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Heat shock protein 90 (Hsp90), a conserved molecular chaperone
for a specific set of proteins critical for signal transduction includ-
ing several oncogenic proteins, has been recognized as a promis-
ing target for anticancer therapy. Hsp90 inhibition also sensitizes
cancer cells to DNA damage. However, the underlying mechanisms
are not fully understood. Here, we provide evidence that Hsp90 is
a general regulator of phosphatidylinositol 3-kinase-related pro-
tein kinase (PIKK) family proteins, central regulators of stress
responses including DNA damage. Inhibition of Hsp90 causes a
reduction of all PIKK and suppresses PIKK-mediated signaling. In
addition, Hsp90 forms complexes with RUVBL1 ⁄ 2 complex and
Tel2 complex, both of which have been shown to interact with all
PIKK and control their abundance and functions. These results sug-
gest that Hsp90 can form multiple complexes with the RUVBL1 ⁄ 2
complex and Tel2 complex and function in the regulation of PIKK,
providing additional rationale for the effectiveness of Hsp90
inhibition for anticancer therapy, including sensitization to DNA
damage. (Cancer Sci 2012; 103: 50–57)

eat shock protein 90 (Hsp90) is an evolutionarily con-
served molecular chaperone that plays a critical role in cel-

lular homeostasis through stabilization and activation of several
‘‘client proteins’’ involved in a variety of cellular processes,
including signal transduction, transcriptional regulation and cel-
lular stress responses.(1,2) Hsp90 works cooperatively with the
Hsp40-Hsp70 chaperone system in an ordered pathway, where
Hsp90 binds to a client protein at the late stage of protein
folding and facilitates its stability, structural maturation and
assembly of a complex.(3) Hsp90 is an ATPase, and ATP
binding ⁄ hydrolysis-driven conformational changes of Hsp90 are
required for its chaperone activity.(4–6) In this Hsp90 chaperone
cycle, Hsp90 forms dynamic complexes with co-chaper-
ones ⁄ factors that regulate the Hsp90 ATPase cycle and the client
interactions with Hsp90.(2,7) The dynamic and transient nature
of the Hsp90 chaperone complexes and the unstable character of
Hsp90 clients have hindered the establishment of a comprehen-
sive picture of the Hsp90 chaperone system.

Geldanamycin and its derivatives, such as 17-allylamino-17-
desmethoxygeldanamycin (17-AAG), compete with ATP bind-
ing and inhibit Hsp90 chaperone activity, leading to degradation
of client proteins.(8,9) Importantly, these Hsp90 inhibitors selec-
tively kill cancer cells compared to normal cells. This selectivity
means that Hsp90 is a crucial facilitator of oncogene addiction
and cancer cell survival and a molecular target for cancer ther-
apy.(10) The mechanisms of the cancer selectivity of Hsp90
inhibitor are not fully understood but are partly explained by the
observation that the bulk of Hsp90 exists in active Hsp90
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complexes in cancer cells, whereas most Hsp90 in normal cells
exists in a latent, uncomplexed state.(11) Therefore, analyses of
the biochemical nature of the specific Hsp90-client complexes
in cancer cells are critical for understanding of the cancer speci-
ficity of Hsp90 inhibitors.

In addition to the selective killing of cancer cells, Hsp90
inhibitors sensitize cancer cells to radiation and DNA damaging
agents. Hence, the combination of the Hsp90 inhibition and radi-
ation ⁄ DNA damaging therapeutic drugs is a promising strategy
for anticancer therapy.(12,13) Although multiple mechanisms par-
ticipate in the radio-sensitization caused by Hsp90 inhibition,
impaired DNA repair pathways seem to be responsible for at
least part of that. For example, an Hsp90 inhibitor 17-AAG
blocks homologous recombination repair induced by DNA dou-
ble-strand breaks (DSB) in prostate or lung cancer cells but not
normal fibroblasts.(14) 17-AAG also impairs the Fanconi anemia
(FA) DNA repair pathway, whose activation requires ataxia tel-
angiectasia mutated (ATM)-and Rad3-related (ATR)-mediated
phosphorylation of FANCA, one of the FA proteins.(15,16)

