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ABSTRACT
This paper consists of two parts. The first part of the paper is to
propose an explicit robust estimation method for the regression
coefficients in simple linear regressionbasedon thepower-weighted
repeated medians technique that has a tuning constant for deal-
ing with the trade-offs between efficiency and robustness. We then
investigate the lower and upper bounds of the finite-sample break-
down point of the proposed method. The second part of the paper
is to show that based on the linearization of the cumulative distribu-
tion function, the proposed method can be applied to obtain robust
parameter estimators for the Weibull and Birnbaum-Saunders dis-
tributions that are commonly used in both reliability and survival
analysis. Numerical studies demonstrate that the proposed method
performs well in a manner that is approximately comparable with
the ordinary least squares method, whereas it is far superior in the
presence of data contamination that occurs frequently in practice.
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1. Introduction

In an introductory statistics course, we commonly teach students how to determine the
nature of a linear relationship between two quantitative random variables. Let (xi, yi) be an
ordered pair from an experiment for i = 1, 2, . . . , n. Knowing that the Pearson correlation
coefficient is a measure of linear correlation between two sets of data from two random
variables, we are interested in building a simple linear regression model that relates them,
which is given by

yi = β0 + β1xi + εi, (1)

where β0 and β1 are two unknown regression coefficients that stand for the intercept and
slope terms in the simple linear regression model, respectively, and εi’s are independent
and identically distributed random variables with zero mean and finite variance.

To obtain estimates of the regression coefficients β̂0 and β̂1, we usually adopt the least
squares approach that chooses β̂0 and β̂1 to minimize the residual sum of squares (RSS)
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defined as

RSS =
n∑

i=1
ε̂2i =

n∑
i=1

(
yi − β̂0 − β̂1xi

)2
.

By using some simple calculus, we can show that the minimizers, so-called the ordinary
least squares (OLS) estimators of β0 and β1, are given by

β̂1 = Sxy
Sxx

=
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄, (2)

respectively, where x̄ = ∑n
i=1 xi/n and ȳ = ∑n

i=1 yi/n are the sample means.
The OLS estimators in Equation (2) enjoy various desirable statistical properties; see,

for example, Rousseeuw and Leroy [32], for more details. However, these estimators are
highly affected by the presence of data contamination since they depend on the sample
means whose finite-sample breakdown point is 0%. Here, data contamination implies that
there may be one or more observations whose values seem extreme relative to the major-
ity of the observations in a data set. The finite-sample breakdown point of an estimator is
defined as the proportion of incorrect or contaminated observations (i.e. arbitrarily large
or small observations) the estimate of a parameter can deal with before giving estimated
values arbitrarily close to zero (implosion) or infinity (explosion). For more details on the
finite-sample breakdown point, one can refer to Definition 2 of [27]. This finite-sample
breakdown point is commonly based on the ε-replacement breakdown, as observations
are replaced by contaminated values; see [5] and Subsection 1.6.1 of [12]. Thus, the OLS
method suffers a lack of robustness towards outliers, indicating that a single extreme obser-
vation could have a large impact on the whole estimation. This motivates researchers
to replace the OLS method with other methods that are robust against outliers; see, for
example, the references in [3,10,31,33–37], to name just a few.

It is worth mentioning that by rewriting β̂1 as a weighted average, Siegel [34] suggested
the repeated median (RM) estimator for β1 given by

β̃1 = med
1≤i≤n

med
j�=i

yi − yj
xi − xj

.

Siegel [34] showed when all xi’s are distinct, β̃1 has a finite-sample breakdown point of
�n/2�/n and an asymptotic breakdown point of 50%. Here, the asymptotic breakdown
point is the limit of the finite-sample breakdown point as the sample size goes to infinity.

As will be shown, it is reasonable to use the weighted median [6] with powered weights
instead of the inside conventional median in the RM estimator. Thus, we propose the
power-weighted repeated medians (PWRM) estimator which uses the inside weighted
median with powered weights. The weighted median with powered weights is easily com-
puted by using the weighted empirical CDF provided in [7,8]. Using convex hull geometry,
we also provide explicit lower and upper bounds for the finite-sample breakdown point of
the proposedmethod. It is worth pointing out that the PWRMhas a tuning parameter that
deals with the trade-offs between relative efficiency and robustness red(breakdown point)
[21]. The idea of this tuning parameter is similar in spirit to the tuning constants ofHuber’s
M-estimation [15] and the generalized Kullback-Leibler divergence [25]. With a special
choice of the tuning parameter, the PWRM becomes the conventional RM estimator with



1592 C. PARK ET AL.

a breakdown point of 50%. Numerical results showed that with respect to the ratio of the
generalized mean square errors (MSEs), the PWRM method performs well in a manner
that is approximately comparable with the OLS method, whereas it is far superior when
the data contain outliers. In addition, it is shown that by linearizing the CDF of the dis-
tribution, the PWRMmethod can be used to obtain robust parameter estimations for the
Weibull and Birnbaum-Saunders distributions that are commonly used in both reliability
and survival analysis.

