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ABSTRACT The Escherichia coli whole-cell modeling project seeks to cre-
ate the most detailed computational model of an E. coli cell in order to
better understand and predict the behavior of this model organism.
Details about the approach, framework, and current version of the model
are discussed. Currently, the model includes the functions of 43% of
characterized genes, with ongoing efforts to include additional data and
mechanisms. As additional information is incorporated in the model, its
utility and predictive power will continue to increase, which means that
discovery efforts can be accelerated by community involvement in the
generation and inclusion of data. This project will be an invaluable
resource to the E. coli community that could be used to verify expected
physiological behavior, to predict new outcomes and testable hypotheses
for more efficient experimental design iterations, and to evaluate hetero-
geneous data sets in the context of each other through deep curation.
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The challenge of fully characterizing the dynamics of all molecules within a liv-
ing organism has been identified by many as a pressing problem. Over 4 deca-
des ago, Francis Crick called for a coordinated worldwide scientific effort to
determine a “complete solution” of Escherichia coli (1). He envisioned a central
laboratory to coordinate work, standardize biological reagents and materials,
and produce vast libraries. Although such an approach was never adopted, the
scientific community has published millions of measurements to characterize
E. coli. Even still, a complete solution, in the form of a simulation that can rep-
licate the behaviors of living cells, remains elusive. A more modern take on
Crick’s vision calls whole-cell simulation a “grand challenge of the 21st cen-
tury,” since “complex behavior of the cell cannot be determined or predicted
unless a computer model of the cell is constructed and computer simulation is
undertaken” (2).

Many groups have created models of various scales to capture the behavior
of cells in mathematical frameworks (3–6). Building off this pioneering
work is the approach of whole-cell modeling, creating a mathematical
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representation of all of the known biological functional-
ity of a cell that is used to update the state of the cell as
it grows in silico. The concept and application of whole-
cell modeling was first demonstrated in the simple orga-
nism Mycoplasma genitalium (7). The model was able
to track all of the molecules and interactions within a
life cycle of a bacterium, offering a detailed look into
the behavior and function of the cell. Capturing all of
the known gene functionalities and interactions pro-
vided new insights and novel predictions, which were
then validated with experiments.

Since then, the whole-cell modeling approach has been
extended to E. coli (8), allowing researchers to tap into the
extensive data and knowledge that have resulted from deca-
des of research into this model organism. Development
efforts to include submodels capturing all known gene
functionality are still ongoing, with 43% of known genes
currently functionally incorporated. Although not yet com-
plete, this initial work represents a significant advance in
whole-cell modeling technology compared to the original
M. genitalium model. In the E. coli model, all model pa-
rameters are derived from measurements made with E.
coli, whereas the M. genitalium model borrowed many pa-
rameters derived from other microbes. The E. coli model
can also perform simulations in multiple environments
and proceed from parent to daughter cells over many divi-
sion events, both of which were not possible with the M.
genitalium model. E. coli is also a more complicated orga-
nism, with over 8 times as many genes as M. genitalium,
many of which are regulated in response to changing envi-
ronments. These advancements allow us to use the whole-
cell model of E. coli as an assessment of how well we can
predict complex behavior of this model organism given the
currently available data sets.

In addition to serving as a model organism in scien-
tific endeavors, E. coli has also served a prominent
role in the biomanufacturing industry, where engi-
neered strains of E. coli are often used to produce
various chemical products. Despite recent advance-
ments in simulation-assisted design in other engi-
neering fields, metabolic engineering is still in need
of an effective “digital twin” that can faithfully repli-
cate the behavior of its physical counterpart, the
engineered organism itself (9). The development of a
whole-cell model of E. coli that can be used to opti-
mize titers, rates, and yields of chemical products
would revolutionize the biomanufacturing industry

by immensely cutting down the costs associated with
exploring new strains and environments.

In this review, we aim to highlight aspects of the E. coli
whole-cell modeling project that may be of interest to
the broader community of E. coli researchers. The
“Approach” section will discuss the underlying concepts
of whole-cell modeling, the computational framework
of the E. coli model, and the needed considerations in
the selection of data to be used in the model. The
“Current model snapshot” section will explain how the
model can be accessed and run, give an overview of
which cellular functionalities are currently included,
and discuss the simulation outputs and how the outputs
are validated. The “Model-driven discovery” section
will present potential applications of the whole-cell
model as a discovery tool. Lastly, the “Discussion” sec-
tion will discuss possible future directions that we are
planning to take our project.

We hope that the development of a whole-cell model of
E. coli will prove to be an invaluable tool to the E. coli
research community. Similar to the community efforts
in parameter estimation, analysis, and applications seen
after the M. genitalium model (10–13), we expect the E.
coli whole-cell modeling project to integrate even more
with the much larger E. coli research community.
Extending the whole-cell model with additional data
sets and mechanistic relationships will only enhance the
benefit of having a model that can integrate and assess
the diverse heterogeneous data sets that continue to be
generated for this organism. Much as the generation of
data, characterization of genes, and identifying biologi-
cal interactions, which lead to a better understanding of
E. coli, are community efforts, the development of a
whole-cell model could also benefit from community
contributions from a wide range of researchers, from
computational and experimental biologists to computer
scientists and software engineers.

APPROACH

Whole-cell modeling concepts. Whole-cell modeling
seeks to link heterogeneous data sets to each other
through known and inferred mechanistic interactions
at the scale of the entire E. coli cell. In the current realm
of computational models for biological systems, there is
often a trade-off between models that are mechanistic
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(and, thus, biologically interpretable) and models that
can capture behavior at the genome scale. Many mecha-
nistic modeling approaches focus on a subset of the cel-
lular processes and use a single type of mathematical
representation (e.g., linear programming for flux bal-
ance analysis [FBA] [14] or ordinary differential equa-
tions [ODEs] for time evolution of small networks,
including transport dynamics, growth rate control, and
metabolic reaction rates [4, 15–17]) to represent the bi-
ological processes. Often, mechanistic models are diffi-
cult to build at the genome scale due to the challenge of
parameterization (18, 19). In contrast to mechanistic
models, machine learning or probabilistic models can
be more easily extended to the genome level by using
black-box models, which infer all biological interactions
by integrating large omics data sets instead of using
experimentally confirmed mechanisms and interactions
(20–22). These models, however, inherently provide
less mechanistic insight and often use parameters
that are difficult to interpret in a biologically mean-
ingful way. Some machine learning approaches seek
more interpretability with a “white-box” approach
(23, 24) or ensemble models where combinations
with other models are used to interpret mechanisms
from the results (25, 26), but it is often difficult to
include this mechanistic information a priori with
these approaches. Whole-cell modeling promises to
bring us the best of both worlds by providing the
ability to model at the genome scale while still main-
taining mechanistic interactions.

