and P2) while the human transcript 

has three promoter regions (P1, P2, and P3) (75, 148, 327, 442, 604). They all lack the 

conventional TATA box homology. However, they contain the GC rich Sp1 motifs and are 

regulated by ubiquitously expressed transcription factors Sp1, myc-associated zinc-finger 

protein, and embryonic TEA domain-containing factor (34, 442, 450). The P1 and P3 

promoter regions are methylated in a tissue specific manner and the differential methylation 

patterns are important during development (74). Transcription of the PTH1R is regulated by 

vitamin D, retinoic acid, and glucocorticoids (23, 335, 643, 701). Vitamin D downregulates 

the transcription of PTH1R in osteoblasts by inhibiting the activity of P2 promoter while 

retinoic acid and dexamethasone increases the transcription in mouse embryonal carcinoma 

P19 cells and ROS 17/2.8 cells respectively but not in OK cells. Glycosylation is an 

important posttranslational modification of GPCR that regulates the intracellular folding, 

stabilization, intracellular trafficking, and function (23, 335, 643, 644, 701). The four N-

glycosylation sites (N-151, 160, 165, and 175) are located in the putative ligand-binding 

extracellular amino terminal domain of the PTH1R. Initial studies using inhibition of 

glycosylation by tunicamycin or by treatment with endoglycosidase F in OK and HEK 293 

cells suggested that glycosylation is not required for proper folding, expression, and ligand 

binding (91, 93, 382, 722). However, more recent data using site-directed mutagenesis of 

the Asn to Gln showed decreased membrane expression and ligand binding in transiently 

transfected COS-7 cells suggesting that glycosylation plays an important role in intracellular 

trafficking, membrane expression, and function of PTH1R (721). Mutations in the six 

extracellular amino terminal cysteine residues also showed decreased membrane expression 

and ligand binding of the PTH1R. Two amino acid residues, R233 in the second and Q451 

in the seventh transmembrane domain, are highly conserved in type II GPCR, and critical for 

effective PTH interaction and signaling as mutations in these two sites reduce ligand binding 

and transmembrane signaling by PTH1R (148, 381) (Fig. 4B).

The PTH2R was identified by homology screening based on conserved sequences from 

calcitonin, secretin, and PTH1R from a cerebral cortex cDNA library. The gene for PTH2R, 

an 88kb gene with 13 exons and several large introns, has been located on chromosome 

2q33. Like the PTH1R, the PTH2R is a class II GPCR and 51% identical to PTH1R. Similar 

to PTH1R, PTH2R has a large hydrophilic amino-terminal domain containing 120 amino 

acid residues containing four glycosylation sites and six extracellular cysteine residues, 

seven transmembrane domains, and a large intracellular C-terminal domain. The PTH2R 

is highly expressed in brain particularly in the limbic system and parts of hypothalamus. 

Peripherally, the PTH2R is also expressed in pancreatic islet D cells, parafollicular C cells 

of the thyroid, cells that produce gastrointestinal peptide, cartilage, and heart muscle cells 

(148). In contrast to the PTH1R, PTH2R selectively binds to PTH but not to PTHrP. The 

natural ligand of PTH2R in the CNS is the 39 amino acid tubero-infundibular peptide 

(TIP-39) in the bovine hypothalamus, described for human, rat, and zebrafish PTH2R. PTH 

also activates human PTH2R but not the rat and zebrafish PTH2R. TIP-39 and PTH do not 

share sequence homology. Only five residues of bovine PTH and TIP-39 are similar and 

align with each other. However, NMR studies have demonstrated that the two peptides are 
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structurally very similar with regard to the orientation of polar and nonpolar amino acid 

residues in the amino-terminal region (57, 245, 300, 645).

The third and the most recently identified PTH receptor, the PTH3R was cloned using 

genomic PCR from zebrafish DNA. PTH3R is 69% similar and 61% identical to the PTH1R 

and shares only 48% similarity with PTH2R. PTH3R is almost exclusively activated by 

PTHrP and is the least studied of the three PTH receptors. The mammalian ortholog of 

PTH3R has not yet been identified. Similar to PTH1R and PTH2R, PTH3R has been 

classified as a class II GPCR but little else about its structure-function relationships is 

known (557, 702, 703).

Recent evidence suggests the presence of PTH receptors specific for the C-terminal of PTH 

which may play a role in gluconeogenesis, leukocyte migration, and pancreatic secretions 

[reviewed in (468)].

PTH-PTH1R interactions—Photo-affinity cross-linking studies of the interactions 

between a modified PTH 1-34 and its cognate receptor (PTH1R) suggest that the position 

13 of the PTH (1-34) docks at the positions 169-198 in the N-terminal region of the PTH1R 

(3, 91, 722) and position 27 of PTH1-34 docks at position 241-285 of the receptor (267, 

512). The 1, 3, 23, and 27 positions of the PTH interact with the receptor residues M425, 

R186, T33/Q87, and L261 (91, 148). Molecular modeling demonstrated that the N-terminal 

region of hPTH1-34 binds to an invagination of the PTH receptor formed between TM3, 

TM4, and TM6. (Fig. 4B) Mutation analysis revealed that the residues Trp23, Leu24, 

and Leu28 of PTH1-34 interact with Phe173 and Leu174 of the PTH receptor through 

hydrophobic interactions. Hydrophilic interactions are formed between Arg20 of PTH1-34 

and residues Glu177, Glu180 of the receptor, and between Lys27 of PTH1-34 and Glu169 

of the receptor (250). Mutation of Leu24 and Leu28 results in 4000- and 1600-fold decrease 

in binding affinity, respectively, while mutation of Asp30 to Lys has no effect on receptor 

binding (246). The hydrophilic interactions are less important for binding as compared to 

hydrophobic interactions (246). The human PTH1-37 and 1-34 fragments retain full activity 

of the intact PTH1-84 and activate both adenylyl cyclase and phospholipase C activity. 

However, PTH1-31 is nearly equipotent but predominantly stimulates adenylyl cyclase 

activity, while removal of 2 N-terminal amino acids (PTH3-34) results in loss of adenylyl 

cyclase activity but activation of phospholipase C activity is retained (45, 46, 231, 685).

Based on molecular modeling, Hoare et al. (299) described a “two-site” dynamic model 

of interaction between PTH and PTH1R. According to their model, the extracellular N-

terminal domain of PTH1R is the docking site for the C-terminal portion of PTH 1-34. The 

N-terminal of PTH 1-34 interacts with the J domain of the PTH1R which includes extra 

and intracellular loops and the transmembrane domains. The PTH1R N-domain provides the 

binding interactions between PTH and PTH1R while the J domain provides a stabilization 

function involved in receptor activation, G-protein coupling, and signal transduction (65, 

330). Residues 15-34 of PTH function primarily as the binding domain (131) while residues 

1-14 domain are responsible for the initiation of intracellular signaling through adenylate 

cyclase and PKC (65, 242, 246, 521). The binding of the N- and C-termini of PTH to the 

N- and J-domains of the receptor leads to increased affinity of the ligand-receptor complex, 
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G protein complex formation, and activation of the downstream signaling pathways (65, 

243, 244, 330). The current data suggest that the PTH receptor and PTH complex is present 

in an intermediate preactive R0 confirmation where G proteins are not coupled to the 

receptor ligand complex. The PTH-PTHR1 interaction stimulates the binding of heteromeric 

G proteins and the complex switches to an active confirmation (RG). Competition binding 

assays suggest that PTH1-34 binds with greater affinity to the R0 state than the RG state 

(299).

Signaling mechanisms of PTH1R—When PTH binds to the PTHR, the PTHR 

undergoes conformational change that promotes binding of G proteins (Gαβγ) to the 

receptor, followed by exchange of GDP for GTP on the α-subunit, and dissociation of 

the Gα from Gβγ subunits. (Fig. 4C) Gαs activates adenylyl cyclases to synthesize cyclic-

AMP resulting in activation of protein kinase A (PKA). Gαq activates phospholipase C 

(PLC) which converts PIP2 to diacyl glycerol (DAG) and inositol (1,4,5)-triphosphate 

(IP3). IP3 stimulates calcium release from the endoplasmic reticulum to the cytosol. 

Increased Ca++ allows translocation of protein kinase C to the plasma membrane where 

it is activated by DAG (658, 660). Identification of signal selective peptides has led to better 

understanding of the PTH-PTHR interactions and downstream signaling mechanisms. For 

example, PTH1-28 is a cAMP-selective agonist that stimulates PKA activation but does 

not activate PLC-dependent and -independent PKC activation. This agonist also does not 

cause receptor internalization or recruitment of β-arrestin. Removal of the first two amino 

acids of PTH results in loss of cAMP signaling (92). Mutation analysis has demonstrated 

that the conserved valine at position 2 is critical for signaling through both arms (589). 

PTH 7-34 acts as a weak antagonist of PTHR, does not stimulate either Gs or Gq-mediated 

signaling pathways but does cause receptor internalization. The N-terminal truncated PTH 

fragments like PTH7-34 and PTH39-84 may have inhibitory effects (479). The C-terminal 

fragments of PTH blunt bone resorption and vitamin-D dependent osteoclastogenesis (196). 

These actions of PTH are thought to be independent of PTHR but are dependent upon yet an 

elusive carboxy-terminal PTH fragment receptor and stimulate alkaline phosphatase activity 

and induce expression of mRNA for both alkaline phosphatase and osteocalcin (195, 617). 

It is important to note that the ability of PTH to activate cAMP and/or PLC/PKC pathways 

is cell specific. For example, PTH stimulates cAMP-PKA pathway but not the PLC/PKC 

pathway in vascular smooth muscle cells (415) while in keratinocytes (495, 684), cardiac 

myocytes (531, 568), and lymphocytes (359), PTH activates PLC/PKC pathway but not the 

cAMP/PKA pathway. The development of FRET based assays allowed kinetic studies of 

binding of PTH to its receptor and signaling in live cells. These studies demonstrated that 

binding of PTH to its receptor involves two steps. The first step, rapid binding of PTH to the 

N-terminus of the receptor, requires 150 ms at saturating concentrations of PTH. The second 

step where the C-terminal of PTH binds to the J-domain of the receptor is considerably 

slower, requiring about 1 s. The subsequent interaction between PTHR and Gs depends upon 

the expression levels of Gs and can be completed in about 0.96 s. In about 10 s following 

receptor coupling with Gs, cAMP production is initiated (130, 222, 656).

The actions of PTH on bone are very well documented and have been the subject 

of recent excellent reviews (62, 135, 165, 209, 459, 528, 543, 591, 691, 719). PTH 
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interacts directly with osteoblasts and osteocytes through PTH1R to stimulate a number 

of different pathways including cAMP/PKA, PLC/PKC, β arrestin translocation, and 

ERK1/2. In bone, the downstream signaling from these pathways is heavily regulated by 

RGS2 (regulator of G protein signaling 2), one of a family of proteins that modulates 

G protein activity stimulated by G protein-coupled receptors. Depending on whether the 

hormone presence is continuous or pulsatile, the overall effect of PTH signaling on bone 

metabolism will be catabolic or anabolic, respectively. Key to determining which effect 

predominates is the differential control of the osteoprotegerin-receptor activator of NFκB 

ligand-receptor activator of NFκB (OPG-RANKL-RANK) pathway. OPG, which is a bone-

derived cytokine, and RANK, which is a receptor located on the preosteoclast, compete 

for binding with RANKL, another bone derived cytokine. Interaction between RANK and 

RANKL stimulates osteoclastogenesis while OPG prevents that interaction by binding 

itself to RANKL. It is this pathway that controls the PTH-stimulated interaction with the 

osteoclast precursor cell, which can mature into a functional osteoclast and mediate bone 

resorption. Continuous presence of PTH leads to an increase in the mRNA for RANKL 

and a decrease in the mRNA for OPG through PKA dependent pathways, the result of 

which is enhanced binding of RANKL to RANK and enhanced osteoclast maturation. PTH 

stimulates osteoblast differentiation, decreases osteoblast apoptosis, and activates lining 

cells. The effects of PTH to stimulate osteoblastogenesis can be seen in bone progenitor 

cells, mediated through changes in the transcriptional program that result in the expression 

of characteristic bone proteins such as alkaline phosphatase, type I collagen, RUNX2, and 

others. Recently, several downstream mediators of PTH action on bone have been identified 

including monocyte chemoattractant protein-1, sclerostin, dickkopf1, and EphrinB2/EphB4 

(591) Investigation into the mechanisms of PTH regulation of bone is a dynamic area of 

inquiry as witnessed by the recent explosion of findings highlighting the intricacies of the 

process.