The remainder of this paper is organized as follows. In Section 2, we begin by providing
a brief overview of the RM estimator, propose robust explicit estimators for the regres-
sion coefficients in simple linear regression, and then conduct simulations to compare the
performance of various estimators under consideration. In Section 3, we investigate the
lower and upper bounds of the finite-sample breakdown point of the proposed method.
We apply the proposed method for obtaining novel robust parameter estimations for the
Weibull and Birnbaum-Saunders distributions in Section 4. Two real-data examples are
provided for illustrative purposes in Section 5. We provide several concluding remarks in
Section 6 with a main result of the finite-sample breakdown point deferred to Appendix.

2. Robust explicit parameter estimations

In this section, we first review the RM estimators for the regression coefficients in sim-
ple linear regression and then employ the power-weighted repeated medians technique to
develop the PWRM as an alternative in Section 2.1. We carry out simulation studies to
compare the finite-sample performance of various estimators in Section 2.2.

2.1. Power-weighted repeatedmedians

To estimate β1, Siegel [34] considered the repeated median slope estimator given by

β̃1 = med
1≤i≤n

med
j�=i

yi − yj
xi − xj

, (3)

which behaves like a U-statistic [13] except that nested medians are used instead of the
overall mean. We can also obtain the RM estimator for β1 as follows. We observe that after
tedious but simple algebra manipulations, the term Sxy in Equation (2) can be equivalently
rewritten as

Sxy =
n∑

i=1
(xi − x̄)(yi − ȳ) = 1

2n

n∑
i=1

n∑
j=1

(xi − xj)(yi − yj),

which shows that β̂1 can be re-expressed as

β̂1 =
∑n

i=1
∑n

j=1(xi − xj)(yi − yj)∑n
i=1
∑n

j=1(xi − xj)2

=
n∑

i=1

n∑
j=1(j�=i)

[
(xi − xj)2∑n

i=1
∑n

j=1(xi − xj)2

(
yi − yj
xi − xj

)]
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=
n∑

i=1

n∑
j=1(j�=i)

wij

(
yi − yj
xi − xj

)
, (4)

where

wij = |xi − xj|2∑n
i=1
∑n

j=1 |xi − xj|2 = |xi − xj|2∑n
i=1
∑n

j=1(j�=i) |xi − xj|2 .

Thus, we can view β̂1 as the weighted mean of observations (yi − yj)/(xi − xj)’s with
weights wij’s. In particular, by assuming that the weight wij is given by

wij = |xi − xj|p∑n
i=1
∑n

j=1(j�=i) |xi − xj|p ,

we observe that when p ≈ 0, the weights wij can be approximated by 1/{n(n − 1)},
resulting in the following approximated estimator for β [34] given by

β̂1 ≈ 1
n(n − 1)

n∑
i=1

n∑
j=1(j�=i)

(
yi − yj
xi − xj

)
= 1

n

n∑
i=1

1
n − 1

n∑
j=1(j�=i)

(
yi − yj
xi − xj

)
.

Using this approximation and simply replacing the mean parts
( 1
n
∑n

i=1 and 1
n−1

∑
j�=i

)
with the nested medians, we obtain the following RM estimator of β1 given by

β̃1 = med
1≤i≤n

med
j�=i

yi − yj
xi − xj

.

After β̂1 is estimated, one can estimate β0 using the hierarchical structure given by

β̃0 = med
1≤i≤n

(
yi − β̂1xi

)
. (5)

One can also estimate β0 using

β̃0 = med
1≤i≤n

med
j�=i

xiyj − xjyi
xi − xj

. (6)

The estimator in Equation (5) has the same asymptotic variance as the one in Equation (6),
while it is computationallymore economical than the latter. For amore detailed discussion,
see, for example [14]. Thus, in this paper, we only use the estimator in Equation (5) for
estimating β0 in the simple linear regression model in Equation (1).