The major benefit of whole-cell modeling is that different
mechanistic approaches can be integrated to take advantage
of the benefits of each approach while still capturing mech-
anistic details of other components of the cell. For example,
FBA approaches rely on an abstraction of biomass produc-
tion in a cell, such as the polymerization of protein and
nucleic acids, by including a biomass reaction that converts
metabolites into these biomass components in a fixed pro-
portion. Whole-cell modeling allows for the inclusion of
metabolic reactions like FBA while explicitly modeling the
rate of biomass formation through separate transcription
and translation processes, which capture RNA and protein
dynamics on a single-molecule level. Some examples of the
mathematical frameworks used for different cellular proc-
esses in the current whole-cell model are shown in Fig. 1.

In order to link submodels together, whole-cell modeling
must assume that the individual submodels are independent

over short time periods. This separation allows for the inclu-
sion of different mathematical representations of cellular
processes that are most appropriate for each aspect of cellular
physiology to be modeled and can be tailored to the overall
knowledge level and characterization of that physiological
system. Although submodels are assumed to be independent
within a time step, over longer time scales, the submodels
still interact with each other through updates to the state of
the cell. After each time step, consumption or production of
molecules in one process will affect other processes at the
next time step. Thus, these state updates tie together the sep-
arate submodels into a cohesive model of the whole cell and
capture dynamic interactions between submodels.

By integrating multiple submodels, whole-cell models can
expand both the scope and the accuracy of model predic-
tions compared to the predictions that can be independ-
ently made by each submodel. The M. genitalium whole-
cell model, for example, was able to accurately predict the
kinetic parameters of certain enzymes in the metabolic net-
work by simulating the growth of single-gene disruption
strains (27). This prediction required a full integration of
the metabolic network submodel with the transcription
and translation submodels that calculate enzyme abun-
dance and, thus, would not have been possible with a
standalone FBA model for metabolism or the transcrip-
tion/translation submodel.

Another benefit of whole-cell modeling is that each pro-
cess can be modeled in a modular way. This allows

ODEs

Two-component systems
Equilibrium reactions

Transcript/polypeptide elongation

...

Stochastic

Transcript/polypeptide initiation
RNA/protein degradation

FBA

Metabolism

cytoplasm      periplasm

Whole-cell
model

E. coli
Gillespie

Complexation

New submodel

New process

...

Spatiality

Metabolism
Transport

FIG 1 Whole-cell modeling can integrate different types of models
to meet the scale of an entire organism while including
mechanistic interactions. This modular approach allows for easy
expansion to include new biological features and models. Note
that the Gillespie implementation will appear in a newer version
of the model, not the current release.
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different submodels of cell physiology to easily be swapped
in or out of the whole-cell model. Performing simulations
with one submodel and comparing to results with another
submodel can be a way to assess the understanding of
each system and lead to discovery. These comparisons can
also provide evidence in support of a hypothesis about
how the living cell works or test the accuracy of methods
of data generation.

Whole-cell modeling framework. The computational
framework of the E. coli whole-cell model largely con-
sists of three sequential modules (Fig. 2A): (i) the
knowledgebase/parameters module, where data are
compiled to calculate simulation parameters, (ii) the
simulation module, where a whole-cell simulation is ex-
ecuted, and (iii) the output/analysis module, where the
outputs from the simulation are analyzed. Depending

on the needs of the researcher, the three modules can
be run individually or linked such that each module is
sequentially run once the preceding modules have fin-
ished running. Details on each of these modules are
presented in the sections below.

Knowledgebase/parameters. In the first module
(Fig. 2A, knowledgebase/parameters), raw data are used
to calculate the parameters that are used inside the sim-
ulation. In the first step of this module, the primary
data files are tied together into a single Python object
called raw data, which simply contains all unprocessed
data from these files, organized by the names of each
file. The raw data object is given as an input to the param-
eter calculator (ParCa), which converts the raw data into
parameters that are directly used by the simulation itself.
This conversion is necessary because many of the

FIG 2 (A) Flowchart that describes the flow of data between different components of the E. coli whole-cell model. The dashed boxes
represent the three modules that constitute the entire workflow. File paths are given according to how the files are organized in the
WholeCellEcoliRelease GitHub repository. (B) A detailed sequence of data flows that occur between States and Processes, while the
simulation moves forward by a single time step from time t to t1 1.

Sun et al.

4 EcoSalPlus.asm.org

https://www.EcoSalPlus.asm.org


parameters that are required to initialize and run the cur-
rent whole-cell model cannot be sourced directly from
raw data and need to be derived or estimated using these
raw parameters (an example of this conversion is given in
“Current model snapshot,” below). The resulting parame-
ters are packaged into the simulation data object, which
serves the role of a global reference that the simulation
refers to for any parameter value. In the case where a vari-
ant simulation (e.g., growth under different medium con-
ditions and with gene knockouts) is needed, the
simulation data object is modified by a variant function
that changes the value of a specific parameter based on the
nature of the variant. For instance, for the gene knockout
variant, the variant function will set the transcription
probability of the knocked-out gene to zero, such that the
gene is never transcribed throughout the lifetime of the
simulation. Variant functions will output a variant simula-
tion data object, which serves the role of simulation data
objects for variant simulations.

Simulation. The second module (Fig. 2A, simulation)
uses the parameters calculated from the first module to
perform a whole-cell simulation. The simulation begins
with the initial conditions function using the parame-
ters given in simulation data to approximate the initial
state of the simulation.

The state is a Python object that embodies the current
status of all molecules within the simulation, including
the counts, locations, and attributes of the molecules.
The object consists of the external state object, which
describes the environment that the simulation is

growing in, and the internal state object, which describes
the properties of all molecules within the boundaries of
the cell. The internal state object uses two different rep-
resentations for the status of each molecular species,
depending on the level of detail required to describe the
molecule (Table 1). The BulkMolecule representation is
used when the only property needed to describe the
molecule is the total number of counts of the species
within a given compartment. ATP in the cytosol, for
instance, is described using a BulkMolecule representa-
tion with the label ATP[c], since two ATP molecules in
the cytosol ([c]) are assumed to be indistinguishable
from each other. The UniqueMolecule representation is
used when it is possible for the individual molecules to
have unique attributes such that they are functionally
different from each other. Active RNA polymerases, for
example, are represented as such, since the individual
RNA polymerases can be transcribing different genes at
distinct locations on the chromosome.