The other major target for PTH is the kidney. In human kidneys, the PTH receptors are 

expressed in proximal tubules, cortical ascending limbs of the Loop of Henle, and distal 

tubules. The receptors are expressed on both the apical and basolateral membranes of 

proximal tubules (291, 340, 353, 546, 633). Activation of the receptors on the basolateral 

membranes activates the PLC/PKC pathway while activation of the receptors on the 

apical membranes activates cAMP-PKA pathway (546, 633). Both pathways contribute 

to endocytosis of the type IIa sodium-phosphate cotransporter, leading to inhibition 

of phosphate reabsorption (350, 351, 380, 467). The differences in the activation of 

PLC/PKC pathway or cAMP-PKA pathway has been attributed to the binding of PTHR 

to sodium-hydrogen exchanger regulatory factor-1 (NHERF1), a scaffolding protein that 

exhibits two internal PDZ domains and an ezrin binding domain at the C terminal 

(677). Mahon and Segre recognized that the intracellular C-terminal domain of PTHR 

expresses a PDZ recognition motif D/E-S/T-X-ϕ that preferentially binds to PDZ1 domain 

of NHERF1 and PDZ2 domain of NHERF2 (418), and confirmed that PTHR binds to 

both proteins, NHERF1 and NHERF2. NHERF1 and NHERF2, through binding with ezrin, 

link membrane proteins with the actin cytoskeleton and recruit several proteins including 

receptors, ion transporters, and signaling proteins to the plasma membrane (97, 167, 676, 

677). Using heterologous expression of NHERF2 and PTHR in PS120 fibroblast cells, 
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Mahon and Segre identified that PTH activates PLC/PKC pathway. In the absence of 

NHERF2, PTH activated cAMP-PKA without affecting PLC/PKC pathway (418, 419). 

These studies suggest that NHERF provides signaling switch that could explain cell specific 

functions of PTHR independent of PTHR expression levels and expression of splice 

variants of PTHR (237). The expression patterns of NHERF1 and PTHR have important 

physiological consequences for renal phosphate and calcium handling. NHERF1 null mice 

exhibit phosphaturia and hypophosphatemia in part due to decreased apical membrane 

expression of type IIa sodium phosphate cotransporter without any changes in serum 

calcium (121, 167-170, 583, 584, 663, 675, 678-681). Phosphate wasting without changes 

in serum calcium has also been seen in patients who express NHERF1 polymorphisms or 

mutations (64, 166, 334, 545). The absence of NHERF1 expression in distal nephrons may 

explain the differences in the renal regulation of phosphate and calcium by PTH (237).

PTH1R trafficking and desensitization—Following binding and activation, the PTHR 

undergoes internalization and desensitization similar to most GPCRs (251, 252, 386). 

PTHR is phosphorylated in the C-terminus by G-protein-coupled receptor kinases (GRKs), 

resulting in increased association with β-arrestin and internalization through clathrin-coated 

pit dependent pathways (129, 606, 618, 624, 625, 659). Some of the receptors undergo 

rapid recycling while the rest are degraded in the lysosomes. The PTHR desensitization is 

more complex due to its associations with cytoplasmic adapter proteins NHERF1, NHERF2, 

and disheveled (Dvl2) (552, 607). Binding of these adapter proteins to the C-terminal 

domain of PTHR alters the selectivity and specificity of PTHR signaling through cell and 

ligand-dependent effects (273, 416, 417, 420). The laboratory of Peter Friedman extensively 

studied the internalization of PTHR in kidney cells. Using EGFP tagged PTH1R they 

demonstrated that GRK2-dependent phosphorylation of PTH1R is required for endocytosis 

in mouse proximal and distal tubule cells (92, 657). Their studies revealed that the PTH 

fragments that do not activate the receptor like PTH7-34 cause endocytosis in distal 

convoluted tubules but not in proximal tubules (237, 660). When they stimulated NHERF1- 

transfected distal tubule cells with PTH 7-34, they demonstrated blunting of internalization 

of PTH1R. Similarly, proximal tubule cells expressing dominant negative NHERF1 showed 

increased internalization of the PTHR in response to PTH7-34. These data suggest that 

interaction of PTHR with NHERF1 plays an important role in receptor internalization (237, 

660). Mutations in the PDZ binding motif of PTHR prevented binding of NHERF1 to the 

PTHR but did not interfere with signaling or internalization of the receptor. These results 

suggest that the intact PDZ motif is required for association with NHERF1, but additional 

studies will be needed to define the nature of association and the impact on receptor 

internalization. Mutations in the NHERF1 ezrin binding domain prevented NHERF1-PTHR-

actin interaction but failed to prevent internalization in response to PTH7-34. Similar results 

were shown in the presence of actin destabilizing agent, cytochalasin-D. Together these 

studies suggest that degradation of any component of the interaction between NHERF1-

PTHR-actin cytoskeleton allows internalization of the PTHR in response to PTH7-34 (237).

Recent studies from Friedman laboratory suggest that PTHR also associates with the PDZ 

adaptor protein disheveled 2 (Dvl2). Unlike, the interaction with NHERF1, association 

with Dvl2 occurs between residues 470 and 480 of the PTHR. Using immunoprecipitation, 
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they demonstrated that PTH1-34 increases interaction between PTHR and Dvl2 transiently. 

Binding of PTHR with Dvl2 increases its association with AP2 and β-arrestins resulting in 

internalization of the receptor (140, 552, 710).

Recent studies suggest that internalization of the PTHR in response to PTH1-34 does 

not completely blunt cAMP-PKA pathway. These observations led to the hypothesis 

that persistent calcemic responses in animals, prolonged increases in serum 1,25-

dihydroxyvitamin D, bone resorption and prolonged cAMP-PKA activation results from 

signaling through intracellular PTH bound to PTHR in the early endocytic compartment. 

These provocative studies suggest that GPCR stimulated signaling is not confined to the 

plasma membrane (116, 192, 222, 360). Further studies are required to determine the 

physiological consequences of intracellular signaling through endocytosed GPCRs.

Functions of PTH

Several very careful cellular, molecular, and in vivo studies helped to understand the 

physiological roles of PTH. PTH plays diverse roles in the body from maintaining whole 

body calcium homeostasis to maintaining bone density. In the kidney, PTH regulates 

phosphate homeostasis by decreasing expression of sodium-phosphate cotransporters NpT2a 

(38, 39, 96, 121, 188, 203, 294, 348, 350, 351, 467) and NpT2c (109, 274, 377, 379, 454, 

455, 576, 577), thus inhibiting reabsorption of filtered phosphate by the proximal tubules. 

PTH may also decrease phosphate absorption in the intestine by decreasing membrane 

expression of NpT2b (115, 255, 562). These two actions that tend to decrease total 

body phosphate content contrast with the pro-absorptive effects of PTH on calcium and 

ensure that maintenance of adequate calcium stores is not accompanied by accumulation 

of excessive phosphate. PTH increases ammoniagenesis (146) and gluconeogenesis (347, 

573, 664) in the kidney. In the proximal tubules PTH induces inhibition of bicarbonate 

partly through inhibition of Na+/H+ exchanger activity (235). The actions of PTH on 

Na+/H+ exchanger are complex and different from the actions of Na-Pi cotransporters. PTH 

inhibits the activity of Na+/H+ exchanger but does not decrease the number of transporters 

whereas it causes endocytosis and degradation of Na-Pi cotransporters (390, 707, 720). 

The activity of Na+/H+ exchanger returns quickly to normal levels once PTH is removed 

unlike the activity of Na-Pi cotransporters which requires de novo synthesis (292, 462). 

PTH activates 25 vitamin D 1α-hydroxylase, thus stimulating conversion of 25-hydroxy 

vitamin D to its active form, 1, 25-dihydroxy vitamin D (373, 586). The active vitamin D 

increases calcium reabsorption in the intestine. In the thick ascending limb of the Loop 

of Henle PTH increases transepithelial transport of sodium, calcium, and magnesium. 

PTH stimulates distal renal tubular calcium reabsorption by regulating the expression of 

proteins involved in calcium reabsorption, viz; sodium calcium exchanger, Ca-ATPase, 

calbindin, TRPV5, and TRPV6 (187, 235, 321, 651). PTH promotes apical calcium entry 

through dihydropyridine-sensitive calcium channels. Apical calcium entry in this segment 

of the nephron is favored due to basolateral increase in chloride conductance resulting in 

increased chloride efflux and fall of intracellular chloride concentrations. Calbindin also 

plays a crucial role in calcium homeostasis by binding to reabsorbed calcium inside the 

cells and therefore prevents increases in free intracellular calcium. Expression of calbindin 

is regulated by PTH-dependent calcitriol synthesis (321). However, the most important 
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function of PTH is to regulate bone mineralization. PTH affects all bone cells; stimulation 

of osteoblasts enhances bone formation while stimulation of osteoclast maturation increases 

bone resorption. The stimulatory effects of PTH on bone turnover have been successfully 

and effectively used pharmacologically to treat osteoporosis (520).

Interaction of PTH with other hormones

The most well studied interaction of PTH with other hormones is the interaction 

with fibroblast growth factor 23 (FGF23)/klotho complex (328). FGF23 is produced by 

osteocytes and osteoblasts (68, 429, 525, 527, 588, 597, 704). Both PTH and FGF23 

are phosphaturic hormones and regulate phosphate homeostasis by inhibiting phosphate 

absorption in the intestines and reabsorption in the kidneys through decreasing membrane 

expression of sodium-phosphate cotransporters NpT2a (26, 247, 248) and NpT2c (66, 247, 

248). PTH increases 1α-hydroxylase activity, active vitamin D, and calcium absorption in 

the intestines and reabsorption in the kidneys whereas FGF23 decreases 1α hydroxylase 

activity, active vitamin D thereby decreasing the absorption of calcium (289). PTH and 

FGF23 regulate the synthesis of each other. Higher serum phosphate increases the synthesis 

of FGF23 and lowers serum calcium, which will trigger synthesis of PTH. While PTH 

increases calcium reabsorption and indirectly increases FGF23 synthesis. Both of these 

mechanisms will eventually result in bone disease (328).

In recent years, an association between PTH and aldosterone has been described. New data 

demonstrate the expression of PTH in the aldosterone secreting zona glomerulosa cells of 

the adrenal glands and the expression of the mineralocorticoid receptor in parathyroid cells 

(632). Studies suggest that PTH directly regulate the secretion of aldosterone from the zona 

glomerulosa cells of adrenal glands and aldosterone in turn regulates PTH secretion from 

the parathyroid cells (631, 632). Isales et al. (316) and Olgaard et al (490) demonstrated 

that PTH stimulated aldosterone secretion in a dose dependent manner and potentiated 

angiotensin 2 stimulated aldosterone secretion. Rosenberg et al confirmed that adrenal 

glands are a novel target of PTH (554, 555). The effects of PTH on aldosterone secretion 

were mediated through PTH1R activation of cAMP/PKA and PLC/PKC pathways (213, 

214). In patients with primary hyperparathyroidism (pHPT), elevated levels of aldosterone 

have been demonstrated (249), and parathyroidectomy has resulted in decreased aldosterone 

levels, decreased blood pressure, decreased risk of metabolic syndrome, and improvement in 

several parameters of vascular function (21, 216, 217, 407, 496). A prospective study in 226 

patients with essential hypertension demonstrated a positive correlation between aldosterone 

and PTH levels (631, 632). Primary aldosteronism (PA) has been associated with higher 

PTH and lower calcium. Treatment with spironolactone decreased PTH levels in PA patients 

(556). Taken together these data suggest aldosterone and PTH cooperatively would cause 

vascular damage to multiple organs and support the hypothesis that regulation of PTH and 

aldosterone are associated, though whether these are linked or separate pathways remains 

unclear. These primarily epidemiologic and associative studies require more investigation to 

confirm a true cause and effect relationship and to identify the prevalence of these combined 

disorders.
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Pathophysiology

Once it was recognized that parathyroid glands secrete a hormone, PTH, in response to 

changes in ionized calcium levels, studies were conducted to understand the consequences 

of hyper- or hyposecretion of PTH. Even in the absence of reliable imaging techniques or 

assays for the measurement of mineral ions in the early twentieth century, pioneering work 

of several investigators identified clinical sequelae of excessive (hyperparathyroidism) or 

insufficient (hypoparathyroidism) PTH.