Considering the weights wij in (4) and the above relation with the RM estimator, we are
motivated to use the weighted median instead of the conventional median in the inside of
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the RMmethod. In doing so, we have

β̂1 = med
1≤i≤n

wmed
j�=i

(
yi − yj
xi − xj

∣∣∣w∗
i

)
, (7)

wherew∗
i = (wi1, . . . ,wi,i−1,wi,i+1 . . . ,win). For each of i = 1, 2, . . . , n, wemay choose the

weights wij’s, such that

wij = |xi − xj|p∑n
j=1(j�=i) |xi − xj|p , (8)

where j = 1, 2, . . . , i − 1, i + 1, . . . , n. Since the denominator in Equation (8) is just a
normalizing constant, it should satisfy

n∑
j=1(j�=i)

wij = 1

for each of i = 1, 2, . . . , n. Without loss of generality, we denote (8) by

wij ∝ |xi − xj|p (9)

for j = 1, 2, . . . , i − 1, i + 1, . . . , n. Note that the constant p in Equation (9) plays like a tun-
ing constant that evaluates a trade-off between efficiency and robustness. Of particular note
is that as p → 0, the PWRM estimator in Equation (7) becomes the RM in Equation (3)
having a breakdown point of 50%.

By following thework of [7,8], we could employ theweighted empirical CDF to calculate
the weighted median in Equation (7). For brevity, we assume that there are n observations
{x1, x2, . . . , xn} with their corresponding weights, denoted by {w1,w2, . . . ,wn}, respec-
tively. Let I(A) be the indicator function of an event A, such that I(A) = 1 when A is true
and I(A) = 0 when A is false. Then the weighted empirical CDF is given by

F̂w(t) =
n∑
j=1

wjI(xj ≤ t),

where wj > 0 and
∑n

j=1 wj = 1. This weighted empirical CDF includes the conven-
tional empirical CDF as a special case, when wj = 1/n. If we denote Q̂wL(ξ) = inf{u :
F̂w(t) ≥ ξ} and Q̂wR(ξ) = inf{u : F̂w(t) > ξ}, then the weighted median is obtained by
Q̂wL(1/2) = inf{u : F̂w(t) ≥ 1/2} or Q̂wR(1/2) = inf{u : F̂w(t) > 1/2} with Q̂wL(1/2) ≤
Q̂wR(1/2). However, unlike the work of [8], who used Q̂wL(1/2) as the weighted median,
we suggest the average of the two medians given by {Q̂wL(1/2) + Q̂wR(1/2)}/2.

2.2. Simulation studies

For illustrative purposes, we here carry out a small simulation to compare the finite-sample
performance of various estimators under consideration of the absence and presence of
data contamination. We generate yi = 1 + 2xi + εi, where the values of xi are given by
x1 = 1, x2 = 2, . . . , x10 = 10, and εi’s are randomly generated fromN(0, 1).We iterate this
experiment I = 105 times.
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It is known that a direct comparison of two estimators (say, θ̂1 and θ̂2) is to compare
their variances (Section 2.2 of [19]) given by

RE(θ̂2 | θ̂1) = Var(θ̂1)
Var(θ̂2)

× 100%,

which is often referred to as the relative efficiency (RE) of θ̂2 with respect to θ̂1. Since the
above RE compares the variances of the two univariate parameter estimators, it may be
inappropriate to directly apply this RE to our estimation framework, in which we focus on
the bivariate parameter estimations, namely the intercept and slope together.

When dealing with multivariate estimators, as is the case in our study, it is desirable
to construct a single numerical measure that represents the variation of the multivari-
ate estimators [28,29]. A common method is to use the determinant of the estimated
variance-covariance matrix, so-called the generalized variance [17]. When there is no data
contamination, the intercept and slope estimators are unbiased. However, when there is
data contamination, they are not unbiased anymore. To tackle the biasedness issue of an
estimator in the presence of data contamination, wemay use theMSE as an alternative and
then consider the determinant of the following matrix with the true intercept and slope
being β0 = 1 and β1 = 2 given by

SM =

⎛
⎜⎜⎜⎜⎝
1
I

I∑
k=1

(β̂0,M,k − 1)2
1
I

I∑
k=1

(β̂0,M,k − 1)(β̂1,M,k − 2)

1
I

I∑
k=1

(β̂0,M,k − 1)(β̂1,M,k − 2)
1
I

I∑
k=1

(β̂1,M,k − 2)2

⎞
⎟⎟⎟⎟⎠ ,

whereM denotes the estimation method, k indicates the kth experiment, and I is the total
number of iterations in the simulation. The determinant of SM is often termed as the gener-
alized MSE. Then the ratio of the generalizedMSEs allows us to compare the performance
of the two different estimation methods based on their variance and bias as well. Then the
RE (%) using the methodM with the corresponding sample is defined as

RE(M | OLS) = det(SOLS) with no contamination
det(SM) with corresponding sample

× 100%.

