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ABSTRACT
Objective  This study aims to explore the common genetic 
basis between respiratory diseases and to identify shared 
molecular and biological mechanisms.
Methods  This genome-wide pleiotropic association study 
uses multiple statistical methods to systematically analyse 
the shared genetic basis between five respiratory diseases 
(asthma, chronic obstructive pulmonary disease, idiopathic 
pulmonary fibrosis, lung cancer and snoring) using 
the largest publicly available genome wide association 
studies summary statistics. The missions of this study 
are to evaluate global and local genetic correlations, to 
identify pleiotropic loci, to elucidate biological pathways 
at the multiomics level and to explore causal relationships 
between respiratory diseases. Data were collected from 27 
November 2022 to 30 March 2023 and analysed from 14 
April 2023 to 13 July 2023.
Main outcomes and measures  The primary outcomes 
are shared genetic loci, pleiotropic genes, biological 
pathways and estimates of genetic correlations and causal 
effects.
Results  Significant genetic correlations were found 
for 10 paired traits in 5 respiratory diseases. Cross-
Phenotype Association identified 12 400 significant 
potential pleiotropic single-nucleotide polymorphism at 
156 independent pleiotropic loci. In addition, multitrait 
colocalisation analysis identified 15 colocalised loci and a 
subset of colocalised traits. Gene-based analyses identified 
432 potential pleiotropic genes and were further validated 
at the transcriptome and protein levels. Both pathway 
enrichment and single-cell enrichment analyses supported 
the role of the immune system in respiratory diseases. 
Additionally, five pairs of respiratory diseases have a 
causal relationship.
Conclusions and relevance  This study reveals the 
common genetic basis and pleiotropic genes among 
respiratory diseases. It provides strong evidence for 
further therapeutic strategies and risk prediction for the 
phenomenon of respiratory disease comorbidity.

INTRODUCTION
Respiratory diseases are one of the leading 
causes of morbidity and mortality world-
wide, with chronic obstructive pulmonary 
disease (COPD) and asthma being the two 
largest contributors to the global respiratory 
disease burden.1 2 Recently, numerous studies 

have reported a high level of coexistence 
between asthma, COPD, idiopathic pulmo-
nary fibrosis (IPF), lung cancer (LC) and 
obstructive sleep apnoea (OSA).3–7 However, 
the mechanism of such comorbidity remains 
unknown. Genome wide association studies 
(GWASs) have identified respiratory disease-
associated susceptibility loci known as single-
nucleotide polymorphism (SNP). Genes 
located near these SNPs, such as IL1R1, CFTR 
and EPHX2, have been observed in various 
diseases.8–10 Considering that previous studies 
have revealed significant genetic association 
loci for these diseases, shared genetic mecha-
nisms may provide important insights into the 
comorbidity of respiratory diseases.

A gene controlling two or more traits is 
commonly considered a pleiotropic locus. 
Identifying pleiotropic loci is an important 
strategy for resolving genetic mechanisms. It 
is a common way to identify pleiotropic loci 
by directly taking the intersection of signifi-
cant associated loci of each trait. However, 
such a strategy has low power due to the 
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limited sample size and misses a large number of poten-
tially shared loci. Indeed, enlarging the sample size 
entails substantial costs. Another effective approach is 
to use joint modelling11 of genetic correlations between 
phenotypes for joint analysis, which will reveal new 
genetic loci and identify potential shared loci among 
diseases. Previous studies have also attempted to explore 
the genetic overlap12 13 or causality14 that exists between 
a number of respiratory diseases, generally confined to 
two-by-two and with limited sample sizes. The causes 
and structure of the existence of commonalities among 
respiratory diseases remain largely unknown. Therefore, 
it is important to further explore the common genetic 
factors that underlie the commonality between respira-
tory diseases.