Hyperparathyroidism—The insights gained from pathological and mechanism-based 

studies identified and defined the clinical features of hyperparathyroidism (16, 17). 

Hyperparathyroidism may be primary or secondary (448). pHPT can result from an 

adenoma, multigland hyperplasia, or carcinoma. In most (about 90%) adults a single 

adenoma causes pHPT while others (about 5%) may have double or multiple adenomas 

of the parathyroid glands. About 5% of patients present with glandular hyperplasia and 

1% with carcinoma (558). Mechanisms for the development and growth of parathyroid 

adenomas in the setting of primary and secondary hyperparathyroidism have been 

investigated extensively. The size of the adenomas is inversely proportional to the nutritional 

status of vitamin D (532), suggesting a role for vitamin D in regulating the growth of 

these adenomas, presumably through the VDR. On the other hand, studies of the expression 

of vitamin D receptor in the adenomas have not demonstrated a consistent pattern (368, 

616, 654). Similarly, expression of the CaSR in adenomas has been described as increased, 

decreased, or unchanged; however, recently Koh and colleagues identified RGS5 as highly 

expressed in parathyroid adenomas and have suggested that the increased expression of this 

protein could alter CaSR signaling to decrease its effect on PTH secretion (361). Proteomic 

analysis comparing normal and adenomatous tissue suggests that proteins involved in 

apoptosis are decreased in parathyroid adenomas compared to normal parathyroid glands 

(653). The genetic basis for the development of sporadic hyperparathyroidism has not been 

fully established. In some circumstances, mutations in the MEN1 gene, the RET gene, 

or the CaSR gene which are associated with familial forms of hyperparathyroidism have 

been identified, but not universally (630). Clearly, multiple different mechanisms appear 

to result in the clinical syndrome of hyperparathyroidism, suggesting that identification of 

these mechanisms in the individual patient could lead to more directed and effective therapy, 

perhaps even nonsurgical therapy (585).

Clinically, most patients present with asymptomatic hypercalcemia on routine lab work 

and a high circulating PTH level. Older literature classically refers to the manifestations 

of hyperparathyroidism as “stones, bones, abdominal groans, and moans” (58). Stones are 

due to nephrocalcinosis, hypercalcuria, and renal tubular reabsorption disturbances. Bone 

pain can be experienced due to fractures resulting from enhanced bone resorption leading to 

osteoporosis and osteitis fibrosa cystica. Abdominal groans are due to nausea, constipation, 

anorexia, and pain. Moans refer to both neuromuscular and neuropsychiatric symptoms 

including depression, anxiety, cognitive dysfunction, and fatigue. Other symptoms include 

headache, emesis, polydipsia, diarrhea, and joint pains (58). Symptoms are frequently more 

severe in children than in adults but this may be due in part to delay in diagnosis as serum 
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calcium is not monitored regularly in children (364). Recent data suggest that cyclin D1 

mutations also cause pHPT (32, 33, 422, 423).

pHPT can be normocalcemic, asymptomatic, or hereditary (533). Normocalcemic 

hyperparathyroidism is a fairly newly recognized condition wherein patients present with 

normal calcium (including ionized calcium) levels and high serum PTH levels with 

no secondary causes like renal disease, medications, gastrointestinal illness, idiopathic 

hypercalciuria, or vitamin D deficiency (592). A percentage of these individuals later 

develop hypercalcemia. It is often diagnosed in patients found to have low bone 

mass or nephrolithiasis. This two-phase process for the development of full-blown 

hyperparathyroidism is incompletely understood. One theory holds that initial target organ 

resistance to the actions of PTH, as would be seen perhaps in premenopausal women with 

higher circulating estrogen levels, mask the hypercalcemic response to PTH, which then 

becomes apparent after menopause when estrogen levels decline precipitously. However, 

most patients with normocalcemic hyperparathyroidism actually are post-menopausal, 

somewhat negating this theory (18). The epidemiology and natural history of this disorder 

are not well understood as yet [reviewed in (172)].

Asymptomatic hyperparathyroidism is characterized by mild hypercalcemia, low to deficient 

vitamin D, and normal serum phosphate levels. It is more prevalent in women than in 

men and manifests within the first decade after menopause. In asymptomatic patients, 

densitometric and histomorphometric analyses demonstrate reduced bone mineral density 

in the distal one-third radius while lumbar region is often preserved and the hip region 

is intermediate between distal and lumbar regions. PTH levels are high with low 25-

hydroxyvitamin D levels [reviewed in (593)].

Familial hyperparathyroidism is a group of inherited autosomal dominant parathyroid 

disorders (256). These include multiple endocrine neoplasia (MEN) type I MEN1, 

type 2 MEN2a, type 4 MEN4, familial hypocalciuric hypercalcemia (FHH), neonatal 

severe hyperparathyroidism (NSHPT), autosomal dominant moderate hyperparathyroidism 

(ADMH), hyperparathyroidism-jaw tumor syndrome (HPT-JT), and familial isolated 

hyperparathyroidism (FIHPT). MEN1 is caused by mutations in the MEN1 gene on 

chromosome 11q13 (388, 389). Patients develop parathyroid adenomas but carcinomas 

are rare. Patients show multiglandular parathyroid disease with asynchronously and 

asymmetrically enlarged parathyroid glands (211, 212, 236, 424). MEN2a syndrome is an 

autosomal dominant condition with high risk of developing medullary thyroid carcinoma. 

The average onset of PHPT is 38 years of age (256). MEN2 is caused by mutations in RET 
gene localized to chromosome 10 that encodes a tyrosine kinase (286, 458, 463-465). MEN2 

is characterized by parathyroid adenoma or hyperplasia (256). MEN4 is a rare disorder, the 

result of mutations in CDKN1B gene leading to dysfunctional cell cycle inhibitor p27 (383, 

384, 425, 504). Little is known about this illness.

FHH and NSHPT are associated with inactivating mutations in CaSR gene. FHH patients 

express a mutation in one allele and have hypercalcemia, mild hypermagnesemia, and 

hypophosphatemia. Generally, these individuals are completely asymptomatic; however, 

parathyroid glands may be moderately enlarged. This condition is differentiated from the 
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usual sporadic pHPT by very low urine calcium, generally less than 100 mg/day, and 

requires no treatment. NSHPT is a homozygous form of FHH, resulting in the very rapid 

development of PHPT at birth or shortly thereafter. Patients have severe hypercalcemia, 

bone demineralization, and neurodevelopmental disorders. In this disorder, parathyroid 

glands should be surgically removed within first few days of life to prevent fatal outcome 

(434-437).

ADMH is caused by mutations in cytoplasmic C-terminal tail of CaSR and is characterized 

by parathyroid hyperplasia or adenoma. The treatment of choice is surgical removal of the 

parathyroid gland (126, 127).

HPT-JT is an autosomal dominant disorder caused by mutations in the HRPT2 gene 

encoding parafibromin, a critical protein for cell growth (128). HPT-JT is associated with 

a variety of manifestations including fibrous-osseous tumors of the jaw, Wilm’s tumor, 

papillary renal carcinoma, polycystic kidney disease, renal cysts, and pHPT (132, 133, 136, 

582). Sporadic parathyroid carcinomas are very common in the HPT-JT patients (256).

FIHPT is another rare autosomal dominant disorder associated with mutations in CaSR, 

MEN1, and HRPT2 genes. The disease is characterized by uni- or multiglandular lesions of 

parathyroid glands, treated by simple surgical removal of adenomas (285, 449, 626, 672).

Secondary hyperparathyroidism is quite common and is caused by decreased levels of 

vitamin D, hypocalcemia, or in chronic renal disease (233). Patients may present with low 

bone density, osteoporosis, or fragility fractures. Hypocalcemia of any cause can result 

in increased PTH secretion. Common clinical situations include intestinal malabsorption 

or poor diet, which limit calcium intake; pancreatitis or rhabdomyolysis, which sequester 

calcium; or vitamin D deficiency due to poor diet, lack of sun exposure, nephrotic syndrome, 

or liver failure. In contrast to pHPT, correction of the underlying disorder will normalize 

PTH levels. Individuals with secondary hyperparathyroidism more commonly have diffusely 

hyperplastic glands than those with sporadic pHPT, who more likely will have an adenoma. 

Secondary hyperparathyroidism complicates the clinical course of nearly all patients with 

chronic kidney disease, although it is generally not manifest until late in the course. 

The etiology of secondary hyperparathyroidism associated with chronic kidney disease is 

complex (210, 275). Early in the development of chronic kidney disease, levels of FGF23 

begin to rise, a phenomenon attributed at least in part to the loss of renal expression of 

klotho and to a diminished ability of the kidney to excrete phosphorus. The rise in FGF23 

is mirrored by a decrease in 1,25-dihydroxyvitamin D, resulting in decreased intestinal 

calcium absorption and hypocalcemia. Clinically, this hypocalcemia may be subtle, 

asymptomatic, and not recognized. As kidney failure progresses, frank hyperphosphatemia 

becomes more prominent. The combination of hypocalcemia, decreased active vitamin 

D, and hyperphosphatemia results in progressive secondary hyperparathyroidism, which 

is not easily reversible. These individuals may exhibit parathyroid gland hyperplasia 

or multiple adenomas composed of monoclonal or polyclonal clusters of parathyroid 

cells. The secondary hyperparathyroidism of chronic kidney disease is implicated in a 

variety of complications of kidney disease including accelerated vascular disease, vascular 

calcification, and fractures.
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Hypoparathyroidism—Patients with hypoparathyroidism present with severe 

hypocalcemia, hyperphosphatemia, tetany, hypomagnesemia, and lower levels of vitamin 

D. Basal ganglia calcifications are another very common feature of this syndrome. The most 

common cause of hypoparathyroidism is damage or removal of parathyroid glands during 

neck surgery, especially complicated thyroid surgery. However, hypoparathyroidism may 

occur as a congenital disorder or as an autoimmune condition, in isolation or in conjunction 

with other organ failure. The reader is referred to several recent excellent clinical reviews 

of this rare condition (73, 89, 590). A number of parathyroid-specific autoantibodies have 

been identified and implicated in the development of hypoparathyroidism in the autoimmune 

polyendocrinopathy syndrome type I, including antibodies directed against the calcium 

sensing receptor, tryptophan hydroxylase, interferon omega, and the NACHT leucine 

rich repeat protein 5 (NALP5) to name a few. However, the autoantibodies responsible 

for isolated autoimmune hypoparathyroidism and for other forms of autoimmune 

polyendocrinopathy syndromes are still in question. Standard treatment for symptomatic 

patients has been high-dose active vitamin D and calcium, but recently, clinical trials of 

recombinant parathyroid hormone have been initiated (171). Another rare syndrome is 

pseudohypoparathyroidism where there is resistance to PTH hormone action, either globally 

or confined to the proximal tubule of the kidney. This condition is caused by mutations 

in the gene for the Gsα subunit, resulting in abnormal Gsα function or in abnormal Gsα 
transcription (448, 629).

Human chondrodysplasias—Two devastating forms of chondrodysplasia, Blomstrand’s 

lethal chondrodysplasia (BLC) and Jansen’s metaphyseal chondrodysplasia (JMC), resulting 

from mutations in PTH1R gene have been described (567).