Another Hsp90 inhibitor, 17-N-dimethylaminoethylamino-17-
demethoxygeldanamycin (17DMAG), compromises the DSB
repair through an impairment of ionizing radiation (IR)-respon-
sive activation of DNA-dependent protein kinase catalytic sub-
unit (DNA-PKcs) and ATM.(17)

The phosphatidylinositol 3-kinase-related protein kinase
(PIKK) family includes ATM, DNA-PKcs and ATR, as well as
suppressor with morphological effect on genitalia 1 (SMG-1),
mammalian target of rapamycin (mTOR) and transforma-
tion ⁄ transcription domain-associated protein (TRRAP) in mam-
mals. SMG-1 is an essential factor of nonsense-mediated mRNA
decay (NMD), one of the mRNA quality control systems,(18,19)

and TRRAP regulates transcription as a shared component of
histone acetyl transferase complexes.(20) SMG-1 and TRRAP
are also involved in DNA damage signaling and repair.(21–23)

mTOR senses nutrient status and coordinates cellular transla-
tional activity and cell growth ⁄ proliferation.(24)

Recent studies have revealed the existence of common regula-
tors of all PIKK members, RuvB-like 1 (RUVBL1), RUVBL2
and telomere maintenance 2 (Tel2). RUVBL1 and RUVBL2 are
conserved ATPases belonging to the ATPases with associated
diverse cellular activities (AAA+) family.(25) They form a com-
plex (RUVBL1 ⁄ 2) and participate in diverse cellular processes,
including transcription, RNA modification, telomere mainte-
nance and DNA repair.(26) RUVBL1 ⁄ 2 interacts with all PIKK
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members and controls the PIKK abundance at least at the
mRNA level.(27) RUVBL1 ⁄ 2 also regulates functional complex
formation of SMG-1 during NMD.(27) Tel2 interacts with all
PIKK and regulates the stability of PIKK proteins.(28) Tel2 also
functions in the recruitment of Tel1 (ATM ortholog in S. cerevi-
siae) to DNA damage sites and the Rad3 ⁄ ATR-mediated DNA
damage response.(29–31) We recently found that Hsp90 inhibition
causes the downregulation of PIKK members,(27) as observed
for knockdown ⁄ knockout of either RUVBL1 ⁄ 2 or Tel2. This
raises an intriguing possibility that at least a part of the Hsp90-
induced sensitization to DNA damage can be attributed to the
reduction and ⁄ or inactivation of these PIKK. However, it has
been reported, controversially, that Hsp90 inhibition does not
affect the abundance of PIKK.(17,32)

In this study, we first evaluated the effect of the Hsp90 inhibi-
tion on PIKK abundance and PIKK-mediated signaling. We
confirm that Hsp90 inhibition decreases the abundance of all
PIKK proteins (ATM, ATR, DNA-PKcs, mTOR, SMG-1 and
TRRAP). Importantly, Hsp90 inhibition severely compromises
PIKK-mediated signaling pathways. In addition, Hsp90 physi-
cally interacted with RUVBL1 ⁄ 2, Tel2, and their associating
proteins. Both RUVBL1 ⁄ 2 and Tel2 interacted with two evolu-
tionarily conserved Hsp90 co-factors, NOP17 and RPAP3.
These results strongly support the notion that Hsp90 can form
diverse protein complexes with RUVBL1 ⁄ 2 and ⁄ or Tel2, and
that it acts as a general PIKK regulator.

Materials and Methods

Plasmids, antibodies, siRNA and inhibitor. pcDNA5 ⁄ FRT ⁄ TO ⁄
NTAP-GST and pcDNA5 ⁄ FRT ⁄ TO ⁄ NTAP-SMG-10 have been
described previously.(27) pcDNA5 ⁄ FRT ⁄ TO ⁄ NTAP-NOP17 and
pcDNA5 ⁄ FRT ⁄ TO ⁄ NTAP-RPAP3 were constructed by the
cloning of each cDNA fragment to the pcDNA5 ⁄ FRT ⁄ TO ⁄
NTAP vector using standard methods.