To further investigate the effect of data contamination, we artificially contaminate one
response value by setting y1 = 100. Simulation results are summarized in Table 1. As
expected, theOLSmethod performs the best when there is no data contamination, whereas
it is the worst in the presence of data contamination. We provide the scatter plots of the
bivariate parameter estimates using the OLS, RM, PWRM (p = 1), and PWRM (p = 2)
methods in Figure 1, where we only use two hundred resulting data points to avoid extreme
cluttering with all the 105 observations. The circle denotes the parameter estimation with
no contamination and the cross denotes that with contamination. We observe from this
figure that the OLSmethod is seriously biased when there is data contamination, but other
robust methods are not. We also observe that PWRM method generally outperforms the
conventional RMand that the improvement is quite noticeable, especially when there exists
data contamination. Finally, we note that the power p in the weights (wij ∝ |xi − xj|p, j �= i)
does not change the results much in this case for the values of p considered here.
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Figure 1. The parameter estimates obtained using (a) OLS, (b) RM, (c) PWRM (p = 1), and (d) PWRM
(p = 2).

Table 1. The values of the generalized MSEs and REs.

OLS RM PWRM (p = 1) PWRM (p = 2) PWRM (p = 1/2)

No contamination
MSE 0.00120 0.00304 0.00230 0.00225 0.00235
RE(%) 100.00 39.45 52.25 53.48 51.16
Contaminated sample
MSE 0.02124 0.00675 0.00571 0.00651 0.00550
RE(%) 5.66 17.80 21.04 18.43 21.83

3. Finite-sample breakdown point

In this section, we provide the lower and upper bounds of the finite-sample breakdown
point for the PWRM estimators for the regression coefficients in simple linear regression.
Unlike the conventional RM, its finite-sample breakdown point depends on the weights
and it has lower and upper bounds. For more details on the finite-sample breakdown
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points, one can refer to Definition 2 of [27]. Since geometry plays an important role
in obtaining these bounds of the breakdown points, we briefly introduce the geometry
originally provided by [7].

For notational convenience, we assume that there are n observations {x1, x2, . . . , xn}
with their corresponding weights {w1,w2, . . . ,wn}, respectively. First, we consider the
upper bound as follows. Let w(j)’s be the values of the order statistics, such that w(1) ≤
w(2) ≤ · · · ≤ w(n). We assume that the observations, xi’s, are contaminated one by one
starting from the one with the smallest weight in a pattern, such that the observation cor-
responding to its weight w(1) is contaminated first, the one with w(2) next, and so on. Let
bk = ∑k

j=1 w(j). Then, considering that the conventional RM is resistant when there is less
than 50% contamination, the weightedmedian is resistant while bk < 1/2. Thus, the upper
bound is obtained as εU = ∑n

k=1 I(bk < 1/2)/n. Next, we consider the lower bound as
follows. We assume that the observations, xi’s, are contaminated one by one starting from
the one with the largest weight. Then the observation with its weight w(n) is contaminated
first, the onewithw(n−1) next, and so on. Let ak = ∑k

j=1 w(n+1−j). Similar to the case of the
upper bound, the minimum breakdown point is obtained as εL = ∑n

k=1 I(ak < 1/2)/n.
Now suppose that we have weights wij’s as in Equation (9). Then the lower and upper

bounds of the finite-sample breakdown point are given by

εL = min1≤i≤n
∑n−1

k=1 I(
∑k

�=1 wi(n−�) < 1/2)
n − 1

and

εU = max1≤i≤n
∑n−1

k=1 I(
∑k

�=1 wi(�) < 1/2)
n − 1

,

respectively, where wi(�) be the values of the order statistics such that 0 < wi(1) ≤ wi(2) ≤
. . . ≤ wi(n−1) for each of i = 1, 2, . . . , n. For a more detailed proof, we refer the interested
reader to Theorem A.2.

4. Practical applications

In this section, we apply the PWRMmethod for obtaining novel robust estimators for the
Weibull distribution in Section 4.1 and the Birnbaum-Saunders distribution in Section 4.2
by linearizing their respective CDFs.