BLC was first described by Blomstrand et al in 1985 (99) and is prenatally lethal due 

to premature bone mineralization, ossification, shortened limbs, and abnormal tooth and 

mammary gland development (567, 700). Three different inactivating PTH1R mutations 

have been identified in patients with BLC, which result in failure of PTH to bind to the 

receptor, diminished PTH1R expression, or impaired signal transduction [reviewed in (567)].

JMC is a rare autosomal dominant disorder associated with severe abnormalities of 

the growth plate. Clinically, the patients have short stature, disproportionate limbs, 

and micrognathia. Patients have severe asymptomatic hypercalcemia, hypophosphatemia, 

increased phosphate and cAMP excretion in urine, and elevated levels of vitamin D with 

normal or undetectable PTH. JMC is caused by gain of activity single point mutations in 

PTH1R including H223R, T410P, and I458R that result in PTH-independent activation of 

cAMP/PKA pathway [reviewed in (567)].

Enchondromatosis is caused due to common solitary or multiple benign tumors of bone. 

Recently, missense mutation (R150C) in PTH1R has been identified in two patients with 

enchondromatosis. The mutation results in a constitutively active receptor leading to 

increased cAMP levels. This mutation is less severe than the mutations observed in JMC 

[reviewed in (567)].
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Conclusions

PTH is a hormone critical for many cell processes, primarily focused on mineral 

metabolism. This tightly regulated hormone is critical for regulation of calcium and 

phosphate homeostasis as well as bone metabolism. Dysfunction in the regulation results 

in dramatic clinical pictures characterized by poor bone mineralization and increased soft 

tissue mineralization. These abnormalities in turn lead to cardiovascular disease and kidney 

failure. Key gaps in our understanding of PTH include the role of intracellular signaling, 

the interaction of PTH with other hormones involved in mineral metabolism, and the 

mechanisms by which PTH can influence cardiovascular health.

Vitamin D

Introduction

Vitamin D is a steroid hormone, synthesized through conversion of metabolites supplied by 

skin or intestinal absorption and involved in multiple critical processes for living organisms 

(Fig. 5). Functioning as a circulating hormone produced by the kidney, active vitamin D’s 

most prominent role is as a critical regulator of bone mineralization. Vitamin D deficiency 

results in severe metabolic bone disease both in children and adults. Osteomalacia, a defect 

in bone mineralization detected by bone biopsy, occurs in both children and adults whereas 

rickets occurs only in children. Increasingly, vitamin D is recognized as a mediator of 

multiple other processes in the body including immune function, the renin-angiotensin axis, 

insulin metabolism, and cell proliferation, to name a few.

History of discovery

Vitamin D was discovered early in the twentieth century but the fact that there was an active 

substance in milk apart from the carbohydrate, fat, and protein content that was critical for 

life was reported first in 1880 by N. Lunin, a Russian scientist who noted that newborn mice 

fed a diet composed of casein, carbohydrate, fat, and salts died while those fed milk lived 

(440). In 1922, McCollum reported that cod liver oil, which had been used for a century 

to treat rickets, contained a fat soluble substance that prevented rickets in rats and named 

it vitamin D (440). Ensuing work by a number of investigators established the existence of 

a compound similar but not identical to cholesterol which could be activated by irradiation 

of skin, liver, and multiple food substances which similarly had antirachitic properties. 

The compound in food was identified as ergosterol by Windaus and Hess in 1931 and the 

compound in animal tissue was identified as 7-dehydrocholesterol by Windaus and Bocke in 

1937 (697). The full biosynthetic pathway was finally delineated by Holick et al. (189, 309) 

in 1980.

Structure: Biochemical properties

The vitamin D family compounds are secosteroids, exhibiting a tetracyclic structure with 

a cleaved ring (153, 307, 309, 311). They differ from conventional steroids in that the B 

ring is open, lacking a sixth carbon atom. Vitamin D2 or ergocalciferol is synthesized from 

ergosterol (311, 325), a naturally occurring substance in yeast and plants while vitamin D3 

or cholecalciferol is synthesized from 7-dehydrocholesterol, a cholesterol precursor (153, 

Khundmiri et al. Page 18

Compr Physiol. Author manuscript; available in PMC 2024 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



232, 258, 309). Throughout the metabolic pathway of vitamin D, multiple compounds 

can be generated, most of which are thought to be inert or which have not been studied 

(102, 153, 232, 265, 307, 308, 310, 311). Ergocalciferol, cholecalciferol, 25-, and 1,25 

vitamin D are fat soluble. The terminal step in vitamin D degradation is calcitroic acid (1α-

hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D), which is water soluble and excreted 

primarily in the urine (537).

Vitamin D synthesis, metabolism, and regulation

Vitamin D metabolism—Vitamin D is a family of steroids originating from ultraviolet 

light conversion of precursor compounds in the skin (5, 309) or through ingestion of 

precursor substances in food. In skin, ultraviolet light effects a conformational change 

in the steroid 7-dehydrocholesterol to produce previtamin D which then is converted to 

cholecalciferol (vitamin D), a process that requires up to three days (309). The origin 

of 7-dehydrocholesterol in the skin has been debated, with some arguing for an intestine 

derived origin; however, more recent studies suggest that 7-dehydrocholesterol is formed 

de novo by numerous skin cell types (258, 599). Factors regulating this initial step include 

age, skin pigmentation, degree and duration of skin exposure, and intensity of sunrays (104, 

158, 306, 309). Aging and darker skin pigment will limit this process as does, predictably, 

lesser surface area of skin exposure, lesser time of skin exposure, higher latitude, and the 

angle of the sun during winter season. A recent study suggested, however, that the degree 

of conversion correlated more with baseline 25-hydroxy vitamin D25-hydroxy vitamin 

D levels and total cholesterol levels than with degree of pigmentation (104, 266). The 

production of cholecalciferol by sun exposure is self-limited as excessive sun results in 

degradation of previtamin D and vitamin D (574). In addition, sunlight also converts 7 

dehydrocholesterol to some inactive metabolites such as tachysterol and lumisterol (190, 

266, 306). Cholecalciferol diffuses into the skin capillaries, and circulates as either the 

free compound or bound to vitamin D binding protein (DBP) (153, 156, 190, 311, 314). 

Cholecalciferol has no documented direct activity and a relatively short half-life (12-24 

h). The free compound enters cells relatively easily and the degree of binding to DBP 

largely determines the rate of uptake by adipose tissue, muscle, or liver. Cholecalciferol 

can also be obtained through ingestion of foods containing naturally occurring vitamin D 

such as egg yolks, fatty fish, and liver, or through foods fortified with vitamin D such as 

milk, breads, infant formula, and orange juice (95, 686). Absorption of cholecalciferol is 

dependent on bile acid-mediated formation of micelles. While some of the absorbed vitamin 

D is transported through the portal system to the liver, the majority of absorbed vitamin D 

is taken up through chylomicrons into the lymphatics (686). A significant amount of the 

absorbed vitamin D is taken up into fat tissue and muscle (314). How or whether vitamin 

D sequestered into these tissues is regulated is unknown. The propensity for adipose tissue 

absorption of vitamin D may explain the higher vitamin D requirement and/or the lower 

circulating vitamin D levels in obese individuals. Of note, high bolus ingestions of vitamin 

D are rapidly cleared by fat and muscle and not released subsequently into the circulation 

(311). Thus smaller daily doses of cholecalciferol (1000-2000 IU) are preferred to infrequent 

large doses for maintenance of stable daily serum concentrations of cholecalciferol (306, 

311).
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Cholecalciferol undergoes 25-hydroxylation to form 25-hydroxyvitamin D, a metabolite that 

also is considered inactive (27, 293, 724). Several tissues express 25-hydroxylase activity 

including kidney, intestine, and liver, but the majority of cholecalciferol hydroxylation 

appears to occur in the liver (77-81, 326, 491, 513). Many 25-hydroxylases capable 

of performing this function have been identified but most interest has focused on the 

mitochondrial enzyme CYP27A1 and the microsomal enzyme CYP2R1 (326). Liver exhibits 

a high expression of the mRNA for 25-hydroxylase, CYP27A1, but, interestingly, mutations 

in the gene encoding CYP27A1 do not result in significant abnormalities in vitamin D 

metabolism (315, 398). In contrast, mutations in cytochrome p450 2R1 or vitamin D 25-

hydroxylase (CYP2R1) have been reported in individuals with very low vitamin D levels, 

suggesting that this enzyme is essential for 25-hydroxylation (142). Moreover, CYP2R1 

but not CYP27A1 25-hydroxylates both vitamin D2 and vitamin D, while CYP27A1 

hydroxylates only D (325, 326). CYP2R1 has a high affinity for vitamin D and is quite 

specific for the 25 position on vitamin D but not other steroid compounds (615). Thus, 

CYP2R1 is currently the leading contender for the physiologically relevant CYP governing 

this aspect of vitamin D metabolism. A very recent study demonstrated that neither Cyp27a1 
nor Cyp2r1 is essential for 25-hydroxylation as mice lacking both enzymes, showed only 

a 50% reduction in 25-hydroxy-vitamin D and exhibited normal 1,25 vitamin D levels 

(724), suggesting considerable redundancy in this metabolic step. CYP27A1 is regulated 

by multiple hormones, particularly insulin, glucocorticoids, sex hormones and by 1,25 

dihydroxyvitamin D itself (27). Hormonal regulation of CYP2R1 has not been studied. 

The activity of the 25-hydroxylase enzymes is largely driven by substrate availability; 

thus this step in vitamin D metabolism is not considered a site of significant regulation. 

Despite the fact that 25-hydroxy vitamin D25-hydroxy vitamin D is not the active form 

of vitamin D, it is preferentially measured in clinical medicine to establish vitamin D 

status because of its long half-life of about 2 to 3 weeks (156, 159, 311). However, 

concerns about the reproducibility and reliability of the assays raise questions about using 

25-hydroxy vitamin D25-hydroxy vitamin D measurement to define vitamin D deficiency 

(207). 25-Hydroxyvitamin D circulates in three forms: 85% with DBP, 15% albumin-bound, 

and 0.03% free. The current assays measure total, not free 25-hydroxy vitamin D25-hydroxy 

vitamin D, and vitamin D-binding protein levels can vary considerably on an individual 

basis. Nonetheless, at this time, the standard of care is to measure 25-hydroxy vitamin 

D25-hydroxy vitamin D to evaluate vitamin D status. The presence of 25-hydroxylases 

capable of cholecalciferol hydroxylation in other tissues has only recently been recognized 

and potential roles for cholecalciferol in these tissues are currently under investigation (24, 

87, 98, 102, 103, 326).

The 25-hydroxy vitamin D25-hydroxy vitamin D-vitamin D-binding protein complex binds 

to the megalin receptor complex of proximal renal tubule cells and undergoes endocytosis. 

Once internalized, 25-hydroxy vitamin D25-hydroxy vitamin D is metabolized through 

one of two pathways: 1α hydroxylation by CYP27B1 to form the active metabolite 1,25-

dihydroxyvitamin D or 24-hydroxylation by CYP24A1 to form an inactive metabolite 

24,25-dihydroxyvitamin D (6, 11, 29, 98, 153, 337, 367, 492). The balance of the activities 

of these two enzymes is what determines the ultimate level of active vitamin D. Much 

of the regulation of these two enzymes is accomplished at the gene level. PTH, a major 
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stimulator of active vitamin D production, increases the level of CYP27B1 activity (12, 29, 

42, 228, 241). The effect on the level of CYP24A1 has been variably reported as slightly 

increased, insufficient to blunt the effect on Cyp27b1, or as decreased with the result being 

an increase in 1,25 vitamin D synthesis (725, 726). 1,25-dihydroxyvitamin D itself activates 

CYP24A1, limiting active vitamin D formation. FGF23, a major inhibitor of vitamin D 

formation, increases CYP24A1 activity, shunting 25-hydroxy vitamin D25-hydroxy vitamin 

D into the inactive metabolite pathway (290, 293, 427, 523, 526). In addition, FGF23 

inhibits CYP27B1. Other factors influencing vitamin D conversion include aging, metabolic 

acidosis, chronic kidney disease, and a variety of other hormones (28, 30, 31, 153, 275, 385, 

514-519, 635-637). Because of its short half-life of hours, 1,25 dihydroxyvitamin D is not 

considered a useful indicator of vitamin D status (88, 153, 718).