This study uses a variety of statistical genetics methods 
to comprehensively explore the common genetic basis 
between five respiratory diseases, including asthma, 
COPD, IPF, LC and snoring. First, we evaluated global 
and regional genetic correlations between diseases. We 
then used the Cross-Phenotype Association (CPASSOC)15 
to identify pleiotropic genetic variants or loci between 
diseases. In addition, Hypothesis Prioritisation in multi-
trait Colocalisation (HyPrColoc)16 analysis was conducted 
to identify colocalised loci and traits. We also performed 
gene-level analyses to identify candidate pleiotropic 
genes through various algorithms. Finally, Mendelian 
randomisation (MR) analysis was performed to probe 
different types of pleiotropy, namely vertical and hori-
zontal pleiotropy.

In summary, through a series of multidimensional inde-
pendent and combined analyses, we identified potential 
pleiotropic loci between five respiratory diseases that 
could be prioritised as potential targets for drug develop-
ment and repurposing due to their potential to simulta-
neously prevent or treat these diseases.

MATERIAL AND METHODS
Data processing
We used five publicly available GWAS17–19 summary 
statistics of respiratory diseases (online supplemental 
eTable 1). We attempted to use snoring as a substitute 
for OSA. On one hand, snoring is a primary symptom of 
OSA, and on the other hand, as an independent disease 
phenotype, snoring has a high genetic correlation with 
OSA. The total sample size for asthma is 137 6071, with 
121 940 cases. For COPD, the total sample size is 995 917 
with 58 559 cases. IPF has a total sample size of 953 873 
with 6257 cases. LC has a total sample size of 85 716 
with 29 266 cases. The total sample size for snoring is 
408 317 with 152 302 cases. We performed rigorous 
quality control. The detailed characteristics of the GWAS 
summary statistics and quality control process are shown 
in online supplemental eMethods. The overall study 
design is shown in figure 1.

Global genetic and local correlation analysis
Both linkage disequilibrium score regression (LDSC)20 
and high-definition likelihood (HDL)21 were applied to 
assess global genetic correlations between diseases. We 
did not restrict the intercept term for LDSC to assess 
population stratification within individual GWAS and 
sample overlap between pairs of GWAS.

We used the Local Analysis of Variant Association 
(LAVA)22 to estimate genetic correlations in indepen-
dent regions of the genome for each pair of traits. LAVA 
allows us to more effectively clarification of the specific 
effects of regional genetics on overall genetics. A false 
discovery rate (FDR) was used to correct for all of the 
above results. The significance threshold was set at p 
adjusted <0.05.

Figure 1  Overall study design. We conducted a 
comprehensive cross-trait analysis of five respiratory 
diseases from different perspectives. COPD, chronic 
obstructive pulmonary disease; CPASSOC, Cross 
Phenotype Association; FUMA, functional mapping and 
annotation; GWAS, genome-wide association studies; GO, 
Gene Ontology; HDL, high-definition likelihood; HyPrColoc, 
hypothesis prioritisation in multitrait colocalisation; IPF, 
idiopathic pulmonary fibrosis; KEGG, Kyoto Encyclopaedia 
of Genes and Genomes; LDSC, linkage disequilibrium score 
regression; LAVA, local analysis of variant association; 
MAGMA; multimarker analysis of GenoMic annotation; 
MR, Mendelian randomisation; PWAS, proteome-wide 
association study; SNP, single-nucleotide polymorphisms; 
TWAS, transcriptome-wide association study.
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Multiple-trait meta-analysis
To identify potential pleiotropic SNPs of respiratory 
diseases, the SHet model provided by CPASSOC was 
executed to perform a multitrait meta-analysis.15 The 
CPASSOC method enhances the sample size by incorpo-
rating information from multiple GWAS to identify novel 
significant SNPs. CPASSOC allows for heterogeneity and 
sample overlap. SNPs with PCPASSOC<5×10−8 were consid-
ered significant pleiotropic SNP.

Genomic loci characterisation and functional annotation
We used functional mapping and annotation of genetic 
associations (FUMA)23 to annotate significant genetic 
loci for the CPASSOC results, with the parameter settings 
shown in online supplemental eMethods. Combined 
Annotation Dependent Depletion (CADD) scores and 
RegulomeDB (RDB) scores were provided with FUMA, 
and SNP with CADD scores >12.37 were considered 
potentially deleterious variants. We also annotated the 
GWAS of five respiratory diseases for comparison with 
CAPSSOC results.