The whole-cell simulation progresses in discrete time
steps. At each time step, the interplay between the current
state and the process objects determines the next state of
the simulation. Each process object is designed to repre-
sent the molecular ramifications of one particular aspect
of a cell’s function. In the released version of the whole-
cell model, there are a total of 13 process objects, some of
which are listed in Table 2. Because processes are separate
from each other, each process can use the mathematical
representation that is most appropriate for its underlying
biology, each with the accuracy, dynamics, or constraints
that are required or desired by a researcher (Fig. 1). Since
the processes are assumed to be independent over the

TABLE 1 Sample snapshot of the internal_state object during a whole-cell simulationa

Type Molecule ID Data
BulkMolecules WATER[c] Total count: 18,512,198,212

ATP[c] Total count: 1,192,909

APORNAP-CPLX[c] Total count: 3,151

UniqueMolecules activeRnaPoly Molecule 1: {“rnaIndex”: 152, “transcriptLength”: 189}

Molecule 2: {“rnaIndex”: 819, “transcriptLength”: 619}

activeRibosome Molecule 1: {“proteinIndex”: 2912, “peptideLength”: 38}

Molecule 2: {“proteinIndex”: 919, “peptideLength”: 91}
aMolecules constituting the internal_state can be divided into two types, BulkMolecules and UniqueMolecules, depending on whether the individual molecules
can be distinguished from one another based on their unique attributes. For molecules represented as BulkMolecules, the simulation keeps track of only the
total counts of the molecular species in each compartment (differentiated by a location tag, such as [c], which would indicate a molecule in the cytoplasm). For
molecules represented as UniqueMolecules, the simulation keeps track of the individual attributes of each molecule.
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short length of a single time step, the updates to the state
are made in steps described in Fig. 2B to prevent the proc-
esses from making conflicting updates. At the start of a
time step, each process views the current state, and the
calculateRequest method of each process is used to deter-
mine the number of molecules that are anticipated to be
needed from each process. Based on the requests submit-
ted by each of the processes, the state is partitioned such
that each process has exclusive access to delete or modify
the attributes of requested bulk and unique molecules.
Using the pool of molecules allocated to the process, the
evolveState method of each process calculates the changes
that should be made to the state. These changes are then
merged together to update the state, which advances the
simulation by a single time step. Specific descriptions of
calculations that are performed by some of the process
methods can be found in Table 2.

At the end of each time step, the simulation evaluates
whether the current state satisfies the conditions for a cell
division event. The model currently supports a couple of
options for the division criteria, reaching a certain critical
mass or waiting a fixed length of time (D period) after a
round of chromosome replication is finished (28), and
could be expanded in the future to capture a more bio-
physical and mechanistic representation of the division

event. If the conditions are not met, the cycle continues,
and the simulation moves through another time step. If
the conditions are satisfied, the cell division function
divides the current state into two separate states for two
daughter cells, and the simulation for the current cell is
terminated. In the current version of the model, we
assume that cell division occurs symmetrically, where each
molecule has an equal chance of being allocated to each of
the daughter cells. For simulations that extend for many
generations, we often drop one of the daughter cells from
the simulation to avoid an exponential increase in the
number of cells to simulate.

Throughout all time steps of the simulation, objects
named listeners act as loggers that record certain values of
interest calculated by the states and processes. At the end
of the simulation, the data logged by each of the listeners
are written into binary files called tables, which are used
by the downstream module to perform analyses and gen-
erate plots.

Through multiple improvements to the software imple-
mentation of the whole-cell modeling framework, we were
able to cut down the computation time of simulating a
single cell cycle from the roughly 24h it took for the M.
genitalium model to under 10 min for the E. coli model.

TABLE 2 Examples of processes implemented in the E. coli whole-cell model and a brief description of their functionalitiesa

Process name Function(s)
TranscriptInitiation

calculateRequest Determine the no. of transcription initiation events expected to happen

Request and withhold from other processes the required no. of inactive RNA polymerases

evolveState Remove allocated no. of inactive RNA polymerases

Initialize new active RNA polymerase molecules

ChromosomeReplication

calculateRequest Determine the no. of deoxynucleoside triphosphate (dNTP) subunits needed to replicate DNA in this time step

Request and withhold from other processes the required no. of dNTP subunits

evolveState Remove polymerized dNTP subunits

Update positions of replication forks

RnaDegradation

calculateRequest Determine the no. of each RNA species that should be degraded

Request and withhold from other processes the RNAmolecules that should be degraded

evolveState Remove degraded RNA molecules

Add NTP subunits produced from degraded RNAs
aThe implementation of two methods, namely, calculateRequest and evolveState, determines the functionality of each process. The calculateRequest method
calculates the number of molecules that are expected to be used up by the process at a given time step and sends a request to the State to have the required
number of molecules allocated to the process. The evolveState method uses the allocated molecules to make updates to the State.
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This reduction in time enables us to repeat the simulation
module as many times as desired depending on the pur-
pose of the simulation. If multiple generations of cells
need to be simulated, the output files that encode the
inherited states of each daughter cell after division can be
used to initialize the next generation of cells. The inclusion
of the “adder” model of cell size homeostasis (29, 30) was
a key modeling decision that made it possible for the E.
coli model to maintain steady growth for multiple genera-
tions. The simulation can also be repeated with different
random seeds given as inputs (due to the existence of sto-
chastic processes within the model, each simulation output
will be different), and the resulting batch of outputs can be
used to evaluate the degree of heterogeneity that can arise
from stochastic processes between otherwise identical cells.
Lastly, the module can be run for different variants of sim-
ulation parameters, and the outputs from these individual
simulations can be compared to discover how the varied
parameters affect the outcome of the simulations.

Output/analysis. The last module (Fig. 2A, output/
analysis) uses the tables written by the simulations to
perform analyses that help interpret the results of the
simulation. Each analysis file produces plots or tables
that pertain to a particular aspect of the simulation,
including balanced growth, transcription rates, and con-
centrations of important molecules, such as RNA poly-
merases or ribosomes. Some analysis scripts optionally
make use of the validation data object that consists of
data taken from literature that was not included in the
simulation data and, thus, was not taken into account
during the simulation. In the E. coli model, a specific set
of validation data was used as a benchmark to validate
the model’s outputs. Details on how the validation was
performed are presented in the following sections.