Inactivation of active vitamin D begins with 24-hydroxylation of 1,25 dihydroxyvitamin D, 

followed by oxidation at carbon 24 and sequential modification of the steroid culminating 

in the production of calcitroic acid (153, 326, 537). A carbon 23 oxidation pathway has 

also been described but its significance is unclear. Urinary excretion of the water-soluble 

calcitroic acid is the major mechanism for vitamin D disposal though a small amount is 

excreted through the gastrointestinal tract.

The other major source of vitamin D is the plant sterol, ergocalciferol or vitamin D2, which 

is present in the diet. Intestinal absorption and disposition are very similar to what is seen 

with vitamin D, although as discussed below, its interaction with DBP is weaker, a property 

that some investigators believe plays a significant role in their differential clinical efficacies 

(257).

Vitamin D-binding protein—DBP is central to the metabolism of vitamin D. Originally 

identified as a member of the albumin family and named GC globulin (group-specific 

component of serum) in 1959, this abundant serum protein was relabeled DBP after the 

discovery of this specific property in 1976 by Daiger and colleagues (154, 156, 178, 311, 

461). Over 100 isoforms of the protein have been isolated by immunoelectrophoresis, 

divided into three major isoforms—GC1F, GC1S, and GC2, classified by amino acids at 

positions 416 and 420—and multiple minor isoforms, grouped around the major isoforms (9, 

69, 154, 156, 575). These changes in amino acid sequence result in measurable differences 

in the glycosylation patterns, especially between the GC1 and GC2 isoforms. Genetic 

analysis has uncovered an even greater degree of variability with over 1000 variants 

identified in both major and minor isoforms. Specific patterns of isoform expression are 

associated with specific ethnicities, allowing the study of population migrations and genetics 

(69, 134, 175, 176, 575). Many of the genetic variations translate into differences in DBP 

binding to both 25 and 1,25 vitamin D. Interestingly, GC2 isoforms are very uncommon 

in the equatorial African populations, while GC1F is the most common. GC1S is seen 

most frequently in individuals of European ancestry while Asians exhibit both GC1S and 

GC1F. Binding efficiencies to vitamin D are GC1F>GC1S>GC2, correlating with skin 

pigmentation and leading to the hypothesis that the different isoforms arose in concert with 

changes in skin color to facilitate sun-stimulated vitamin D formation and metabolism (461, 

470).
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DBP is composed of three domains, one which expresses 10 α-helices forming a vitamin 

D binding cleft, a second which expresses nine α helices and one coil, while the third 

expresses four α helices (154, 156, 262). Circulating DBP vastly exceeds its vitamin D 

binding capacity and the protein also binds free actin, which limits actin polymerization and 

endothelial damage. DBP can also be modified to form DBP-MAF, macrophage-activating 

factor, which stimulates macrophage and osteoclast activation, thus serving roles in immune 

function and bone metabolism independent of vitamin D.

The major site of DBP production is the liver, lesser production measured in kidney, testis, 

and adipose tissue. The human gene exhibits 13 exons and 12 introns and its promoter 

expresses three binding sites for hepatocyte nuclear factor.

As indicated previously, DBP binds both 25 and 1,25 vitamin D as well as the parent 

compound, cholecalciferol, in the circulation, transporting the substrates to their intended 

targets. However, whether DBP is required for vitamin D activity remains an unanswered 

question. The mouse lacking DBP does not exhibit any discernible defects in bone and 

mineral metabolism; however, on a vitamin D deficient diet develops metabolic bone defects 

at an earlier time point than the normal controls (63, 563, 718). DBP appears to play 

a role in limiting active vitamin D formation, as injection of radiolabeled cholecalciferol 

into the DBP null mice resulted in a more rapid and enhanced liver uptake. Also, the 

addition of DBP to cell cultures of monocytes or culture of monocytes in serum derived 

from DBP-replete mice (when compared to monocytes cultured in serum derived from 

DBP-deficient mice) inhibited vitamin D-stimulated cathelicidin induction, the high affinity 

isoforms showing a greater effect than the lower affinity isoforms. These findings suggested 

that DBP was blunting the uptake of vitamin D into those cells, resulting in diminished 

responses (155). DBP may also serve as a storage mechanism for vitamin D. Vitamin D 

bound to DBP is endocytosed into renal proximal tubule cells through a megalin-cubulin-

dependent process, allowing the body to recapture filtered 25-hydroxy vitamin D (336, 403, 

473, 564). Interestingly, however, DBP null mice exhibit a less extreme phenotype than 

lrp2 (megalin)-deficient animals (336, 387, 403, 473, 484, 564), suggesting that vitamin 

D can gain entry into these cells through megalin-independent mechanisms. Likewise, 

DBP can enter cells that do not express megalin, highlighting the possibility of alternative 

mechanisms for vitamin D entry into cells.

Gene and its regulation

The gene encoding 25-hydroxy vitamin D 1α hydroxylase (CYP27B1) in humans is located 

on chromosome 12, 12q14.1, flanked by the genes for METTL21B, methyltransferase 21b; 

METTL1 methyltransferase like 1; MARCH9, a member of the E3 ubiquitin ligase family; 

CKD4, cyclin D kinase isoform 4; and mir6759, a microRNA. The gene contains nine 

exons, including a very large exon 9. The promoter region expresses sequences consistent 

with three cAMP response elements but no sequence corresponding to a vitamin D response 

element (108). Consistent with this structure, PTH and direct activators of cAMP such as 

forskolin increase transcription of the gene but vitamin D has no effect. These findings 

suggest that PTH stimulates vitamin D production through increased transcription of the 

CYP27B1 but the well described self-inhibition by 1,25 vitamin D is not mediated through 
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an effect on gene transcription. In contrast, Murayama and colleagues (466) were able to 

identify a sequence that could serve as a negative regulatory site for 1,25 vitamin D. A 

recent study found that 1,25 vitamin D could bind to VDR in the proximal tubule brush 

border and translocate to the nucleus, accompanied by a decrease in CYP27B1 activity and 

an increase in CYP24A1 activity and suggesting that VDR functions as a sensor for active 

vitamin D status. Using transfected promoter constructs, Armbrecht et al. (29) reproduced 

the stimulatory effect of PTH and forskolin on CYP27B1 promoter activity, concluding that 

these effects were sufficient to explain the stimulation of 25-hydroxy vitamin D25-hydroxy 

vitamin D activation by PTH. They also showed that PTH and 1,25 vitamin D had a 

stimulatory effect on CYP24 (25-hydroxy vitamin D 24 hydroxylase) but had an interactive 

effect. The magnitude of the increase in CYP24 activity was not felt to be sufficient to 

explain the effect of these hormones on CYP24 mRNA levels. Although several cell types 

are capable of converting 25-hydroxy to 1,25-dihydroxyvitamin D, only kidney produces 

sufficient quantity to contribute to circulating levels under typical physiologic conditions. 

Yoshida et al. (708) have identified an enhancer in the promoter region of the gene specific 

to proximal tubule which may explain this observation.

Several other factors have been identified that regulate cyp24 and cyp27b1 expression. 

In mice, absence of the Npt2a (Slc34a1) results in increased cyp27b1 mRNA expression 

and decreased cyp24 mRNA expression, predictably leading to marked increases in active 

circulating 1,25 vitamin D (56). These animals have hypercalcemia, hypercalciuria, and 

nephrocalcinosis as well as hypophosphatemia. Whether this is a direct effect, a result of 

suppression of FGF23 by hypophosphatemia, or both, is not known. Absence of the other 

major type II sodium phosphate cotransport Npt2c (Slc34a3) has minimal effect on the 

mRNA expression of cyp27b1 but does result in significant suppression of cyp24 mRNA 

(331, 352, 577); thus, 1,25 vitamin D levels are increased as well. However, these animals 

present a phenotype that differs little from wild-type mice. Interestingly, kidney-specific 

inducible Npt2c deletion has no effect on phosphate, calcium, or vitamin D homeostasis, 

suggesting that the phenotype seen in the whole organism constitutive deletion model 

results from nonrenal phosphate transport mechanisms (469). The differential effects of 

the sodium phosphate cotransporters on vitamin D metabolism in humans have not been 

investigated at a molecular level. Unlike mice, humans lacking functional Npt2c exhibit 

a dramatic clinical phenotype characterized by rickets, hypophosphatemia, hypercalcemia, 

hypercalciuria, and high vitamin D levels while mutations in Npt2a present a rather mild 

phenotype of a tendency toward osteopenia and kidney stones (67, 166, 181, 317, 324, 379, 

402, 530, 650, 713). The basis for these differences and their implications for regulation of 

vitamin D metabolism have not been determined. Dietary phosphate deficiency stimulates 

renal cyp27b1 activity through a growth hormone-dependent mechanism; the sensor for this 

response remains unknown but may be one of the proximal tubular phosphate transporters 

(708).

Multiple environmental factors determine the level of vitamin D, including season of the 

year, vitamin D intake, adiposity, and hormonal status, especially for women (159, 306, 399, 

444, 559, 673, 688). Stimulation of renal cyp27B1 by estrogens (433, 510, 511, 536, 621) 

and the increase in circulating 1,25 vitamin D in pregnancy (536) were demonstrated over 

30 years ago. Subsequent studies suggest that the increase in circulating vitamin D levels 
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during pregnancy are of maternal kidney origin as an anephric pregnant woman failed to 

show the predicted increase (640). However, as this report predated the discovery of FGF23 

which is capable of inhibiting extra-renal as well as renal conversion of 25 to 1,25 vitamin 

D, an exclusive role of the kidney in providing the increase in vitamin D during pregnancy 

cannot be claimed (37). Exogenous estrogens increase both 25 and 24,25 vitamin D in 

post-menopausal women, associated with an increase in serum calcium and a decrease in 

serum phosphorus (44). Cyp27b1 activity is increased by estrogens in extra-renal tissues as 

well including vascular smooth muscle cells (608); however, it is unlikely that the amount of 

1,25 vitamin D produced would alter serum levels.

The level of vitamin D is also subject to significant genetic regulation (51, 482). Twin 

studies suggest a 43% to 70% heritability for 25-hydroxy vitamin D and a 65% heritability 

for the active vitamin D (205, 206, 692, 709). These studies have been supported by family 

studies as well. The few studies of African Americans and Hispanics suggest that heritability 

may also be influenced by ethnicity, as the estimates of heritability for both forms of vitamin 

D in these populations are significantly lower. These investigations, however, involve at 

most approximately 1000 individuals and frequently have been derived from studies of 

human illnesses such as asthma or multiple sclerosis. Thus, the applicability to the general 

population could be questioned. Linkage analysis, genome wide association studies, and 

candidate gene approaches to identify genes important in determining vitamin D levels 

have uncovered a number of potential candidates including CYP27B1; CYP2R1; CYP24A1; 

VDR; and DHCR7, the gene encoding the reductase that catalyzes the 7-dehydrocholesterol 

to cholesterol reaction in the skin; and GC, the gene encoding the DBP (9, 69, 114, 182, 

665, 692). CYP27B1 is a member of the cytochrome P450 family most strongly associated 

with vitamin D levels, but multiple studies support potential contributions from each of the 

other candidate genes. The reasons for the discrepancies are not known but likely result from 

differences in study population, small sample sizes, and differences in analytic methods. 

The reader is referred to a recent review of this topic by Dastani et al. for a more in depth 

discussion (182).