Multitrait colocalisation
We performed HyPrColoc16 analyses to further iden-
tify common causal variants for each pleiotropic locus 
defined by FUMA. HyPrColoc divides traits into groups, 
with traits in each group sharing a casual SNP. Posterior 
prob >0.7 results in the final colocalised locus. Addition-
ally, we conducted sensitivity analysis on the colocalisa-
tion analysis results using different prior probabilities 
(1×10−4, 1×10−5).

Candidate gene analysis
We searched for genes that overlapped with the pleio-
tropic loci and then subjected them to gene-based asso-
ciation analysis with multimarker analysis of GenoMic 
annotation (MAGMA).24 FDR-corrected p<0 .05 was 
considered a significant result. Based on lung and whole 
blood tissues provided by GTEx V.8,25 we used Functional 
Summary-based Imputation to perform transcriptome-
wide association26 (TWAS) analyses on GWAS for single 
traits. TWAS results for single traits were combined to 
clarify whether there is gene sharing between multiple 
traits at the transcriptome level. We also conducted 
the proteome-wide association study27 (PWAS) study. 
PWAS assesses associations between plasma proteins and 
respiratory traits with an analytical strategy consistent 
with TWAS. Significant results were defined as p adjusted 
<0.05 after correction using the FDR method.

Pathway and GTEx tissue enrichment analysis
We conducted a MAGMA24 gene-set enrichment analysis 
based on the Gene Ontology (GO) and Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) pathway data-
bases. We performed tissue/single cell-specific enrich-
ment with a phenotype-cell-gene association (PCGA) 

analysis platform.28–30 Significant results were defined 
as p adjusted <0.05 after correction using the FDR 
method. In PCGA, tissue results are based on GTEx V.8 
and single cell results are derived from human(based 
on PanglaoDB, Human Cell Landscape and Allen Brain 
Atlas) and mouse (based on PanglaoDB) datasets. FDR-
corrected p<0.05 was considered a significant result.

Mendelian randomisation analysis
We used bidirectional two-sample MR analysis to explore 
the causal relationships between the five phenotypes. The 
primary method is Multiplicative Random Effects Inverse 
variance weighted (IVW-MRE). IVW-MRE provides more 
accurate outcome estimates even in the presence of 
heterogeneity. Complementarily, we applied MR-Egger 
regression31 and the weighted median32 method as addi-
tional analytical strategies alongside IVW. To verify the 
accuracy of the results, we used sensitivity analyses such 
as MR-Egger intercept, leave-one-out analysis, MR-Steiger 
directionality test and F-statistic. The detailed methods 
are in online supplemental eMethods. For more infor-
mation on SNPs, please refer to online supplemental 
eTables 2 and 3. Significant results were defined as p 
adjusted <0.05 after correction using FDR method.

Patient and public involvement
This study employed GWAS for data analysis and did not 
directly involve patients or the public.

RESULTS
Global and local genetic correlation
The LDSC results indicated significant heritability for all 
diseases (online supplemental eTable 4), with estimates 
ranging from 0.3% to 8.4%. Significant genetic associa-
tions (p adjusted <0.05) were found for all 10 pairs of traits 
in 5 respiratory diseases. The strongest genetic associa-
tion was found between asthma and COPD (rg=0.7052), 
indicating a highly shared genetic component between 
the two. COPD and LC were also strongly correlated 
(rg=0.5944), suggesting a high degree of concordance 
between the two in terms of genetic components, but not 
identical. HDL described nearly identical results to LDSC 
except that IPF and LC suggested no genetic association 
in HDL (figure  2A,C and online supplemental eTables 
5 and 6). Additionally, the results suggest a potential 
sample overlap between GWAS with selected respiratory 
diseases (online supplemental eTable 5). There may be 
some common genetic components among respiratory 
diseases, but there is no evidence of the extent to which 
these genetic components are shared and the specific 
mechanisms involved in these five diseases.