Anti-Tel2 and anti-Tti2 antisera were generated against
recombinant human Tel2 (aa 624–691) or human Tti2 (aa 8–
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Fig. 1. Inhibition of heat shock protein 90 (Hsp90) activity decreases the
(PIKK) proteins and the downstream signaling. (A–F) HeLa TetOff c
oxygeldanamycin (17-AAG) for 12 or 24 h, then the cells were untreated,
cell lysates were analyzed by western blotting with the indicated antibod
and UV-untreated samples were loaded. The anti-P-S ⁄ TQ antibody recog
phosphorylation sites by ATM ⁄ ATR ⁄ SMG-1 ⁄ DNA-PKcs (E, lower panel). As
AAG treatment (E, lower panel). ATM, ataxia telangiectasia mutated; A
catalytic subunit; mTOR, mammalian target of rapamycin; SMG-1, suppre
transcription domain-associated protein.
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108) fused to glutathione S-transferase (GST). The anti-SMG-1,
Upf1, SMG-10 and Phosho-Upf1 (clone 3B8 or 8E6) antibodies
have been described previously.(19,33–35) Antibodies to
Hsp90a ⁄ b (#4874; Cell Signaling Technology, Beverley, MA,
USA), RUVBL1 (#BMR00431; Biomatrix, Chiba, Japan and
#sc-15259; Santa Cruz Biotechnology, Santa Cruz, CA, USA),
RUVBL2 (#612482; BD Transduction Laboratories, Franklin
Lakes, NJ, USA), RNA polymerase II subunit 5 (RPB5)
(#S3157_EP; Euromedex, Souffelweyersheim, France), DNA-
PKcs (#A300-519A; Bethyl Laboratories, Montgomery, TX,
USA), ATM (#2873; Cell Signaling Technology), ATR (#ab1;
Calbiochem, Darmstadt, Germany), mTOR (#2972; Cell Signal-
ing Technology), TRRAP (#A301-132A; Bethyl), Akt (#9272;
Cell Signaling Technology), Chk1 (#sc-8408; Santa Cruz), P-
Chk1 (Ser345) (#2348; Cell Signaling Technology), Chk2
(#2662; Cell Signaling Technology), P-Chk2 (Thr68) (#2661;
Cell Signaling Technology), p70 S6K (#sc-230; Santa Cruz), P-
p70 S6K (Thr389) (#9205; Cell Signaling Technology), P-S ⁄ TQ
ATM ⁄ ATR substrate (#2851; Cell Signaling Technology), JNK
(#15701A; BD Pharmingen, San Diego, CA, USA), unconven-
tional prefoldine RPB5 interactor (URI) (#A301-164-1; Bethyl),
nucleolar protein 17 (NOP17) (#H00055011-M05; Abnova, Tai-
pei, Taiwan), RNA polymerase II associated protein 3 (RPAP3)
(#H00079657-B01P; Abnova), Hsp70 (#SPA-810; Stressgen,
Victoria, BC, Canada), Myosin IIa (#M8064; Sigma, St. Louis,
MO, USA), GAPDH (#ab8245; Abcam, Cambridge, MA, USA),
nuclear cap binding protein subunit 1, 80kDa (CBP-80)
(#10349-1-AP; Protein Tech Group, Chicago, IL, USA), b-actin
(#A1978; Sigma) and a-tubulin (#T6199; Sigma) were obtained
commercially.