Data considerations. With the framework to allow
integration of submodels into a cohesive whole in place,
the incorporation of data used to parameterize and
assess the model is the next important aspect of the pro-
ject to consider. Including large amounts of heterogene-
ous data in a whole-cell model is made easier by the fact
that each physiological process can be modeled in a way
best suited to the biology and data available. These data
can come from many different sources, from low-
throughput, highly specific measurements (e.g., single
kcat and Km values for metabolic reaction kinetics) to

high-throughput, omics-scale measurements with many
data points (e.g., RNA sequencing counts of all RNA
transcripts). For low-throughput measurements, these
data points typically need to be aggregated from many
different sources to include genome-wide parameters
appropriate for modeling a whole cell (e.g., in the cur-
rent model, metabolic reaction parameters for 431 reac-
tions were assembled from 301 different sources). On
the other hand, for high-throughput data, care must be
taken for measurement bias if including and comparing
many data sets (e.g., applying normalization techniques
for differential expression in RNA sequencing and
microarray data [31, 32]).

Another important consideration is the temporal and
spatial resolution of data sets. Despite major improve-
ments in single-cell technologies in recent years, many
measurements still come from population-level experi-
ments at fixed time points with no spatial resolution. In
contrast, whole-cell modeling inherently focuses on sin-
gle cells, allows for short time steps (on the order of a
second), and contains compartmental separation (e.g.,
cytoplasm versus periplasm). This means that fine-
grained temporal and spatial information needed to
build whole-cell models often has to be inferred from
average measurements across many cells, each of which
can be at a different point in the cell cycle. Including
dynamic and space-resolved single-cell data will
improve the accuracy and predictive power of whole-
cell models, allowing them to better capture dynamics
that lead to heterogeneous cell populations.

Sometimes measurements from different data sets are not
consistent with each other. For example, omics-level data
(transcriptomics, degradation rates, and translation efficien-
cies) used to determine the number of ribosomes and RNA
polymerases in an E. coli cell did not lead to enough com-
plexes to support doubling of the cell or match more specific
measurements of the number of those complexes in cells (8).
These discrepancies can arise from the fact that many meas-
urements are reported as point values, but in reality, these
measurements represent some uncertainty about the under-
lying physical system, which will lead to uncertainty in the
derived parameters (11). More details on how these inconsis-
tencies can be addressed and how we can learn through this
reconciliation are discussed in “Deep curation,” below.

As with any model, it is also imperative to include valida-
tion (and possibly test) data to assess the model output.
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These data should be orthogonal to the data used to
parameterize the model (e.g., a proteomics data set when
model protein counts are determined from transcriptom-
ics, degradation rates, and translation efficiencies) instead
of being a biological replicate of the data used for parame-
terization (e.g., a transcriptomics data set from a different
laboratory than the transcriptomics data set used to
parameterize the model). Although the model itself can
provide some implicit validation that the mechanism and
data are accurate by looking at high-level behavior (e.g.,
the cell components double and all cell components can
be produced), it is not possible to truly assess the validity
of the data and biological representation described by the
model without validation data.

CURRENTMODEL SNAPSHOT
The E. coli whole-cell modeling project is an ongoing
endeavor, with new features and components being
continuously added to the model. In this section, we
provide a description for a snapshot of the E. coli model
that was most recently released to the scientific
community.

Accessibility. The most recent release of the E. coli
whole-cell model can be freely accessed through the
WholeCellEcoli Release GitHub repository (https://github
.com/CovertLab/WholeCellEcoliRelease). As of August
2020, this repository contains a snapshot of the model that
was used in our original description of this work (8). The
unreleased version of the model that is actively being
developed by our team is maintained in a private GitHub
repository. As this repository is frequently changing and
contains preliminary work at various stages of integration,
access to this repository will be granted for researchers
who would like to directly collaborate on or contribute to
the project. We expect to release updated versions of the
model in the future with corresponding publications that
describe the results and changes of the new version.

Running the model. The instructions on how to set up
the E. coli whole-cell model are explained in detail in the
docs directory of the WholeCellEcoliRelease GitHub repos-
itory. In short, we support two different ways to set up the
environment to properly run the model. The first option is
to run the model within a Docker container. A Docker
image is hosted in the GitHub repository for users to pull,

or a user can build their own Docker image from
Dockerfiles included in the repository. Running a Docker
container from either image will provide the same Python
environment that the whole-cell model was developed in.
The environment includes the correct version of Python
(2.7.16) and all the binary libraries and Python packages
that the model depends on. This method eliminates the
need for users to set up the runtime environment on their
own and is ideal for anyone who wants to quickly run the
model and analyze its outputs. Alternatively, one can also
set up the required Python virtual environment directly on
one’s local machine and run the model inside the environ-
ment. Setting up the Python environment locally requires
many steps that are highly dependent on the user’s com-
puting environment and, thus, is only recommended for
users who wish to participate in the active development of
the model.

Any technical issues encountered while setting up and run-
ning the whole-cell model are welcome to be submitted to
the Issues tab of the WholeCellEcoliRelease repository.

Included functionality. A “complete” whole-cell model
should account for all of the functionality of a living
cell. Because not all genes and biological interactions in
E. coli have been experimentally characterized, a more
realistic goal is to incorporate the functionality of all
known genes to which the E. coli whole-cell model is
progressing. Table 3 shows how many instances of
each type of modeled biological function are currently
implemented in the whole-cell model, including func-
tional genes, metabolites, and viable environmental
conditions. Some of the major functionality includes
transcription, translation, DNA replication, signaling
(including zero-, one-, and two-component systems),
transcription regulation, metabolism (including trans-
port), and cell division. Current simulations exhibit
stable growth and division over many generations and
can respond to certain environmental changes to grow
at different growth rates.

Table 4 shows the numbers of parameters and their sour-
ces that are used to simulate each included functionality of
the whole-cell model. For each functionality, we can count
both the number of simulation parameters (parameters
packaged into simulation data; see “Whole-cell modeling
framework,” above, for details), which are parameters that
are used by the simulation itself, and the number of
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curated parameters (parameters packaged into raw data),
which are raw data points that are directly associated with
an experimental measurement. Note that for some of the
data, the number of simulation parameters does not match
the number of curated parameters; this is because some of
the simulation parameters are not direct copies of the
curated parameters but rather values that are calculated or
estimated from one or more of the curated parameters
through the Parameter Calculator (ParCa) module of the
whole-cell model (Fig. 2). For instance, to model RNA
degradation, each of the 4,558 RNA species that are
included in the whole-cell model needs to be associated
with a parameter (Km) that quantifies its affinity with
endoRNases. Since there were no identified literature sour-
ces that directly report these parameters, we use the meas-
ured half-lives of 3,876 RNA species (33) to derive the
3,876 Km values, assuming that the degradation reactions
follow Michaelis-Menten kinetics. For the 682 RNA spe-
cies that do not have a reported half life, we chose a repre-
sentative value (the average reported half-lives of mRNAs)
to calculate their Km values.