4.1. Weibull distribution

A random variable X is said to follow the two-parameter Weibull distribution if its CDF
can be written as

F(x) = 1 − exp
{
−
( x
θ

)α}
,

where θ > 0 and α > 0 represent the scale and shape parameters, respectively. It can be
easily shown that the CDF of a Weibull random variable can be linearized as

log
(− log(1 − pi)

) = −α log θ + α log x(i), i = 1, . . . , n, (10)
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Table 2. The values of the generalized MSEs and REs for the Weibull distribution.

OLS RM PWRM (p = 1) PWRM (p = 1/2) PWRM (p = 1/4)

No contamination
MSE 0.00246 0.00471 0.00272 0.00303 0.00354
RE(%) 100.00 52.39 90.61 81.24 69.61
With contamination (δ = 10)
MSE 0.02628 0.00515 0.00436 0.00406 0.00432
RE(%) 9.38 47.88 56.48 60.74 57.018867

where x(i)’s are the values of the order statistics, such that x(1) ≤ x(2) ≤ · · · ≤ x(n), and
pi = F(x(i)), which can be easily estimated by using the plotting position, an increasing
step function jumping at x(i). There are several different versions of the plotting positions
in the literature. One of the most popular plotting positions is

pi =

⎧⎪⎪⎨
⎪⎪⎩

i − 3/8
n + 1/4

for n ≤ 10

i − 1/2
n

for n ≥ 11
, (11)

which is due to [2,38]. Formore details of a comparison of these plotting positions, we refer
the interested reader to [22].

By denoting y∗
i = log(− log(1 − pi)), x∗

i = log x(i), β∗
0 = −α log θ , and β∗

1 = α, we can
rewrite Equation (10) as

y∗
i = β∗

0 + β∗
1 x

∗
i , i = 1, . . . , n.

Thereafter, based on observations {(x∗
1, y

∗
2), . . . (x

∗
n, y∗

n)}, we can easily calculate the esti-
mate of β∗

1 , denoted by β̂∗
1 , by using the RM estimator in Equation (3) and the PWRM esti-

mator in Equation (7). After β̂∗
1 is obtained, we can estimate β̂∗

0 easily using Equation (5).
After β̂∗

0 and β̂∗
1 are obtained, we obtain the original parameter estimators by reparametriz-

ing as

α̂ = β̂∗
1 and θ̂ = e−β̂∗

0 /β̂∗
1 .

We carry out a Monte Carlo simulation to compare the performance of the OLS, RM
and PWRMmethods. For the PWRMmethod, we consider p = {1, 1/2, 1/4}. We generate
n = 20 observations from the Weibull distribution with θ = 1 and α = 2. We repeat this
experiment 105 times and summarize the results in Table 2. It is known that some esti-
mators can break down under a single bad observation. For more details, one can refer to
Section 11.2 of Huber and Ronchetti [16]. Thus, in this paper, to investigate the sensitiv-
ity of the considered methods in the presence of data contamination, we replace the first
observation with a large outlier (say, 10 in this simulation) and rerun the above simulation
again. Numerical results are also reported in Table 2. We observe that the PWRMmethod
always outperforms the RM method for all the values of p = {1, 1/2, 1/4}. Of particular
note is that when p = 1, the RE is 90.61% with no contaminated data and is 56.48% with
contaminated data. However, the OLS only achieves the RE of 9.38%, due to its lack of
robustness. Thus, we prefer the use of the PWRMmethod with p = 1 in this Weibull case.
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Table 3. The values of the generalized MSEs and REs for the Birnbaum-Saunders distribution.

OLS RM PWRM (p = 1/2) PWRM (p = 1/4) PWRM (p = 1/8)

No contamination
MSE 0.01178 0.03319 0.02703 0.02734 0.02931
RE(%) 100.00 35.49 43.57 43.09 40.20
With contamination (δ = 100)
MSE 0.33387 0.06092 0.16732 0.07466 0.06358
RE(%) 3.53 19.34 7.04 15.78 18.53

4.2. Birnbaum-Saunders distribution

A random variable X is said to follow the two-parameter Birnbaum-Saunders distribution
if its CDF can be written as

F(x) = 


[
1
α

(√
x
β

−
√

β

x

)]
,

where
(·) is the CDF of the standard normal distribution, and α > 0 and β > 0 represent
the shape and scale parameters, respectively. It can be easily shown that the CDF of the
Birnbaum-Saunders distribution can be linearized as

√
x(i)


−1(pi) = −
√

β

α
+ 1

α
√

β
· x(i), (12)

where x(i)’s are the values of the order statistics. By letting y∗
i = √x(i)


−1(pi), x∗
i = x(i),

β∗
0 = −√

β/α, and β∗
1 = 1/(α

√
β), we can rewrite Equation (12) as

y∗
i = β∗

0 + β∗
1 x

∗
i .