The results of LAVA showed a total of 499 regions 
(figure 2B,D and online supplemental eTable 7) where 
at least one pair of trait pairs existed with significant 
localised genetic correlations (p adjusted <0.05). Of the 
499 localised regions, 87.58% were positively correlated 
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and 12.42% were negatively correlated. The region 
6:32629240–32682213 had the most six pairs of related 
traits and all traits occurred at least once. The asthma and 
COPD trait pairs had the highest significance in LDSC. 
LAVA indicated that this trait pair possessed the most 
regional genetic associations, all of which were positive.

Multiple-trait meta-analysis and pleiotropic loci
A total of 7 169 288 SNPs were included for CPASSOC 
analysis (figure  3 and online supplemental eTable 
8). The 12 400 significant SNPs (p<5×10−8) in the 
CPASSOC results were annotated by FUMA, yielding 156 

independent loci (online supplemental eTable 9). 112 
loci (72%) did not overlap with any of the 5 single-trait 
GWAS significant loci and were considered as newly iden-
tified pleiotropic loci (online supplemental eTable 10). 
SNP category annotation indicated that 83 (53%) index 
SNPs were intronic variants and 61 (39%) index SNPs 
were intergenic variants. There were 12 (8%) exonic vari-
ants, including 10 messenger RNA (mRNA) exonic vari-
ants and 2 non-coding RNA exonic variants.

16 indexed SNPs had CADD scores >12.37 and 6 were 
mRNA exon variants (online supplemental eTable 9). For 
example, index SNP rs11571833 is in the exonic region 
of the gene BRCA2 with a CADD score=36. BRCA2 is a 
common tumour susceptibility gene, and studies33 have 
found that BRCA2 mutations directly double the risk of 
developing LC. The index SNP rs34712979 with a CADD 
score of 22.8 is in the intronic region of the gene NPNT. 
NPNT was found to be significantly expressed in alveolar 
cells and lung fibroblasts,34 and to regulate35 36 the patho-
genic risk of respiratory diseases such as COPD and LC.

Identification of colocalised loci
HyPrColoc obtained 15 (10%) loci (PP>0.7) (figure  3 
and online supplemental eTable 11). Detailed informa-
tion on all SNPs within the colocalised locis can be found 
in online supplemental eTable 12. The trait set with the 
highest posterior probability was asthma and COPD, 
colocalised at locus 6:19837774–19844117 (PP=0.9687, 
casual SNP: rs9350191). Nine of the 15 colocalised loci 
contained Asthma and COPD. Of all casual SNPs, five 
(33%) were intronic variants and eight (53%) were inter-
genic variants. Two (13%) were exonic variants and both 
were mRNA exonic variants: rs28929474 (SERPINA1), 
rs1641512 (ATP1B2). Notably, 7 of the 15 colocalised loci 
were located within the newly discovered pleiotropic loci. 
It is worth mentioning that in loci5, the SNP with the 
highest posterior probability is rs34517439. The nearby 
gene, DNAJB4, is believed to be involved in regulating the 
growth of non-small cell LC.37 Recent research reports 
that the deletion of this gene leads to a novel type of 
myopathy primarily characterised by early-onset respira-
tory failure. This suggests that DNAJB4 is closely associ-
ated with the development and progression of respiratory 
system diseases.38 The sensitivity analysis results include 
heat-maps and similarity matrices (online supplemental 
eTable 11, marked with an asterisk**). We conducted 
quantitative statistics (similarity matrices) on the sensi-
tivity analysis for different prior probabilities and found 
that the variation in seven locis (5, 57, 73, 86, 119, 135 
and 152) did not exceed 20%. The remaining locis seem 
sensitive to changes in prior probabilities but still form 
a good cluster of colocalised traits. Even with different 
prior probabilities provided, six locis (17, 45, 123, 131, 
132 and 139) with larger fluctuations also have a proba-
bility greater than 50% of forming stable colocalisation 
clusters. We also examined the LD relationships between 
the causal SNPs identified in the Hyprcoloc analysis and 

Figure 3  Manhattan plot of pleiotropic loci Manhattan plot 
of pleiotropic loci analysed by the CPASSOC method, with 
the x-axis denoting chromosomal location and the y-axis 
denoting the −log10 p value. The horizontal line indicates 
the genome-wide significance threshold of p=5×10−8. 
156 pleiotropic loci were identified at the genome-wide 
significance level, of which, 15 were colocalised loci (black 
dots represent index SNPs of pleiotropic loci and red dots 
represent index SNPs of colocalised loci). CPASSOC, 
Cross-Phenotype Association; SNP, single-nucleotide 
polymorphism.