The following siRNA target sequences were used: RUVBL1,
siGENOME duplex D-008977-02 (Dharmacon, Lafayette, CO,
USA); RUVBL2, siGENOME duplex D-012299-03 (Dharma-
con); SMG-10, siGENOME duplex J-014188-05 (Dharmacon);
Tti2, Hs_Tti2_2 HP Validated siRNA SI00401660 (Qiagen,
Valencia, CA, USA); Tel2, Hs_KIAA0683_4 HP Validated
siRNA SI00454909 (Qiagen); URI, Hs_C19orf2_4 HP
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Validated siRNA SI00322462 (Qiagen); RPB5, Hs_POLR2E_3
HP Validated siRNA SI00689073 (Qiagen); NOP17,
Hs_FLJ20643_4 HP Validated siRNA SI00120148 (Qiagen);
RPAP3, Hs_FLJ21908_3 HP Validated siRNA SI00399875
(Qiagen); DNA-PKcs, #1: Hs_PRKDC_ 8_HP Validated siRNA
SI02663633 (Qiagen), #2: Hs_ PRKDC_2_HP Validated siRNA
SI00093079 (Qiagen); ATM, #1: Hs_ATM_4_HP Validated
siRNA SI00000847 (Qiagen), #2: Hs_ATM_14_HP Validated
siRNA SI03068506 (Qiagen); ATR, #1: Hs_ATR_12_HP Vali-
dated siRNA SI02664347 (Qiagen), #2: Hs_ATR_2_HP Vali-
dated siRNA SI00023107 (Qiagen); mTOR, #1: Hs_FRAP1_7
_HP Validated siRNA SI03023587 (Qiagen), #2: Hs_FRAP1_8
_HP Validated siRNA SI03064985 (Qiagen); SMG-1, #1:
Mm_2610207I05Rik_4 HP Validated siRNA SI02765546 (Qia-
gen), #2: GTGTATGTGCGCCAAAGTA; TRRAP, #1:
Hs_TRRAP_2_HP Validated siRNA SI00052591 (Qiagen), #2:
Hs_TRRAP_3_HP Validated siRNA SI00052598 (Qiagen); and
NS siRNA, All Star Negative Control siRNA (Qiagen).

17-allylamino-17-desmethoxygeldanamycin (17-AAG) (Sigma)
was used.

Cell culture and transfection. HeLa TetOff cells (TaKaRa
Clontech, Shiga, Japan) and Flp-In T-Rex HEK293 cells (Invitro-
gen, Carlsbad, CA, USA) were grown in DMEM supplemented
with 10% FBS, 100 U ⁄ mL penicillin and 100 lg ⁄ mL streptomy-
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52
cin. Tet-inducible SBP streptavidin binding peptide (SBP)-
tagged FlpIn T-Rex HEK 293 stable cells have been described
previously.(27) siRNA transfections were performed in 12-well or
6-well plates using siLentFect (BioRad, Hercules, CA, USA)
according to the manufacturer’s protocol, and cells were har-
vested 60 h later. Plasmid transfections were performed in 15-cm
dishes using Lipofectamine LTX (Invitrogen), according to the
manufacturer’s protocol, and cells were harvested 36 h later.

Affinity purification and mass spectrometry. Affinity purifica-
tion and mass spectrometry analysis were performed as
described previously.(27)

Immunoprecipitation and western blot analysis. HeLa TetOff
cells were lysed in T-buffer (20 mM Hepes-NaOH at pH 7.5,
150 mM NaCl, 0.05% Tween 20, 2.5 mM MgCl2, 0.5 mM
DTT, 100 nM okadaic acid [Calbiochem], protease inhibitor
cocktail [Roche Applied Science, Indianapolis, IN, USA], phos-
phatase inhibitor cocktail [Roche] and 100 lg ⁄ mL RNaseA
[Qiagen]). The soluble fractions were incubated with antibodies
for 1 h at 4�C with gentle rotation. Subsequently, the soluble
fractions were incubated with Dynabeads protein G (Invitrogen)
for an additional 1 h at 4�C with gentle rotation. After washing
with RNase()) lysis buffer, the immunocomplexes were boiled
in SDS sample buffer, and analyzed by western blotting. All
proteins in western blot experiments were detected with Lumi-
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Light plus western blotting substrate (Roche) or Immobilon
Western (Millipore, Billerica, MA, USA) and quantified with a
Lumino-Imager, LAS-3000, and Science Lab 2001 Image
Gauge software (Fuji Photo Film, Tokyo, Japan).