In a similar manner as done for the Weibull case, we first obtain the PWRM estimators of
the regression coefficients above, denoted by β̂∗

0 and β̂∗
1 , respectively. We then obtain the

original parameter estimators of the Birnbaum-Saunders distribution by reparametrizing
as

α̂ = 1√
−β̂∗

0 β̂∗
1

and β̂ = − β̂∗
0

β̂∗
1
.

We again conduct aMonte Carlo simulation to compare the performance of the considered
methods. For the PWRM method, we consider p = {1/2, 1/4, 1/8}. We generate n = 20
observations from the Birnbaum-Saunders distribution with α = 2 and β = 1. We repeat
this experiment 105 times and summarize the results in Table 3. To investigate the effect
of a contaminated value, we replace the first observation with 100 and rerun the above
simulation. Numerical results are also provided in Table 3. We observe that the PWRM
method outperforms the RM method in the absence of data contamination and that the
PWRMmethod with p = 1/8 behaves similarly to the RMmethod in the presence of data
contamination. Consequently, we suggest the use of the PWRMmethod with p = 1/8 for
the Birnbaum-Saunders case.
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Table 4. The data set from Example 8.1 of [18].

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Figure 2. (a)Generalizedvariance fromLOOcross-validationand (b) Lower andupperbreakdownpoints
with the Weibull Data.

5. Illustrative examples

In this section, we illustrate the practical applications of the PWRM method for estimat-
ing the unknown parameters of the Weibull distribution in Section 5.1 and the Birnbaum
Saunders distribution in Section 5.2 through two-real data examples as discussed below.

5.1. Weibull data

Weconsider a real-data example originally provided by [20]. This data set is used frequently
for the Weibull model analysis; see, for example, Example 8.1 of [18,24]. Twenty-three
ball bearings were under endurance tests and the numbers to failures (in millions of
revolutions) from these tests are provided in Table 4.

As aforementioned, the PWRM has the tuning parameter p which deals with the trade-
offs between efficiency and robustness [21]. To determine the tuning parameter p, we can
perform the leave-one-out cross-validation (LOOCV) method as follows. In this exam-
ple, we have n = 23 training sets of size 22. For each of n training sets with p given, we
first estimate the shape and scale parameters and then calculate the generalized variance
[17] based on the n pairs of shape and scale parameter estimates. We repeated the above
LOOCVmethod for each of p = 0(0.1)5. The results are summarized in Figure 2(a). Aswill
be detailed, in Figure 2(b), we also provide the lower and upper breakdown points which
are calculated based on Theorem A.2 for each of p = 0(0.1)5. We observe from Figure 2
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Figure 3. Estimates of the Weibull parameters: (a) shape and (b) scale with p = 1.

that the optimal value of p based on the value of generalized variance is around three. How-
ever, when p = 3, the lower breakdown point is too small. When p is between one and
two, there is a small increase in the value of the generalized variance but the value of the
lower breakdown point increase significantly. Thus, we recommend the tuning parameter
p between one and two.

To investigate the sensitivity to an outlier or data contamination, one can consider the
influence function [4,11] or ε-influence function [25], etc. It is well known that an esti-
mator does not break down as an observation in the sample becomes arbitrarily large
when an influence function is bounded. But, in this case, it may be extremely difficult or
impossible to obtain the conventional influence function. Thus, we consider an empirical
approach analogous to the underlying idea of the influence function by investigating how
the parameter estimates are affected by the contamination level. For more details on the
implementation of this idea, see Figure 2 of [28], Figures 7 and 8 of [25], 5 of [26], Fig-
ures 1 and 2 of [30] Figure 3 of [27]. To this end, we replace the first observation (17.88)
with δ, whose value ranges from 1 to 500 in increments of 1.We draw the plot of the param-
eter estimates versus δ in Figure 3 (p = 1) and Figure 4 (p = 2). Note that each convex
hull is constructed using aik = ∑k

�=1 wi(n−�) and bik = ∑k
�=1 wi(�) for k = 1, 2, . . . , n − 1

as seen in Figure A1, where wi(�) are the values of the order statistics of wij such that
0 < wi(1) ≤ wi(2) ≤ · · · ≤ wi(n−1). Thus, for i = 1, 2, . . . , 23, we can draw the twenty-three
convex hulls as in Figure 5. Using TheoremA.2 (the largest convex hull), we can obtain the
lower and upper bounds for the finite-sample breakdown point of the PWRMmethod. In
particular, when p = 1, we have 5/22 (lower bound) and 16/22 (upper bound), indicating
that its finite-sample breakdown point should be between 22.7% and 72.7%. With p = 2,
we have 2/22 (lower bound) and 19/22 (upper bound). Thus, the finite-sample breakdown
point should be between 9.1% and 86.4%. With p = 3, we have 1/22 (lower bound) and
20/22 (upper bound) which give 4.5% and 90.9%.
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Figure 4. Estimates of the Weibull parameters: (a) shape and (b) scale with p = 2.