Figure 2  Genetic correlation among five respiratory 
diseases. (A) Global genetic correlations among five 
respiratory diseases were explored with LDSC and HDL 
methods. **p adjusted <0.05. (B) Frequency distribution of 
localised genetic correlations for five respiratory diseases 
determined by the LAVA method. (C) High consistency of 
the LDSC and HDL methods for investigating global genetic 
correlations. (D) Counts of trait pairs with local genetic 
associations in specific regions of the chromosome. 
COPD, chronic obstructive pulmonary disease; HDL, high-
definition likelihood; IPF, idiopathic pulmonary fibrosis; LC, 
lung cancer; LDSC, linkage disequilibrium score regression.
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surrounding SNPs, finding that most regions do not have 
variants in extremely high LD with the causal variants 
(online supplemental eTable 13). In five colocalised locis 
(90, 123, 132, 135 and 139), causal variants exhibit an LD 
relationship with r2≥0.9, accounting for 33.3% of all locis.

Candidate gene identification
We identified 739 protein-coding genes that overlapped 
with the 156 pleiotropic loci through gene position 
mapping. MAGMA analysis further identified 678 signif-
icant pleiotropic genes (online supplemental eTable 
14). Among them, the most significant gene was IL1R1 
(p=2.30×10−16). The significant genes obtained based on 
MAGMA were analysed by TWAS and PWAS. A total of 
3600 tests were performed for the TWAS analysis (online 
supplemental eTable 15). 593 tissue-gene-trait pairs 
were significantly associated (p adjusted <0.05): asthma 
(196), COPD (125), IPF (75), LC (93), snoring (104). 
199 (46%) genes reached significant levels in at least one 
tissue, suggesting that the effects of pleiotropic genes 
on phenotype are influenced by the amount of mRNA 
expression. Of these, 108 genes were shared among 
different traits and were mostly tissue-specific. PWAS 
results (online supplemental eTable 16) indicated that 
19 plasma proteins were expressed at significant levels 
(p adjusted <0.05). Nine of these plasma proteins share 
expression in two or more respiratory diseases. TWAS was 
compared with PWAS, and two significant protein-coding 
genes (IL1R1, PRSS8) were identified in the colocalised 
loci. IL1R1 and PRSS8 were associated with two or more 
traits at all levels.

Biological pathway, GTEx tissue and SNP-heritability 
enrichment
MAGMA gene-set analysis identified 130 significantly 
enriched biological pathways (p adjusted <0.05), 
including 115 GO pathways and 15 KEGG pathways 
(figure  4A and online supplemental eTable 17). The 
enriched pathways are mainly focused on the immune 
system. An example is interleukin-21 (GO: 0032625), 
which has been found in a large number of studies to 
play a huge effect on immune system diseases and cancer.

GTEx tissue enrichment analysis showed that five respi-
ratory diseases were significantly enriched in 33 tissues 
(figure 4B). The most significant tissue was lung. A total 
of 167 human monocytes were significantly enriched, 
mainly in lung, kidney and tracheal tissue single cells. A 
total of 493 mouse monocytes were significantly enriched, 
mainly in lung, spleen, arterial and tracheal tissue single 
cells.