Although progress is continually being made to make the
whole-cell model gene complete, there are certain hurdles
that prevent including all functionality. One of the major

reasons is a lack of knowledge, both in terms of the avail-
able data to parameterize a submodel and the mechanisms
by which molecules interact with each other to give rise to
the observed behavior of actual cells. Measurement techni-
ques are improving, which allows for greater throughput
and higher accuracy, but most available data still require
some level of manual curation to ensure only high-quality
data are used in the model, which is why not all data that
we had initially reviewed were included in this model. In
general, omics-scale measurements allow more functional-
ity to be incorporated in the easiest way by enabling the
inclusion of data in bulk instead of curating thousands of
papers or developing models of individual interactions.
Despite recent advances in utilizing natural language proc-
essing (NLP) algorithms to automatically curate large
numbers of papers (34), a more fine-grained and manual
characterization of pathways and interactions is still
needed in most other cases.

Output and validation. Output from whole-cell models
allows researchers to see a fine-grained representation
of cell physiology that is difficult to measure in vivo.
Although single-cell techniques for measuring the state
of cells have progressed, a comprehensive measurement

TABLE 3 Implemented functionality in the current whole-cell model version, including physiological and modeling functions

Category Function No. included
Gene expression Functional gene products 1,214

RNAs 4,558

Proteins 4,353

Metabolism Metabolite concentrations 140

Total metabolites 1,176

Metabolic reactions 1,839

Enzymes 962

Regulation Signaling reactions 57

Transcription factors 22

TF-gene interactions 438

Other Complexation reactions 1,023

Cell compartments 9

Environments 3

Modeling Processes 13

States 3

Analysis plots 142

Variants (experimental comparisons) 17
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of cell composition is impossible over time due to the
destructive nature of measurement techniques, such as
mass spectrometry or RNA sequencing. Whole-cell
modeling allows for detailed insights into cell behavior
over time by effectively interpolating between fixed
time point or bulk population measurements, which are
often used to parameterize the model. The dynamics of
all molecules in a cell are tracked over time in the simu-
lation, so the simulation outputs can include these
detailed temporal dynamics as well as other values that
are even more difficult to measure experimentally.
Specific cellular dynamics that the model can track and
generate outputs for include, among many others,
counts of all molecules, fluxes of metabolic reactions,
probabilities of transcription initiation for each gene,
total mass of all small metabolites, locations of replica-
tion forks, effective DNA polymerase, RNA polymerase
and ribosome elongation rates, number of RNAs
degraded, and fraction of active RNA polymerases and
ribosomes. An example of an output plot that can be
generated from the model is shown in Fig. 3. The plots

follow the dynamics of events that happen around the
genes rpoA, rpoB, and rpoC, which encode subunits of
the core RNA polymerase enzyme.

As with any model, validation of the output using
previously withheld data gives more confidence in
the results drawn from the model. The large numbers
of data sets available in E. coli make it easier to use
data sets that are preexisting and orthogonal to those
used to parameterize the model in order to verify the
output. However, there are still limitations in finding
validation data sets that include a large number of
outputs of interest (transcripts, proteins, reactions,
etc.) and provide measurements made under appro-
priate conditions that are comparable to the condi-
tions that can be simulated by the whole-cell model.
The orthogonal data sets currently used to validate
the E. coli model are proteomics, fluxomics, and gene
essentiality data, as shown in Table 5. Using these
data, we could verify that the protein counts and the
fluxes of metabolic reactions predicted by the model

TABLE 4 Numbers of simulation parameters, curated parameters, and data sources included in the whole-cell model grouped by
physiological processa

Process Data type
No. of simulation parameters
(simulation data)

No. of curated parameters
(raw data) No. of sources

Metabolism kcat 431 431 301

Km 208 208 155

Small-molecule concentrations 140 140 4

Maintenance energy requirements 2 2 1

External exchange flux presence 54 54 1

Transcription EndoRNase-RNA affinities 4,558 3,876 (RNA half lives) 1

RNase rates 2 3,876 (RNA half lives) 1

Basal RNA expression 4,558 4,288 (RNA expression) 1

Regulated RNA expression 438 900 (expression fold changes) 36

Translation Protein half-lives 4,353 9 2

Protein translation efficiencies 4,353 2,387 1

Signaling Dissociation constants (ligand-TF binding) 56 28 1

Reaction rates for two-component systems 29 8 1

Cell properties Growth related 12 25 1

Division timing 3 3 2

Elongation rates 5 5 1

Cell density 1 1 1
aSimulation parameters are parameters that are directly used in the simulation and can be found in the simulation data object. Each simulation parameter can be
calculated from single or multiple curated parameters. Curated parameters are the raw data points that are each directly tied to an experimental measurement and are
found in the raw data object. The number of sources column represents the number of individual literature sources fromwhich the curated parameters were gathered.
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align with relevant experimental values, with R2 val-
ues of 0.61 and 0.71, respectively (8).

Second, deeper and more exciting validation is performed
with follow-on validation experiments driven by model
predictions. As described previously (7, 8), integrating
data into whole-cell models can be used to make predic-
tions that can be confirmed in vivo. In the E. coli model,
we could make predictions on the degradation rates of cer-
tain proteins based on the predicted discrepancies between
the production and degradation rates of each protein (8).
More details on how the model can be used as a prediction
tool to design validation experiments are discussed in
“Model-driven discovery,” below.

MODEL-DRIVEN DISCOVERY
Building a whole-cell model is just a start to the
assessment of our biological understanding of an or-
ganism. Additional benefits come from applying the
model to generate new knowledge or analyze existing
data and, thus, confirm or update current understand-
ing. Several examples of applying the integrated model
are highlighted below, with more applications dis-
cussed previously (35).