Figure 5. Convex hulls using the Weibull data set: (a) p = 1 and (b) p = 2.

5.2. Birnbaum-Saunders data

We consider the data set from [1] about fatigue life (in 105 cycles) to failure of aluminum
coupons. This data set is often used for the Birnbaum-Saunders model; see, for example,
Table I of [23]. These data are also provided in Table 5.

To determine the tuning parameter p, we perform the LOOCVmethod as done before.
In this example, we have n = 101 training sets of size 100. Similar to the case of theWeibull
data, we repeat this LOOCV method for each of p = 0(0.1)5 and calculate the general-
ized variance. The results are summarized in Figure 6. We observe from Figure 6 that
the optimal value of p based on the value of generalized variance is around one. Thus,
we recommend the tuning parameter p between half and two.
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Table 5. The data set from Table I of [23].

3.70 7.06 7.16 7.46 7.85 7.97 8.44 8.55 8.58 8.86 8.86
9.30 9.60 9.88 9.90 10.00 10.10 10.16 10.18 10.20 10.55 10.85
11.02 11.02 11.08 11.15 11.20 11.34 11.40 11.99 12.00 12.00 12.03
12.22 12.35 12.38 12.52 12.58 12.62 12.69 12.70 12.90 12.93 13.00
13.10 13.13 13.15 13.30 13.55 13.90 14.16 14.19 14.20 14.20 14.50
14.52 14.75 14.78 14.81 14.85 15.02 15.05 15.13 15.22 15.22 15.30
15.40 15.60 15.67 15.78 15.94 16.02 16.04 16.08 16.30 16.42 16.74
17.30 17.50 17.50 17.63 17.68 17.81 17.82 17.92 18.20 18.68 18.81
18.90 18.93 18.95 19.10 19.23 19.40 19.45 20.23 21.00 21.30 22.15
22.68 24.40

Figure 6. (a)Generalizedvariance fromLOOcross-validationand (b) Lower andupperbreakdownpoints
with the Birnbaum-Saunders Data.

Figure 7. Estimates of the Birnbaum-Saunders parameters: (a) shape and (b) scale with p = 1/2.
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Figure 8. Estimates of the Birnbaum-Saunders parameters: (a) shape and (b) scale with p = 1.

Figure 9. Convex hulls using the Birnbaum-Saunders data set: (a) p = 1/2 and (b) p = 1.

To investigate the sensitivity to an outlier or data contamination, we replace the first
observation (3.70) with δ, whose value ranges from 1 to 100 in increments of 1. We draw
the plot of the parameter estimates versus δ in Figure 7 (p = 1/2) and Figure 8 (p = 1) and
the convex hulls in Figure 9 for each of i = 1, 2, . . . , 101. We observe that when p = 1/2,
we have 33/100 (lower bound) and 66/100 (upper bound), indicating that the finite-sample
breakdown point should be between 33% and 66%. Also, with p = 1, we have 23/100
(lower bound) and 76/100 (upper bound), indicating that the finite-sample breakdown
point should be between 23% and 76%.

6. Concluding remarks

In this paper, we have proposed a newmethod of robust parameter estimation of the regres-
sion coefficients in simple linear regression based on the power-weighted repeatedmedians
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technique. The proposed method not only has a single tuning constant that allows us to
deal with the trade-offs between relative efficiency and robustnessmeasured by breakdown
points but also includes the repeated medians as a special case with the tuning parameter
being zero. When the power parameter is zero, the lower breakdown point is highest and
the generalized variance tends to have a larger value which reduces the relative efficiency.
Thus, we recommend the use of a desired p based on the cross validation along with the
breakdown point which corresponds to p.

In addition, we have derived the lower and upper bounds of the finite-sample break-
down point of the proposed method. It has been shown that through linearizing the
cumulative distribution function technique, the proposed method can be generalized to
derive novel robust parameter estimations for theWeibull and Birnbaum–Saunders distri-
butions that are commonly used in both reliability and survival analysis. Numerical results
from simulation studies and real data examples demonstrated the proposed method per-
forms well in a manner that is approximately comparable with existing methods, whereas
it is far superior when the data contain outliers that occur frequently in practice.