Receptors

The vitamin D receptor, a member of the steroid hormone receptor superfamily, is expressed 

in a broad variety of tissues and exhibits significant fluidity in expression dependent on 

age, underlying pathophysiologic conditions, and even vitamin D status (83, 84, 98, 106, 

151, 191). One interesting aspect of VDR is the radical change in expression pattern during 

development (259, 670). In the mature animal, the receptor is most abundant in the small 

and large intestine, distal tubule of the kidney nephron, and the parathyroid gland. Other 

tissues with significant expression include the pancreas, renal proximal tubule, bronchial 

cells, osteoblasts, thymus, pituitary gland, prostate, and mammary gland. Specifically, 

the receptor is minimal or not identified in liver, muscle, thyroid, adrenal gland, or 

nervous tissue, including the central nervous system. It is notable that tissue expression 

of 1αhydroxylase and the vitamin D receptor show significant overlap, setting the stage for 

autocrine function and feedback.
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Upon interaction with 1,25 vitamin D, the VDR heterodimerizes with the retinoid X receptor 

(RXR), the complex migrating to the nucleus where it interacts with the nuclear chromatin 

through VDRE, vitamin D response elements (83, 331) (Figs. 3C and 6). This step also 

involves two additional layers of regulation (4, 83). First, the transfer of the vitamin D 

complex to the nucleus is performed by proteins of the Hsc70 chaperone family. Second, the 

VDRE may be occupied by RNA-binding proteins that compete with the vitamin D complex 

for occupancy (428). Investigation into the regulation of these two steps is in its infancy. 

Interaction of the vitamin D receptor complex with the VDRE in some tissues requires the 

presence of the Williams Syndrome Transcription Factor (WTSF) (49, 238), functioning 

as one of the subunits of the ATP-dependent chromatin remodeling complex known as 

WINAC, the WTSF including nucleosome assembly complex. The essential requirement 

for this interaction has been demonstrated in vitro in knockdown experiments as well as in 

the skin fibroblasts of Williams Syndrome patients (49, 177, 338, 339, 354, 355). WINAC 

downregulates VDR-stimulated activation of 1αhydroxylase and activates 24-hydroxylase, 

thus serving to limit active vitamin D formation (49, 338, 339).

Classically, the VDR-RXR complex has been thought to interact with DNA at specific 

motifs designated VDRE (vitamin D response elements), thus influencing transcription of its 

target genes (163, 414, 486, 498). The classic motif is a triple repeat of the PuGG/TTCA 

sequence separated by three base pairs. In fact, however, the number of gene sites occupied 

by VDR-RXR has been estimated to be between 2000 and 8000, and many of these genes 

do not express classic VDRE (124, 125, 561, 581, 639, 641, 667, 687). VDR-RXR bound 

to active 1,25 vitamin D binds DNA sites that differ from the unbound VDR. Furthermore, 

the VDR is capable of interacting with other transcription factors to influence their effects. 

Thus, failure to identify a VDRE motif in the gene of a protein of interest does not exclude 

the possibility that the gene may be regulated by vitamin D.

There is also evidence that vitamin D may have signaling mechanisms that are nongenomic, 

specifically activation of protein kinase C and MAP kinases. These pathways have not 

been studied as intensively as the classic pathway described earlier, but likely contribute 

substantively to vitamin D actions [reviewed in (456)].

Functions

Classical actions: Mineral metabolism intestine—The major recognized functions 

of vitamin D revolve around the regulation of mineral metabolism (Fig. 5). The most 

straightforward and accepted effect of vitamin D is enhanced intestinal absorption of both 

calcium and phosphate through the stimulation of increased expression of the transporters 

TRPV6 and Npt2b, respectively (43, 48, 107, 138, 139). Activated vitamin D increases 

the expression of the calcium channel, TRPV6, in the apical membrane of small intestine, 

enhancing intestinal cell calcium entry. Predictably, VDREs have been identified on the 

promoter region for the gene for TRPV6 that play a role in vitamin D stimulation of TRPV6 

expression (43, 331, 446, 447). Vitamin D is also important for calbindin D expression 

but whether this occurs through a classic VDRE has not been established. Vitamin D 

regulation of the plasma membrane calcium ATPase, the pump responsible for the egress 

of calcium from the intestinal cell into the blood compartment, has been demonstrated in 

Khundmiri et al. Page 25

Compr Physiol. Author manuscript; available in PMC 2024 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rats. Lack of significant homology in the VDREs of different species has cast doubt on 

the applicability of findings in animal models to humans. A recent study using culture 

explants from endoscopic samples of human duodenum confirmed enhanced expression of 

TRPV6 mRNA after 6h treatment with either 25 or 1,25 vitamin D (43). Interestingly, 

treatment with 25-hydroxyvitamin D resulted in increased protein expression of CYP27B1, 

identified predominantly in the crypt cells, and the increase in TRPV6 correlated strongly 

with the increase in CYP27B1 expression. These remarkable findings suggest that vitamin 

D regulation of intestinal calcium absorption may be a function of both autocrine and 

endocrine actions of vitamin D. How the two systems interact and why and/or when 

one system or the other will predominate are important questions to be addressed. 1,25-

Dihydroxycholecalciferol also significantly increased the mRNA expression of PMCA1 and 

CYP24 but not calbindin-D9k.

Vitamin D also enhances intestinal phosphate absorption, though the mechanisms and 

proteins involved are unknown. Studies have shown that 1,25-dihydroxycholecalciferol 

does not increase the expression of Npt2b, the type IIb sodium dependent phosphate 

cotransporter, and that the increase in phosphate absorption is sodium-independent (352). 

A recent study did identify an active vitamin D analog, ED-71, that strongly increased Npt2b 

expression at the mRNA and protein level through a VDR-dependent mechanism, but had no 

effect on either Pit-1 or Pit-2, two other sodium-dependent phosphate transporters identified 

in intestinal epithelium (113). Interestingly, ED-71 also exhibited a profound stimulatory 

effect on CYP24, increasing levels ten thousand fold over active vitamin D. The authors 

also noted that serum concentrations of ED-71 level remained constant over greater than 24 

h, whereas serum concentrations of active vitamin D levels promptly decreased to baseline 

within 6 h and suggested that the dramatic differences in pharmacokinetics accounted for the 

differences in phosphate stimulating potency. This study underscores the role of the rapid 

counterregulatory processes stimulated by active vitamin D in limiting its actions.

Kidney—1,25-Dihydroxyvitamin D enhances renal calcium reabsorption through 

stimulation of the expression of virtually all of the proteins involved in calcium transport 

in the distal nephron (42, 98). Mice lacking expression of CYP27B1 show decreased renal 

epithelial mRNA and protein expression of TRPV5, calbindin-D28k, calbindin-D9k, and 

NCX1, the basolateral Na-Ca exchanger responsible for transfer of reabsorbed calcium from 

the cell to the blood space (194, 301-305, 481). Treatment with calcitriol corrects all of these 

deficiencies while a high dietary calcium corrects all except for calbindin-D9k. Interestingly, 

while PTH has a similar effect on the same proteins, it may not be through a vitamin D-

dependent mechanism. The coordinated increase in the expression of the calcium transport 

proteins is dependent on the increase in TRPV5 expression, TRPV5 deficient animals fail to 

respond to vitamin D with an increase in the additional calcium transport proteins. TRPV5 

deficiency results in hypercalciuria, hypocalcemia, and compensatory elevations in 1,25 

vitamin D. Thus, stimulation of TRPV5 expression is the key effect of vitamin D on renal 

calcium absorption (698).

The effect of vitamin D on renal phosphate transport remains very poorly understood (352). 

Mice-deficient in the VDR fail to express Npt2a and Npt2c but expression can be stimulated 

by feeding a high calcium diet suggesting that the expression of these two transporters is 
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not dependent on vitamin D (333). The genes for both Npt2a and Npt2c exhibit potential 

VDRE but an effect of vitamin D on expression of the two proteins has not been specifically 

demonstrated.

Bone—The effect of vitamin D on bone has been extensively studied but remains somewhat 

enigmatic. Mice lacking VDR develop rickets; however, a diet providing high calcium 

and phosphate can rescue the bone phenotype, suggesting that the major contribution 

of vitamin D to bone health is provision of adequate mineral through stimulation of 

intestinal absorption (563). However, vitamin D clearly has direct effects on bone cells. 

Osteoblasts express VDR, which upon stimulation by vitamin D leads to the production 

of receptor activator of NFκB ligand (RANKL) which interacts with RANK on osteoclast 

precursors, resulting in osteoclast maturation (52, 612, 652). Vitamin D also inhibits the 

expression of the competing decoy receptor for RANKL, osteoprotegerin, contributing 

to osteoclast maturation. Another Vitamin D-responsive gene in osteoblasts is LRP5, the 

Wnt coreceptor that stimulates bone cell proliferation (52, 234, 331, 509). Vitamin D 

stimulation of osteoblasts and osteoblast precursors enhances the expression of osteoblast 

specific transcription factors such as RUNX2 and subsequently proteins such as osteocalcin, 

osteopontin, and alkaline phosphatase. The simultaneous activation of both osteoblasts 

and osteoclasts would result in an increase in bone turnover but whether the result is 

predominantly bone formation, bone resorption, or a neutral effect is somewhat unclear. 

The anti-rachitic effect, although thought to be primarily mediated by the effect of vitamin 

D on mineral homeostasis, may also result from direct effects on bone. Transgenic 

mice overexpressing VDR in osteoblasts show an increase in bone formation (376, 452). 

CYP27B1/VDR double knockout mice fed a rescue diet exhibit fewer osteoblasts, a lower 

mineralization rate, and decreased bone volume, when compared to control animals (500, 

501). These studies are consistent with the hypothesis that the major effect of vitamin D on 

bone is formative and are consistent with much older studies showing that neither vitamin D 

deficiency nor vitamin D excess altered bone resorption rate as determined by increases in 

inner marrow diameter in growing chicks prelabeled with injections of radiolabeled calcium, 

tetracycline, and proline (358). In this study, chicks given excess vitamin D showed a 

decrease in bone radiolabeled calcium while the vitamin D-deficient animals showed no 

change in bone label. Under both conditions, bone mass decreased. The decrease in the bone 

mineral mass seen in vitamin D deficiency was attributed to lack of intestinal absorption of 

mineral whereas the decrease seen in vitamin D excess was attributed to failure of calcium 

reutilization. While these observations suggest a role for vitamin D on the formative arm 

of bone metabolism, the fact that vitamin D stimulates RANKL, leading to activation of 

osteoclasts would argue for a physiologic role in bone resorption as well. However, a recent 

study suggests vitamin D deficiency causes PTH elevation, which leads to cortical thinning 

and in some cases cause marrow fibrosis (13). An important unanswered question regarding 

vitamin D effect on bone is whether its effects change with organism age. In human studies, 

vitamin D administration prevents rickets in children and treats osteomalacia in adults (269, 

306); however, the effect of vitamin D in the treatment of osteoporosis—whether vitamin 

D can prevent or reverse the bone loss associated with aging—remains a controversial topic 

(36, 542, 560).
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Nonclassical actions

Kidney: A variety of other effects of vitamin D on kidney function apart from regulation 

of mineral metabolism has been described. VDR polymorphisms have been associated with 

differences in proximal tubule citrate handling, specifically, the presence of the bb genotype 

of BsmI and the TT genotype of TaqI are associated with hypocitraturia in stone formers 

when compared to nonstone formers or normocitraturic stone formers(460, 642, 723). Great 

interest has emerged from studies showing that vitamin D can have an antiproteinuric 

effect (186, 404, 609, 706), even in patients already on inhibitors of the renin angiotensin 

aldosterone system. Glomerular epithelial cells, podocytes, expresses VDR and activation of 

VDR increases podocyte synthesis and expression of nephrin, a key slit-membrane protein 

important for the integrity of the glomerular filtration apparatus (396, 609, 668). In diabetic 

animals or in podocytes exposed to high glucose, stimulation or overexpression of the VDR 

blocked podocyte apoptosis through inhibition of ERK1/2 and caspase 3 activation and 

blocked activation of the renin angiotensin axis (669).