High-throughput discovery. Building a comprehensive
whole-cell model allows researchers to take advantage of a
design-build-test-validate cycle for hypothesis testing and

Simulated dynamics of rpoA, rpoB, and rpoC genes, subunits of the core RNA polymerase
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FIG 3 Example output plot that can be generated from the E. coli whole-cell model. The plots follow the dynamics of cellular events that
happen around the genes rpoA (blue), rpoB (green), and rpoC (red), the products of which eventually become subunits of the core RNA
polymerase (RNAP; gray) for the duration of 4 cell cycles. From top to bottom, the values plotted are the mRNA counts of each gene, the
protein subunit counts (including those complexed into RNAPs), the number of complexation events per time step, total RNA polymerase
counts, fraction of RNA polymerases that are active, and the total number of transcript initiation events that happen per second. Note
that the discontinuities in some of the plots are the direct consequences of cell division events, at which the molecule counts of the
mother cell are split into the two daughter cells. After a cell division event, the plots follow the dynamics of only one of the two daughter
cells.
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validation (Fig. 4). This approach can be completed much
more quickly than relying solely on in vivo experimentation
and can lead to high-throughput discovery. The “design”
stage of this cycle requires data curation and an assessment
of the most appropriate modeling approach, as discussed
above. In the “build” stage, a computational model is cre-
ated that uses the curated data, generates required model
parameters, and solves for updates to the simulated state of
the cell. In the “test” stage, in silico experiments are per-
formed to produce output from the whole-cell model,
which includes the newly added data and model. Finally, in
the “validate” stage, these outputs can be validated by com-
paring to newly generated or already existing (and withheld
from construction of the model) in vivo data. The benefit
to this approach is that once a hypothesis is developed or
tested in silico, it can narrow the in vivo experimental scope
instead of performing a much larger and time-consuming
search in vivo. Since each simulation cell cycle takes about
10 min to complete and parallel computing can be used for
independent simulation cell lineages, an in silico experi-
ment with a large number of perturbations can be queued
up and run in an afternoon. This can be compared to the
several weeks it takes to clone a small set of constructs and
cell lines to perform an experiment in vivo. Assuming the
model already contains a submodel for the hypothesis in
question, iteration and new discovery can occur quite
rapidly.

In the “test” stage of the cycle described above, the con-
structed model can be leveraged for objective optimization,
which can lead to new discoveries. Objective optimization
can be used to determine metaparameters to use in the
model based on an objective to capture a given data set or
to identify parameters (like gene expression levels) to
achieve a certain cellular behavior in the model. For exam-
ple, if the user desired information about how to increase
the growth rate, then maximizing the growth rate could be
set as the objective, and input parameters that relate to gene
expression, degradation rates, reaction rates, or other

desired perturbations could be modified while recording
the resulting growth rate (objective). Describing a target
objective clearly identifies what the desired output should
be and allows for the application of many common
approaches to solve for parameters that will best achieve the
objective. Performing a grid search can be appropriate
when the number of parameters is small. For a larger search
space that is smooth and convex, applying optimization
techniques like gradient descent could lead to an optimal
solution. However, nonconvex heuristics (e.g., simultaneous
perturbation stochastic approximation or genetic algo-
rithms) will likely need to be used due to the highly nonlin-
ear nature of biology and stochasticity of simulations. Some
examples of how objective optimization can be used to
drive discovery are discussed more in the “Model predic-
tions,” below.

In addition to targeted objective optimization, a whole-cell
model can provide a means of performing a high-through-
put screen. Large, genome-scale perturbations can be per-
formed to determine the impact on a wide range of model
outputs. For example, simulating gene knockouts and
comparing predicted growth rates to measured values can
identify discrepancies to investigate. This approach had
been applied with the M. genitalium whole-cell model and
led to kinetic parameter predictions that were later vali-
dated through in vivo experiments. Importantly, these
newly predicted values led to more accurate simulations
once included in the model (27), thereby completing the
cycle and opening up the possibility of another iteration of
the cycle with an improved model.

Another example of how model discovery can lead to
improvements was shown with protein half-life predic-
tions in the E. coli whole-cell model (8). By including mul-
tiple data sets and mechanisms linking RNA expression to
protein levels (“design” and “build” stages), we could pre-
dict a protein degradation rate for every protein in the ge-
nome (“test” stage). For a select group of proteins where

TABLE 5 Validation data set aside for comparison with whole-cell model output, grouped by physiological processa

Process Data type No. of validation data points No. of sources
Metabolism Fluxomics 23 1

Translation Proteomics 4,480 2

Cell properties RNAP and ribosome counts 2 1

Gene essentiality 4,558 1
aValidation data points are experimental measurements that are not used during model construction or simulation but can be compared to model outputs. The
number of sources column shows the number of individual literature sources from which the validation data points were gathered.
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these values were significantly different from the half-life
predicted by the N-end rule hypothesis (36), follow-up
experiments were performed in vitro to confirm these pre-
dictions for seven proteins (“validate” stage) (8). This tar-
geted subset of protein half-life measurements was
confirmed to be different from the N-end rule and then
incorporated in the whole-cell model to improve its pre-
dictive ability.

High-throughput discovery techniques are often meant to
narrow the space of experiments that need to be per-
formed in vivo, leading to faster iteration. Confirmation
experiments can be used to validate the output of the
model, lead to an expansion of the community knowledge
of E. coli, and be used to further refine the whole-cell
model. In this way, collaborations between computational
groups and experimental groups can greatly improve the
overall knowledgebase of this model organism.

Model predictions. The whole-cell model is most use-
ful and has the most potential as a tool to identify emer-
gent properties arising from a large number of factors
and interactions due to the scale of the whole-cell mod-
eling approach and the integration of biological mecha-
nisms that happens inside the model. The interactions
between different genes are known to play a significant
role in physiology and usually lead to nonlinear
responses (37), which can be captured by a whole-cell
model. Often, it is desirable to determine which

parameters or genes work in a synergistic way to lead to
a desired outcome. If the number of parameters is small
enough, using a design-of-experiments approach can
identify the strongest interactions between parameters
(38). With a design-of-experiments approach, research-
ers can use either a full factorial design (every comb-
ination of parameter perturbations is included) to char-
acterize all of the parameter interactions or a fractional
factorial design (a limited subset of combined perturba-
tions is included) to identify main parameter effects
and a subset of interaction effects. A full factorial
approach can quickly become computationally intracta-
ble with a large number of parameters, in which case a
fractional factorial design can still be used to elucidate
many of the important interactions.

High-throughput studies can also identify parameters of in-
terest. As shown in Fig. 5A, for a desired design space, pa-
rameters can be varied and selected based on a range of
optimalities (as indicated by the green regions). Thousands
of parameters in the model (e.g., RNA expression, protein
degradation, etc.) can be varied to identify which ones have
the most significant effect on an objective value (e.g., the
growth rate of the cell, a flux through a pathway, or any other
metric that can be described in the whole-cell model frame-
work). Perturbing many parameters at once and running a
large number of simulations can provide the average effect
that each parameter has on the output. Using multiple-hy-
pothesis adjustment, significant parameters can be identified
as those being outside a z-score cutoff, as shown in Fig. 5B.