Finally, the R codes used for this research can be found on the web below:

https://github.com/AppliedStat/R-code/tree/master/2024a
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Appendix

We assume that there are n observations, denoted by x1, x2, . . . , xn. Suppose that we estimate the
slope parameter using Equation (7) with the corresponding weights given by Equation (8). For the
weights, we usewij in Equation (9). Letwi(�)’s be the values of the order statistics ofwij such that 0 <

wi(1) ≤ wi(2) ≤ · · · ≤ wi(n−1) for each of i = 1, 2, . . . , n. In the following lemma, we show that the
sequences aik = ∑k

�=1 wi(n−�) and bik = ∑k
�=1 wi(�) for k = 1, 2, . . . , n − 1 are concave and convex,

respectively, for each of i = 1, 2, . . . , n. These properties play an important role in understanding
the geometry of the lower and upper bounds of the finite-sample breakdown point of the proposed
estimator.

LemmaA.1: The sequences aik = ∑k
�=1 wi(n−�) and bik = ∑k

�=1 wi(�) are both strictly increasing for
each of i = 1, 2, . . . , n. In addition, {(k, aik) : k = 0, 1, 2, . . . , n − 1} with a0 = 0 and {(k, bik) : k =
0, 1, 2, . . . , n − 1} with b0 = 0 construct the convex hull of the polygon.

Proof: This proof is based on the results of [7]. Since aik − ai,k−1 = wi(n−k) > 0 and bik − bi,k−1 =
wi(k) > 0, it is easily seen that aik and bik are strictly increasing for each of i = 1, 2, . . . , n. Since
2aik − (ai,k−1 + ai,k+1) = wi(n−k) − wi(n−k−1) ≥ 0, it is immediate from Definition 1 of [39] that
aik is concave. Similarly, bik is convex since 2bik − (bi,k−1 + bi,k+1) = wi(k) − wi(k+1) ≤ 0. Thus,
(k, aik) and (k, bik) for k = 1, 2, . . . , n − 1 construct the upper and lower hulls, respectively, for each
of i = 1, 2, . . . , n. Then, using both (k, aik) and (k, bik), we can easily construct the convex hull of
the polygon [9], which completes the proof.

�

Let Wik = {∑m∈Ik
wim : forall Ik ⊆ Jn} for k = 1, 2, . . . , n − 1, where Jn = {1, 2, . . . , n − 1}

and Ik is a k-element subset ofJn. Then, since aik = ∑k
�=1 wi(n−�) is the sum of the k largest values

of wij and that bik = ∑k
�=1 wi(�) is the sum of the k smallest values, the set Wik is bounded by aik

(upper) and bik (lower) for each of i = 1, 2, . . . , n. Thus, all the points in∪n−1
k=1({k} × Wik) are within

the convex hull of the polygon constructed by Lemma A.1.

TheoremA.2: Suppose that we have weights wij as in Equation (9). Then the lower and upper bounds
of the finite-sample breakdown point are given by

εL = min1≤i≤n
∑n−1

k=1 I(
∑k

�=1 wi(n−�) < 1/2)
n − 1

https://doi.org/10.1002/0471725382
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Figure A1. An illustration of the ith convex hull constructed by aik and bik .

and

εU = max1≤i≤n
∑n−1

k=1 I(
∑k

�=1 wi(�) < 1/2)
n − 1

.

Proof: Let wi(�)’s be the values of the order statistics of wij, such that 0 < wi(1) ≤ wi(2) ≤ . . . ≤
wi(n−1) for each of i = 1, 2, . . . , n. Using Lemma A.1, we can construct the convex hull as seen in
Figure A1. Thus, for each i, we have kiL = ∑n−1

k=1 I(aik < 1/2) and kiU = ∑n−1
k=1 I(bik < 1/2), where

aik = ∑k
�=1 wi(n−�) and bik = ∑k

�=1 wi(�). Since

εL = min1≤i≤n kiL
n − 1

and εU = max1≤i≤n kiU
n − 1

,

we have the results. This completes the proof of Theorem A.2. �

As seen in Figure A1, we construct the ith convex hull. For each of i = 1, 2, . . . , n, we can con-
struct the convex hull repeatedly, which results in the n convex hulls as seen in Figures 5 and 9
in the illustrative examples. Thus, we can obtain the lower and upper bounds of the finite sample
breakdown point using the above theorem.
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