Vasculature: Several studies support a role for activated vitamin D in maintenance 

of vascular health (14, 25, 253). VDR deficient mice fed a rescue diet to maintain 

mineral homeostasis show increased pulse pressure, stiffness of their blood vessels, and 

a higher heart weight/body weight ratio. Interestingly, blood pressure was not affected. 

The investigators demonstrated deficient nitric oxide synthesis in endothelial cells (480). 

Vitamin D blocks vascular plaque formation by inhibiting the ability of macrophages to take 

up cholesterol (204, 682). Interestingly, both vitamin D deficiency and excess reportedly 

accelerate atherosclerotic plaque formation (727). VDR deficiency enhances macrophage 

production of renin and angiotensin, important mediators of atherosclerosis (25, 144, 221, 

263, 395, 594). Vitamin D deficiency has also been implicated in the development of 

preeclampsia (401, 408, 547).

Skin: In addition to being a major contributor to circulating vitamin D, the skin is 

another site of significant autocrine vitamin D production, active 1,25 vitamin D and 

a variety of unique vitamin D metabolites, some of which have demonstrable activities 

(599-602, 638). Epidermal CYP27B1 is required during differentiation of keratinocytes and 

is associated with the expression of important differentiation markers such as involucrin 

(84-86). However, the expression of CYP27B1, the VDR, and other components of vitamin 

D metabolism decrease as differentiation is completed. Interestingly, a variety of skin 

cancers show increased expression of the vitamin D metabolic pathway and in vitro 

studies suggest that active vitamin D may be a useful adjunctive therapy by virtue of its 

prodifferentiation, antiproliferative effects (320, 391-393, 453, 538-541, 600, 622). Vitamin 

D signaling may also play a role in the development and maintenance of the barrier 

function of the epithelium, through maintenance of the production of lamellar bodies and 

antimicrobial peptides (15, 502, 550, 566).

VDR null mice and humans with VDR mutations suffer from alopecia (191, 218, 421). 

The mechanism is thought to be the loss of dermal stem cells responsible for hair follicle 

recycling. However, vitamin D deficiency is not accompanied by alopecia. This apparent 

contradiction suggests alternative roles for the VDR and in fact the mechanism for this 
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phenomenon appears to be a vitamin D independent interaction of VDR with the cWnt and 

hedgehog target genes (157, 400, 405, 406, 627).

Pancreas: Vitamin D has multiple effects on the pancreatic beta cells that express VDR 

including protection against cytokine damage (254, 276, 548, 694-696), suppression of the 

islet renin-angiotensin system (143), and regulation of genes encoding proteins that regulate 

including neuropeptide production, membrane trafficking, tight junction formation, and ion 

channels (147, 695). Vitamin D increases beta cell insulin production (717). Vitamin D may 

also indirectly protect islet cell function through provision of adequate calcium, as calcium 

deficiency has been demonstrated in some animal models to accelerate the development of 

diabetes (197, 529, 535, 610).

Immune system: Vitamin D has well-established immunomodulatory capabilities (40, 119, 

120, 287, 296, 297). Macrophages are capable of producing significant quantities of active 

vitamin D from 25-hydroxy vitamin D, described by Adams et al in 1983 in studies 

utilizing alveolar macrophages from patients with sarcoidosis (7, 8). This phenomenon 

explains the occurrence of hypercalcemia in patients with sarcoidosis; however, the more 

physiologically relevant consequence of vitamin D production by macrophages is the 

significant contribution to the antibacterial activity against certain organisms as first reported 

by Rook in 1986 (553). Vitamin D enhances the production of cathelicidin, which in turn is 

responsible for the elaboration of antimicrobial peptides (261, 502, 566, 666, 674). VDR is 

present on activated but not quiescent lymphocytes and vitamin D exerts an antiproliferative 

effect on these cells. In addition, vitamin D blunts immunoglobulin and cytokine production 

by T cells. It is these immunomodulatory properties of vitamin D that have been invoked 

to explain the effects of vitamin D and/or vitamin D status on autoimmune disorders (2, 

120, 224, 225, 397, 493, 494, 551, 605, 619, 705), progression of renal disease (263, 404), 

response to infections (268, 349, 711), obesity (661), and some cancers (55, 84, 240, 634).

Interaction with other hormones

Effect on other hormones involved in mineral metabolism—Parathyroid gland 

cells express VDR (52, 151, 180, 318). Stimulation of VDR in this tissue decreases PTH 

synthesis and secretion, inhibits PTH cell proliferation, and an increases the expression 

of the calcium sensing receptor. These diverse functions all contribute to a decrease in 

circulating PTH, thus preventing overcorrection of low calcium levels, the major stimulus 

to PTH secretion. The PTH gene expresses a VDRE which, when occupied by the VDR-

RXR complex, exerts an inhibitory effect on PTH gene transcription, at least in part 

by displacing another regulatory factor, nuclear factor-Y. Notably, parathyroid gland cells 

express CYP27B1, thus are capable of generating active vitamin D from circulating vitamin 

D (82, 151, 241). How circulating and locally produced vitamin D interact to regulate PTH 

synthesis is not entirely clear; however, the secondary hyperparathyroidism seen with mild 

vitamin D deficiency may be explained by a deficiency in the autocrine production of active 

vitamin D (341). PTH, on the other hand, leads to enhanced renal production of 1,25 vitamin 

D through increasing Cyp27B1 expression and decreasing Cyp24 expression.
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Vitamin D stimulates production of FGF23 from bone (52, 331, 363), while it represses 

the production of PHEX (phosphate-regulating endopeptidase homology, X-linked), an 

enzyme linked to the degradation and inactivation of FGF23. As would be predicted from 

both of these actions, treatment with 1,25 vitamin D increases serum FGF23, leading 

to phosphaturia. Bone cells themselves express CYP27B1; thus, vitamin D regulation of 

FGF23 production likely results from both circulating and autocrine vitamin D(622, 623). 

Animals lacking expression of the VDR have suppressed FGF23 levels, even when serum 

phosphate is corrected by diet, suggesting that vitamin D-stimulated FGF23 is, in fact, 

mediated through VDR (712). Interestingly, chondrocyte expression of VDR appears to 

play a key role as chondrocyte-specific VDR deletion results in reduced osteoblast FGF23 

expression and enhanced renal 1,25 vitamin D production (438). FGF23 decreases 1,25 

vitamin D expression through increasing the renal expression of cyp24, leading to enhanced 

vitamin D inactivation, and decreased renal expression of cyp27b1, leading to decreased 

vitamin D production (41). Animals lacking expression of FGF23 have remarkably elevated 

vitamin D levels associated with elevated cyp27b1 activity (295, 587, 596, 714). FGF23 

inhibits vitamin D activation in nonrenal tissues including parathyroid gland (37, 153, 297, 

370, 485, 536, 612), monocytes, and placenta.

Effect on hormones not specifically involved in regulation of mineral 
metabolism—Vitamin D interacts with the renin-angiotensin-aldosterone system at many 

levels (10, 76, 122, 144). Animals lacking expression of VDR or CYP27B1 show increased 

renin activity associated with the development of cardiac hypertrophy and hypertension, 

which can be ameliorated by administration of angiotensin converting enzyme inhibitors. 

Some, but not all, human studies have demonstrated an inverse relationship between vitamin 

D levels and renin levels, suggesting a role for vitamin D deficiency in the development of 

at least some forms of hypertension through activation of the renin angiotensin system (229, 

230, 647). 1,25 Vitamin D suppresses ren-1c gene transcription in in vitro studies through 

interaction at a cAMP response element in the promoter region (365, 715).

Pathophysiology

Vitamin D deficiency—Vitamin D deficiency’s major clinical feature is the result of 

abnormal mineralization of osteoid in bone. In children, vitamin D deficiency presents as 

the clinical syndrome of rickets, characterized by decreased bone mineralization and faulty 

bone development as manifested by significant skeletal deformities including bowing of 

the legs, knock-knee deformity, flaring of the ends of the ribs (rachitic rosary), pigeon 

chest malformation, bossing of the skull, and kyphoscoliosis. Adults who develop vitamin 

D deficiency present a less dramatic clinical picture characterized predominantly by bone 

pain, low bone mineral density, and fractures. Frank hypocalcemia is infrequently seen, as 

these individuals will develop secondary hyperparathyroidism in response to the decrease in 

intestinal calcium absorption; however, hypophosphatemia due to the hyperparathyroidism 

can be seen. Lesser degrees of vitamin D deficiency, also sometimes termed vitamin D 

insufficiency, may be associated with no symptoms whatsoever, though decreased bone mass 

and secondary hyperparathyroidism of a mild degree are often seen.
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Vitamin D deficiency has been implicated in a host of disorders including autoimmune 

diseases such as asthma and multiple sclerosis; cancers such as breast, colon, skin, 

and prostate cancer; hypertension; diabetes mellitus; and infections such as tuberculosis 

(see aforementioned Immune system section). These associations have been demonstrated 

through epidemiologic studies and have been supported experimentally to some extent. 

For example, breast and colon cancer cells in some individuals and in some experimental 

conditions express high levels of VDR (55, 157, 193, 240, 375, 392, 506, 580). Treatment 

with vitamin D suppresses proliferation. The mechanisms for suppression of proliferation 

that have been described are variable and may be tissue specific. Keratinocytes derived from 

animals lacking VDR show a higher expression of several oncogenes and a lower expression 

of several tumor suppressor genes. Jiang and Bikle (322) have shown parallel changes in 

the expression of long noncoding RNAs for these genes, suggesting that vitamin D may 

play a critical role in regulating tumor formation through this novel genetic mechanism. 

Other studies have demonstrated interaction of vitamin D signaling pathways with the Wnt 

signaling pathway, MAPKinase signaling pathways, and hedgehog signaling (199, 200, 234, 

264, 451, 483, 492, 506, 509, 627, 628, 634). Vitamin D deficiency has been associated 

with the development of hypertension (272, 374, 378). Vitamin D-deficient animals show 

higher circulating angiotensin II levels and hypertension (394, 648). Vitamin D deficiency 

has also been associated with endothelial dysfunction, progression of kidney disease, and 

hyperparathyroidism, all of which may contribute toward the development of hypertension 

and cardiovascular disease (25, 76, 137, 263, 620). Despite a wealth of studies using either 

calcitriol or other vitamin D analogs, consistent definitive studies demonstrating that vitamin 

D therapy can either prevent or treat any of these chronic diseases are lacking (54, 94, 95, 

152, 186, 198, 288, 356, 549, 579). The role of vitamin D in extra-skeletal chronic disease 

pathogenesis is an area of intense interest and research.

Vitamin D deficiency may occur due to poor dietary vitamin D intake, malabsorption 

syndromes, or suboptimal skin conversion due to lack of sun exposure. Specific ethnic 

groups exhibit lower vitamin D levels, particularly those of African origin (499, 508, 575, 

611). Patients with nephrotic syndrome may become vitamin D deficient due to renal 

wasting of DBP (50). Certain medications such as antiepileptics cause enhanced vitamin D 

degradation, and therefore may result in clinical vitamin D deficiency (445, 689). Relative 

vitamin D deficiency can be seen in syndromes of elevated FGF23 such as X-linked or 

autosomal dominant hypophosphatemic rickets (220, 683). Vitamin D insufficiency can be 

seen in up to 70% of certain populations of individuals, such as the elderly, in particular 

those residing in nursing home facilities (518, 603, 636). True vitamin D deficiency occurs 

far less frequently.

Vitamin D excess—Excessive vitamin D levels and activity are manifested predominantly 

as hypercalcemia and hypercalciuria, with symptoms referable to these complications 

such as altered mental status, polyuria due to nephrogenic diabetes insipidus, nausea and 

constipation, kidney stones, and kidney failure (145, 662).