Build
Create a model representation in code

Test
Perform simulations to produce
desired output from the model

Validate
Compare outputs to experimental results

def model():
    k1 = 10
    k2 = 5
    ...

python_experiment.py

Design
Identify data and modeling approach

to describe a system

FIG 4 E. coli whole-cell model can allow for a design-build-test-validate cycle that allows for high-
throughput discovery. Design requires curating data and representing a system mathematically. The
new model is then built in code. Executing the code allows for experimentation and produces results
with the possibility of many experiments running from the model. The model results can be compared
with experimental results to inform further model design.
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This method has been demonstrated to be successful in iden-
tifying parameters that contribute most to increasing or
decreasing the growth rate of the simulation (8).

Whole-cell models can even be used to make entirely novel
predictions that fall outside the scope of prior knowledge
included in the model. This was demonstrated with the
original M. genitalium whole-cell model where novel
enzyme functionality was predicted based on a knockout
study that was not consistent with experimental data (7).

Deep curation. When heterogeneous, independent
measurements are made on the properties of a bio-
logical system of interest, a natural assumption to make is
that the measurements are consistent with each other.
Although in many cases this assumption holds true,
whole-cell models can highlight instances of incoherence
between the measurements. In the process of building the
M. genitalium whole-cell model (7), for example, it was
noted that the total mass of DNA within the cell could be
estimated in two different ways: one was to use the meas-
ured mass fraction of DNA (39) and the dry cell mass,
which in turn can be derived from the cell diameter (40),
the cell density (41), and the water content of the cell
(42); the other was to use the genome sequence (43) and
the molecular weights (MWs) of DNA bases (Fig. 6A).

If these independently measured parameters are consistent
with each other, we can be more confident that the

parameters are accurate and, thus, add more value to
hypotheses derived from these parameters. Any inconsis-
tencies between the parameters can prompt us to make
investigations on the source of the discrepancy. In the case
of the mass of DNA in M. genitalium, the mass calculated
from the mass fraction was less than one-third of the mass
calculated from the genome sequence. This discrepancy
could have arisen from errors made in one or more of the
original measurements/parameters that were used to calcu-
late the DNA mass. In this case, it was unlikely that the
large discrepancy arises from errors in the cell diameter,
density, water content, genome sequencing, or molecular
masses of DNA bases, as the experimental techniques used
to measure these values are very straightforward and not
prone to large errors. Thus, the conclusion was that the
direct measurement of the DNA mass fraction in the cell
presumably underestimated the actual value.

The same approach of cross-evaluating heterogeneous data
sets against each other was applied to the E. coli whole-cell
model, albeit in a much “deeper” sense than what had been
done with the DNA mass fraction of M. genitalium
(Fig. 6B). Accordingly, we chose to name this approach
“deep curation” to reflect the multiple layers of curation
that are involved in the cross-evaluation: (i) the data layer,
where raw data are first gathered; (ii) the parameter layer,
where parameters are calculated from raw data; (iii) the
equation layer, where parameters are plugged into equa-
tions that describe the dynamics of the biological system;
(iv) the unified model layer, where equations are tied
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FIG 6 Diagrams of how deep curation could be used to evaluate the cross-consistency of heterogenous data sets. (A) In the building of the M. genitalium whole-
cell model, it was noted that the mass of the total DNA could be calculated using two different methods, one from the measured mass fraction of DNA and the
other from the genome sequence, and was significantly different from each other. This led to a suggestion that the measurement for the mass fraction of DNA
contained errors. (B) In the E. coli whole-cell model, raw data from various sources were tied together into a unified, mechanistic model, using multiple layers of
curation. Certain outputs from the resulting model, however, were inconsistent with reported experimental values, which led us to reevaluate the data sources,
parameters, and equations used in the model to identify the source of the discrepancy. Using a set of criteria, including the reproducibility of results reported in the
literature, we concluded that the mRNA expression data underestimated the expression of genes that encode RNA polymerase and ribosomal subunits.
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together to form a unified model of the cell; and (v) the
output layer, where the model’s outputs are compared with
validation data. Details on each of these layers of curation
are explained in the paragraphs below, with a special focus
on data regarding transcription and translation.

In the building of the E. colimodel, we started by gathering
raw data from numerous sources that quantitatively meas-
ured properties of E. coli cells. Among the raw data, several
sources represented in the first layer of Fig. 6B (the “data”
layer) were used in constructing the transcription and
translation processes, two key processes in the model that
determine the rate of protein production and, in turn, the
rate of cellular growth. The data used here included the
measured RNA mass per cell (44), mass fraction of
mRNAs (45) and proteins (44), mRNA expression (8),
translation efficiencies (46), half-lives of ribosomal proteins
(36), elongation rates and active fractions of RNA polymer-
ases and ribosomes (44), and mRNA half-lives (33).

As described in “Whole-cell modeling framework,” above,
the first step in running a whole-cell simulation involves
the conversion of the raw data into parameters that are
directly used by the simulation (the “parameters” layer).
For transcription and translation, the key parameters cal-
culated in this step include the transcription/translation
probabilities of each gene/mRNA, the activation probabil-
ities of RNA polymerases and ribosomes, and the initial
counts of RNA polymerases and ribosomes. In calculating
these parameters, existing literature or general knowledge
on the cellular process in question can be used to make
certain assumptions, which could become a source of dis-
crepancies between data sets if the assumptions turn out
to be incorrect. For instance, to calculate the transcription
probabilities of each gene, we assumed that the transcrip-
tion rate and the degradation rate of each mRNA must be
balanced, such that the counts of each mRNA species are
at steady state under short timescales.

Next, the parameters calculated in this layer are plugged
into the equations that describe the dynamics of the cellu-
lar processes (the “equations” layer). In transcription, for
instance, the transcription probability, the activation prob-
ability of RNA polymerases, and the current counts of
RNA polymerases determine the current transcription rate
of an RNA species. As in the case with the parameters
layer, these equations themselves are also curated from
existing literature or general knowledge on the underlying
biochemistry of the cellular process, which makes these

equations valid targets of reevaluation should any incon-
sistencies appear in later steps.

In the next layer, these equations are tied together to
form a unified model. In our case, this was the com-
plete E. coli whole-cell model, which consisted of 13
different processes, five of which were directly associ-
ated with the transcription and translation equations in
the previous layer. This “unified model” layer can be
used to generate the final “simulation outputs” layer,
which consists of all simulated outcomes that can be
generated from the unified model. The outputs in this
layer can be directly compared to experimentally meas-
ured values; a significant discrepancy here would sug-
gest that the heterogeneous data sets gathered to
construct the model, including the experimentally
measured value that the simulation outcomes were
compared to, are inconsistent.