Mendelian randomisation
Bidirectional MR analysis of 20 exposure–outcome 
trait pairs in 5 respiratory diseases. IVW results showed 
a total of 10 pairs of traits with significant causal asso-
ciations (p adjusted <0.05), all of which were positively 

correlated (figure  5 and online supplemental eTable 
18). Evidence of horizontal pleiotropy existed for two 
trait pairs: asthma-COPD and asthma-LC. Asthma-COPD, 
asthma-LC obtained significant estimates consistent with 
IVW using MR-Egger. This suggests that they remain caus-
ally related after accounting for horizontal pleiotropy.31 
All other sensitivity analyses supported significant results 
(online supplemental eTable 19). Causality among the 
five respiratory diseases in the MR analysis was unidirec-
tional, and the associations of exposure–outcome trait 
pairs were not driven by a single SNP.

DISCUSSION
We used multiple trait association analysis to explore 
shared genetic factors among five respiratory diseases. 
This study presents a comprehensive analysis revealing 
the potential genetic basis of pleiotropic association loci, 
colocalised trait subsets, biological pathways and tissue 
specificity of pleiotropic genes. Different respiratory 
diseases often exhibit highly specific clinical features, but 
respiratory comorbidity is common. The results of this 
study support the idea that comorbidity between respira-
tory diseases may be driven by a common genetic basis.

We identified 61 related candidate genes in the 15 
colocalised regions identified. The most significant gene, 
IL1R1, is located in the region 2: 102681836–102 801 334. 
Asthma and COPD trait pairs colocalise at this locus, 
which has a shared causal SNP of rs11679146. TWAS 
results from asthma showed that IL1R1 was significantly 
expressed in lung tissues but negative in whole blood 
tissues. Similarly, TWAS results in COPD had positive 
results for IL1R1 in lung tissue but not in whole blood 
tissue. This suggests the presence of tissue specificity 
in the IL1R1 gene. IL1R1 is bound by IL-1α and IL-1β 
inflammatory factors. IL-1α and IL-β have been identified 

Figure 4  Biological functional and tissue and single cell-
specific enrichment of candidate pleiotropic genes. (A) Top 
five pathways most significantly enriched for GO and KEGG 
gene sets. (B) Tissue-specific enrichment analysis using 
the PCGA (based on GTEx and PanglaoDB) identified top 
five significantly enriched tissues and single cell (p adjusted 
<0.05). BP, biological process; CC, cellular component; 
KEGG, Kyoto Encyclopaedia of Genes and Genomes; 
GO, Gene Ontology; GTEx, Genotype-Tissue Expression; 
KEGG, Kyoto Encyclopaedia of Genes and Genomes; MF, 
molecular function.
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in many preclinical models as mediators that play a huge 
role in the respiratory inflammatory response. They regu-
late the secretion of neutrophils, macrophages39 40 and 
have an active role41 in the development of emphysema. 
Clinical cohort studies have found that upregulation of 
IL-1 pathway mediators is associated with frequent wors-
ening of obstructive airway disease.42 IL1R1 appears to 
be a marker of neutrophil inflammation and airflow 
obstruction and is a potential therapeutic target for 
Asthma. IL1R1 appears to be a marker of neutrophil 
inflammation and airflow obstruction and a potential 
therapeutic target for asthma.8 Thus, IL1R1 gene expres-
sion in lung tissue may affect both Asthma and COPD. It 
may be feasible to develop targeted drugs against IL1R1, 
which needs to be justified by more research data. A 
feasible therapeutic target for asthma, IL1R1 appears 
to be a marker of neutrophil inflammation and airflow 
obstruction.

The TNFSF12 gene can be found in the region of 
17:7447375–7466207. Asthma and snoring share this 
locus and the most likely causal SNP is rs1641512. 
TNFSF12-encoded TWEAK and its receptor factor-inducible 
14 (Fn14) have been shown to induce the production of 
IL-8 and GM-CSF by the human bronchial epithelium43 
and to contribute to airway inflammation by activating 
the NF-B/STAT3 pathway to produce a variety of inflam-
matory mediators.44 A more intriguing finding45 was the 
direct detection of significantly higher TWEAK in the 
sputum of asthmatic patients, and the quantity was posi-
tively connected with the degree of the disease. Obesity is 

the main OSA risk factor.46 Certain clinical studies found 
that obese patients’ adipose tissue contained increased 
concentrations of TWEAK/Fn14.47 Snoring, the most 
noticeable OSA symptom and a simple source of inter-
mittent hypoxia. It has been reported that the mecha-
nism of Hypoxia-inducible factor (HIF)-1α in OSA-related 
complications48 49 while TWEAK has been discovered to 
increase HIF-1 expression.50 Thus, TWEAK/Fn14 may 
be a good path to explore for intervention treatment of 
patients with asthma and OSA.