Vitamin D intoxication can occur with excessive ingestion of vitamin D supplements, 

uncommonly with over the counter cholecalciferol but relatively commonly with 

prescription active vitamin D supplements such as calcitriol. Granulomatous disorders may 
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also be accompanied by high vitamin D levels, which will present as hypercalcemia. The 

most common is sarcoidosis, a poorly understood autoimmune disorder with a myriad 

of clinical manifestations including lymphadenopathy, pulmonary nodules and fibrosis, 

skin lesions, arthritis, neuropathy, and interstitial kidney disease (649). The characteristic 

lesion of the disease is non-caseating granulomas. The source of the high vitamin D 

levels is the epithelioid cells of macrophage origin lining the granulomas. Treatment 

with glucocorticosteroids is highly effective in suppressing the vitamin D production 

and ameliorating the hypercalcemia. High vitamin D levels are seen considerably less 

frequently in other granulomatous diseases such as tuberculosis (6, 59, 297, 649, 716). 

Primary phosphate wasting syndromes such as hereditary hypophosphatemic rickets with 

hypercalciuria, caused by mutations in one of the sodium phosphate cotransporters 

responsible for renal phosphate reabsorption, is associated with high vitamin D levels likely 

due to suppressed FGF23 levels (1, 56, 67, 181, 324). Mutations in Cyp24 have also been 

identified in individuals with hypercalcemia and high 1,25 vitamin D (319).

Pharmacology

Vitamin D adequacy is assessed by the measurement of serum 25-hydroxyvitamin 

D. The optimal level remains a source of controversy. Recent Institute of Medicine 

recommendations, based on an extensive review of multiple studies, suggest that 20 ng/mL 

is adequate for healthy adults and would not constitute an indication for supplement (22). 

Ingestion of 600 IU/day of cholecalciferol has been suggested as the minimum daily dietary 

requirement for maintenance of adequate vitamin D stores for those aged 71 or less, and 

800 IU for those above 71 years of age. The upper limit of ingestion is 4000 IU daily. 

The major sources of dietary vitamin D, either fish oils such as cod liver oil, sardines or 

vitamin D fortified foods generally are not predictable sources of the daily requirements, as 

they are not eaten by many people. Twenty minutes of sunlight exposure three times per 

week has also been shown to result in production of adequate vitamin D in Caucasians. 

However, darker skinned peoples, older individuals, and those living at high latitudes may 

not be able to achieve adequate conversion through sunlight exposure. To ensure adequate 

vitamin D homeostasis, the more recent recommendations for adults suggest 1000 to 2000 

IU/day of cholecalciferol (90). Alternative regimens using high dose intermittent therapy 

are also commonly used, for example, ergocalciferol 50,000 IU weekly or monthly. While 

some investigators feel that both forms of vitamin D, cholecalciferol or ergocalciferol, are 

equally efficacious, others suggest that cholecalciferol may be superior (257). Additionally, 

as indicated previously, there is evidence that high dose, bolus therapy may be less effective 

due to rapid tissue uptake and sequestration. Taken as prescribed, these compounds rarely 

produce hypercalcemia.

For individuals with kidney failure who are unable to activate 25-hydroxy vitamin D, an 

active form of vitamin D can be prescribed. Calcitriol, paracalcitol, and doxercalciferol 

are the three currently available formulations. Calcitriol is identical to native 1,25 

vitamin D. Paracalcitol and doxercalciferol are modified analogs of ergocalciferol(430). 

Calcitriol and paracalcitol are themselves active compounds while doxercalciferol requires 

25-hydroxylation in the liver to become activated (53, 439). The risk of hypercalcemia 
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is much higher with the use of any of these compounds; therefore, patients on these 

medications should be monitored closely.

Conclusions

Vitamin D, while referred to in the singular, is in fact a family of secosteroid compounds. 

While 1,25-dihydroxycholecalciferol is recognized as the active circulating and autocrine 

form of the hormone, it is likely that at least some of the other metabolites may exert 

unrecognized effects. Vitamin D has widespread effects in a variety of organ systems 

where for the most part the VDR coexists with the cell machinery to manufacture and 

metabolize active vitamin D from inactive precursors. These intrinsic mechanisms are 

carefully regulated such that vitamin D itself, vitamin D precursors, and other hormones 

may activate synthesis of vitamin D, but simultaneously, mechanisms for limiting active 

hormone production are activated. In addition to its well-known function as a regulator of 

mineral metabolism, vitamin D also plays a critical role in skin function, immune regulation, 

and vascular health. Thus, abnormalities in vitamin D metabolism have been implicated 

in most if not all chronic disorders including diabetes, hypertension, cancer, and chronic 

kidney disease as well as a multitude of autoimmune disorders such as multiple sclerosis. 

Major gaps in our understanding of vitamin D metabolism and effects include the interacting 

and/or exclusive roles of circulating versus autocrine vitamin D, determinants of circulating 

levels of vitamin D precursors and metabolites, the genomic versus the nongenomic actions 

of vitamin D, the roles of the multiple vitamin D metabolites, and, of course, the role of 

vitamin D dysregulation in the genesis and maintenance of the wide variety of pathologies 

where it has been implicated.
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Figure 1. 
Regulation of serum Ca2+ by PTH. Low serum Ca2+ stimulates the release of PTH from 

the parathyroid gland. PTH acts on the bone to increase bone resorption, releasing Ca2+ and 

HPO4
2− into the bloodstream. At the kidney, PTH increases Ca2+ reabsorption and decreases 

HPO4
2− reabsorption, maintaining the elevated serum Ca2+ from the resorption of bone. 

Vitamin D becomes activated in the kidney by 1α-hydroxylase, leading to increased Ca2+ 

absorption from the gut. The restored serum Ca2+ provides a negative feedback signal to the 

parathyroid glands, discontinuing the release of PTH.
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Figure 2. 
Primary sequence of human parathyroid hormone (sequence from Ensembl.org). The pre- 

and prosequences are cleaved prior to secretion into the bloodstream. Residues 1 and 2 

(diagonally striped) are required for PTH receptor activation. Residues 28-34 (checkered 

pattern) interact with the extracellular amino domain of the PTH receptor. The C-fragment 

may be cleaved either prior to or after release from the parathyroid gland.
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Figure 3. 
(A) Effect of serum [Ca2+] on PTH synthesis and secretion. Ca2+ binds to the CaSR and 

activates Gq and Gi. Gq activation leads to increased [Ca2+]i via PLC signaling and IP3 

formation. Increased [Ca2+]i inhibits exocytosis of PTH secretory vesicles. Gi activation 

inhibits adenylyl cyclase, leading to less cAMP, and therefore less transcription of the PTH 

gene as well as decreased stimulus for secretory vesicle exocytosis. (B) Effect of low serum 

[Ca2+] on PTH synthesis and secretion. In the absence of serum Ca2+, CaSR signaling 

terminates, allowing [cAMP]i to increase, which drives transcription of PTH and secretory 

vesicle exocytosis, leading to increased serum PTH levels. (C) Effect of Vitamin D on 

PTH secretion. Vitamin D enters the cell through diffusion across the plasma membrane. 

Once inside, Vitamin D is bound by the vitamin D receptor (VDR). In the nucleus, the 
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Vit D-VDR complex binds to RXR and the vitamin D response element (VDRE) within 

the PTH promoter. This promoter complex inhibits transcription of the PTH gene, leading 

to less preproPTH production. The Vit D-VDR complex also binds to the VDRE within 

the promoter of p21, activating the transcription of the p21 gene. Increased p21 expression 

inhibits parathyroid cell proliferation.
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Figure 4. 
(A) PTH receptor topology and ligand binding. (A)The PTH1R consists of an extracellular 

amino terminus, a J domain consisting of transmembrane domains as well as intra- and 

extracellular loops, and an intracellular carboxy terminus. The extracellular amino terminus 

is 150 residues long, with 4 N-glycosylation sites and 4 disulfide bridges. Less is known 

regarding PTH2R topology as compared to PTH1R topology. Importantly, residue variations 

in two of the extracellular loops (highlighted in red) decrease the affinity of the receptor 

for PTHrP while maintaining specificity for PTH. (B) PTH receptor topology and ligand 

binding. (B) PTH(1-34) (rainbow structure) interacts with both the extracellular amino 

terminus of the PTH1R as well as the J domain. Docking of PTH to the PTH1R is thought 

to occur through initial binding of the C-terminus of PTH (residues 15-34) to the N-terminus 
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(blue regions) of the PTH1R. This interaction is closely followed by the binding of the 

N-terminus of PTH (residues 1-14) to the J domain (red regions) of the PTH1R, initiating G 

protein recruitment and intracellular signaling cascade activation. (C) PTH-receptor binding 

and intracellular signaling. (1) Two-site model of PTH-receptor docking. (2) The N-domain 

of the PTH receptor (PTHR1) binds the C-domain of PTH. (3) The J-domain binds the 

amino-terminal region of PTH. (4) Binding of the ligand to the receptor increases the 

association with the J-domain, while also increasing the affinity of the intracellular beta-

gamma binding region of the C-terminal region of the PTH receptor for G proteins, resulting 

in their subsequent activation and initiation of downstream signaling cascades. Gαs activates 

adenylate cyclase (AC), which increases intracellular [cAMP], resulting in activation of 

Epac and PKA. Gq activates phospholipase C (PLC), forming diacylglycerol (DAG) and 

inositol triphosphate (IP3). DAG directly activates PKC, whereas IP3 indirectly activates 

PKC by releasing Ca2+ from the ER.
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Figure 5. 
(A) Metabolic pathway of vitamin D. (A) The production of 1,25-dihydroxyvitamin D 

begins in the skin with the precursor 7-dehydrocholesterol. UVB light catalyzes the 

conversion of 7-DHC to pre-Vitamin D (structural changes denoted in red), which is further 

converted to Vitamin D by heat through the process of thermal isomerization. Vitamin D 

enters the bloodstream, and in the liver undergoes hydroxylation by either CYP27A1 or 

CYP2R1 to form 25-hydroxyvitamin D. Depending on serum Ca2+ levels and hormones 

present, in the kidney, 25-hydroxyvitamin D will either be converted to its active form, 1,25-

dihydroxyvitamin D, by the enzyme CYP27B1, or be converted to its inactive form, 24,25-

dihydroxyvitamin D, by the enzyme CYP24A1. FGF23 upregulates CYP24A1 expression 

and downregulates CYP27B1. PTH stimulates CYP27B1 expression, and depending on the 

circumstances, either downregulates CYP24A1 or slightly upregulates its expression. 1,25-

dihydroxyvitamin D3 is degraded first by hydroxylation at the 24th position to form 1,24,25-

trihydroxyvitamin D, then through a series of steps form the end product calcitroic acid, 

which is water-soluble and is excreted in the urine. (B) 1,25-Dihydroxyvitamin D3 promotes 

both classic effects on mineral metabolism as well as nonclassic effects on immune 

function, cardiovascular protection, and others as listed. (B) Metabolic pathway of vitamin 

D. (A) The production of 1,25-dihydroxyvitamin D begins in the skin with the precursor 

7-dehydrocholesterol. UVB light catalyzes the conversion of 7-DHC to previtamin D, which 

is further converted to vitamin D by heat. Vitamin D enters the bloodstream, and in the liver 

undergoes hydroxylation by either CYP27A1 or CYP2R1 to form 25-hydroxyvitamin D. 

Depending on serum Ca2+ levels and hormones present, in the kidney, 25-hydroxyvitamin 

D will either be converted to its active form, 1,25-dihydroxyvitamin D, by the enzyme 

CYP27B1, or be converted to its inactive form, 24,25-dihydroxyvitamin D, by the enzyme 

CYP24A1. 1,25-dihydroxy-D3 is degraded through a series of steps to the water-soluble 

product calcitroic acid, which is excreted in the urine. (B) 1,25-Dihydroxy-D3 promotes both 

classic effects on mineral metabolism as well as nonclassic effects on immune function, 

cardiovascular protection, and others.
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Figure 6. 
Vitamin D effector mechanisms. 25-Hydroxy-vitamin D bound to DBP is filtered, binds 

to the megalin complex and is endocytosed into the renal proximal tubule cell where it 

undergoes 1 α hydroxylation. Activated vitamin D bound to cofactors and chaperones 

(BAG-1 and hsc70) enter the nucleus and interacts with the VDR in concert with the RXR. 

This complex interacts with specific genomic regions including the VDRE to influence gene 

transcription.
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