Upon our initial run of the E. coli whole-cell model, we
immediately noticed that the simulated cell grew signifi-
cantly slower (doubling time of 125 min) than actual E.
coli cells growing in culture (doubling time of 44 min).
Moreover, the average counts of RNA polymerases and
ribosomes, the key molecules that drive transcription and
translation, were also significantly lower than what has
been observed experimentally (47). This led us to suspect
that one or more elements in the layers of curation we per-
formed to build the model contained significant errors,
which includes the raw data that we gathered from various
sources, the parameters we calculated from the raw data,
the equations that we used to build the related processes
in our model, or the validation data we used to compare
with the simulation outputs.

We chose to reassess the elements that were deemed poten-
tial sources of this inconsistency using three criteria to evalu-
ate the likeliness that each of these data sources may be the
culprit. First, we looked at whether alternate measurements
of the parameter in question exist and whether these alter-
nate values are significantly different from the original val-
ues we had used for the model. Second, we used the whole-
cell model to determine whether adjusting the parameter in
question would enable the model to produce the correct
outputs, in this case, the growth rate of the cell. Lastly, we
checked if the adjusted values we used to produce the cor-
rect growth rate also corrected the counts of RNA polymer-
ases and ribosomes. The only candidate that satisfied all
three criteria was the mRNA expression measurement.
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Alternative data sets for mRNA expression showed us that
the expression levels of key genes can be highly variable
between independent measurements, which suggested that
individual measurements of this data type are vulnerable to
large errors. Through iterative parameter fitting, we could
adjust the expression levels of 58 RNA polymerase and ribo-
somal subunits to be, on average, 61% higher, which suc-
cessfully led to simulations with correct doubling times and
RNA polymerase/ribosome counts (8). Thus, our conclusion
was that the mRNA expression data that we had originally
used as a raw data source underestimated the true expres-
sion levels of most genes that encode subunits of RNA poly-
merases and ribosomes.

Under ideal circumstances, each submodel of the whole-
cell model should be integrated into the larger model in its
original form without the need to make any changes to its
parameters or assumptions. As demonstrated above, how-
ever, there are cases where certain submodels are incom-
patible with each other in a way that is evident through
the outputs of the whole-cell model. Because each of these
submodels are parameterized from experimentally meas-
ured data, any inconsistency between them points toward
a possible avenue of discovery. In some cases, noise or
general inaccuracy in the raw data measurements (the first
layer of deep curation) could be the culprit. In other cases,
an error or a missing piece of knowledge in the underlying
equations that are used to calculate model parameters or
build submodels (the second and third layers of deep cura-
tion) may be the reason for the discrepancies.

In either case, resolving these inconsistencies must start
with a deep dive into how the measurements were origi-
nally made and how the model parameters and equations
were derived in order to identify any potential sources of
errors or missed assumptions. We then can assess whether
addressing these errors in curated data will sufficiently rec-
tify the incompatibilities observed in the whole-cell model,
using criteria described in the example described above. In
the case where an alternative measurement or equation
exists that successfully fixes the model, we can simply
replace the existing component with the newly found al-
ternative. In cases where an appropriate alternative is not
available, we need to determine a compatible set of param-
eters through optimization techniques or determine a
proper modeling approach to best describe the underlying
data while reconciling the submodels. In the case of tran-
scription and translation submodels described above, we
reverse-calculated the required expression levels of RNA

polymerases and ribosomal proteins using the known
doubling times of E. coli and used these values instead of
the experimentally measured expression levels.

The E. coli whole-cell model and the concept of deep cura-
tion provide us with a platform to link heterogeneous data
via a mechanistic model and automatically evaluate the
cross-consistency of the integrated data through the outputs
of the simulation. Deep curation will offer an unprecedented
opportunity to automatically evaluate the validity of data
generated for this model organism, especially as we expand
the model further to include additional functionality. By
identifying areas where the data seem inconsistent, we can
guide future curation efforts by suggesting lines of research
that could resolve the discrepancies and even make predic-
tions for the correct values of certain parameters.

DISCUSSION
The E. coli whole-cell model introduced in this review rep-
resents a launching point for integrating the large amount
of data that is continually generated for E. coli by the sci-
entific community. Whole-cell models aim to maintain
mechanistic representations of biological interactions
while scaling the model up to the genome scale, which is a
key feature that enables these models to make useful pre-
dictions and generate enhanced knowledge of an orga-
nism. Using the E. coli whole-cell model, we could identify
discrepancies between previous measurements made on
this microbe, make predictions on certain parameters and
verify them experimentally, and gain novel insights on the
physiology of this key model organism.

Although the current version of the model does not yet
cover all known functionalities of genes, the whole-cell
modeling project will continue to work toward achieving a
complete whole-cell model of E. coli. There is an ongoing
effort to curate new data to generate more model parame-
ters and to represent additional biological interactions
through mechanistically linked processes. Although many
types of data will be useful for expanding the model, some
of the most valuable data we see at the moment are kinetic
parameters of protein complexation and metabolic reac-
tions, interaction of proteins with the genome, more tran-
scriptomics and quantitative metabolomics data under
different environments, and long-read sequencing of tran-
scripts for better transcription unit structure. As a step to-
ward making the whole-cell model more accessible to the
research community, we recently began a collaboration
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with EcoCyc, a curated database of the genome and bio-
chemical components of E. coli (48), to more closely inte-
grate the whole-cell model with the existing knowledge for
E. coli generated to date. Combined with the deep curation
approach, this integration will enable a rapid cross-valida-
tion of various heterogeneous data sets that have been or
will be curated by EcoCyc. The knowledge gained by this
integration will also be shared to the E. coli community
through EcoCyc, enabling the entire research community
to use the whole-cell model to generate new hypotheses,
confirm understanding of this well-studied organism, and
create useful predictions to speed up discovery. We are
also developing visualization tools for the E. coli model
that will help a broader audience engage with the inner
workings of the whole-cell model.

We hope that the initial release of the E. coli whole-cell
model brings us a step closer to the “complete solution of
E. coli” proposed by Francis Crick. Building such a model
was made possible only by the extensive amounts of data
generated by the entire research community throughout
history. Likewise, further improvements to the model will
be heavily dependent on the contributions from research-
ers across all spectra of experience and expertise.
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