In addition to the genes already mentioned, additional 
genes, including CFTR, EPHX2, FTO and others, were 
found to be often associated with respiratory illnesses. 
Additionally, it was found that several genes, including 
BCKDK, SETD1A, VKORC1, PRSS8 and others, temporarily 
lack associations with respiratory illnesses. Significantly, 
the PRSS8 gene, positioned at 16:31137754–31152151, 
shows colocalisation in both asthma and snoring. Both 
TWAS lung tissue and whole blood and PWAS contained 
this common gene. According to reports, the PRSS8 
pathway plays a crucial role in controlling sodium trans-
port in alveolar epithelial cells and pulmonary fluid 
balance,51 but further research is needed to determine 
how it relates to respiratory illnesses.

The majority of the shared pathways among the five 
respiratory illnesses emphasised immunology, which 
nearly matched single-cell enrichment findings like the 
high expression of macrophages in the trachea and T cells 
in lung tissue. The immune system’s undeniable implica-
tion in COPD has dominated basic research for years.52 
Much earlier, asthma has been connected to the immu-
nological response53 and it has also been demonstrated 
that immune dysregulation triggers IPF.54 Moreover, 
an important factor in controlling OSA’s inflammatory 
response is the activation of the NLRP3 inflammasome. 
LC has also received a lot of attention lately in the immu-
nological microenvironment55 and immunotherapy56 of 
LC. This study provides additional favourable support 
that the immune system may be an important pathway 
for respiratory diseases to be codriven.

Bidirectional MR analysis further explores possible 
genetically related causal relationships between multiple 
diseases.57 Asthma affects COPD, IPF and snoring while 
COPD and IPF threaten LC. The MR results demon-
strated that the relationship between the five respira-
tory diseases was interactive and intricate. This provides 
evidence of the effectiveness of clinical prevention of 
respiratory disease complications.

This study reveals the mechanism of co-morbidity in 
respiratory diseases and provides a theoretical basis for 
the diagnosis and prevention of multiple comorbidities 
in clinical practice. Our results have identified a number 
of old and new genetic targets for respiratory diseases that 
may help in the development of new drug targets or new 
utilisation of existing drugs. The limitation that has to be 
recognised is that the GWAS included in this study were 
all from a single European population so the results may 
not necessarily match other ancestries. More subsequent 

Figure 5  A bidirectional causal effect estimated with 
random effects IVW method. Error bars represent the 
95% CI of the corresponding MR estimates. P adjusted, p 
value after corrected using false discovery rate; 
P.pleiotropy, the resultant pleiotropy remained significant 
after sensitivity analysis. COPD, chronic obstructive 
pulmonary disease; IPF, idiopathic pulmonary fibrosis; IVW, 
inverse variance weighted; LC, lung cancer.
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GWASs of other ancestries are needed to validate this 
result or to mine new applicable loci. Proof of this result 
or exploration of new applicable loci will require subse-
quent GWAS of other ancestries to validate. Further-
more, the presence of excessively high LD relationships 
may obscure the accurate identification of causal SNPs 
in colocalisation analysis (specifically at loci 90, 123, 132, 
135 and 139), necessitating further validation.

CONCLUSION
In conclusion, this study reveals the presence of comorbid 
genetic correlations between five respiratory diseases, 
identifies pleiotropic loci, defines common biological 
mechanisms dominated by immune responses and infers 
potential causal relationships between the diseases. We 
suggest that respiratory diseases are not entirely inde-
pendent but are closely linked and share specific genetic 
loci. These findings provide strong evidence for further 
therapeutic strategies and risk prediction.
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