Results

Heat shock protein 90 inhibition causes reduction of all
phosphatidylinositol 3-kinase-related protein kinase and phos-
phatidylinositol 3-kinase-related protein kinase-mediated stress
signaling. To re-examine the role of Hsp90 on the abundance
of PIKK proteins, we treated HeLa TetOff cells with 17-AAG,
an Hsp90 inhibitor, and incubated for 12 or 24 h. We showed
that Hsp90 inhibition caused apparent downregulation of ATM,
ATR and DNA-PKcs (Fig. 1A). The different effect of Hsp90
inhibition on PIKK abundance from previous reports might
reflect the difference in sensitivity to Hsp90 of each cell
line.(17,32) Moreover, the Hsp90 inhibition attenuates IR-
induced Chk2 phosphorylation at Thr68, which is mediated by
ATM and induces cell cycle checkpoint to response DNA dam-
age (Fig. 1B). In addition, IR-induced phosphorylations of puta-
tive ATM ⁄ ATR substrates were decreased under the Hsp90
inhibition (Fig. 1E, lower panel). Consistent with these results,
the inhibition of Hsp90 mediates impairment of IR-induced cell
cycle checkpoints and significant delay of DNA repair.(17) Fur-
thermore, Hsp90 inhibition reduced the protein amount of other
PIKK, mTOR, SMG-1 and TRRAP (Fig. 1A). In addition, sup-
pression of ATR-mediated Chk1 phosphorylation at Ser345
accompanied by a significant reduction of Chk1 was observed,
which is consistent with a previous study (Fig. 1C).(36) These
results suggest that at least a part of the sensitization to DNA
damage caused by Hsp90 inhibition results from the reduction
of PIKK and impaired PIKK-mediated DNA damage responses.
We further investigated the effects of Hsp90 inhibition on
mTOR-mediated or SMG-1-mediated signaling. mTOR controls
cell size ⁄ proliferation and translation activity in response to the
nutrient status through the phosphorylation of p70S6 kinase.(24)

The Hsp90 inhibition reduced the mTOR-mediated phosphory-
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lation of p70S6 kinase at Thr389, with moderate reduction of
p70S6 kinase (Fig. 1D). Because mTOR is activated by Akt,
one of the Hsp90 clients shown in Figure 1A, we cannot
exclude the possibility that the reduced phosphorylation of
p70S6 kinase is a consequence of the downregulation of Akt.
The SMG-1-mediated Upf1 phosphorylation at Ser1078 ⁄ 1096 is
essential for nonsense-mediated mRNA decay, a quality control
system that selectively degrades aberrant mRNA with prema-
ture termination codons.(18) The Hsp90 inhibition obviously
decreased the SMG-1-mediated Upf1 phosphorylation (Fig. 1E,
upper panel). No apparent reduction of a-tubulin was observed
with the Hsp90 inhibition (Fig. 1F). Taken together, these
results indicate that Hsp90 is required for the maintenance of
all PIKK proteins and PIKK signaling.

Heat shock protein 90 physically interacts with the common
regulators of phosphatidylinositol 3-kinase-related protein
kinase, RUVBL1 ⁄ 2 and Tel2. Previous studies have revealed that
PIKK members can be regulated by common factors, the RU-
VBL1 and RUVBL2 complex (RUVBL1 ⁄ 2) and Tel2.(27,28) The
physical interactions between RUVBL1 and Hsp90 and between
RUVBL1 and Tel2 led us to hypothesize that Hsp90 is involved
in the PIKK regulation together with RUVBL1 ⁄ 2 and ⁄ or
Tel2.(27) To evaluate this possibility, we examined physical
interactions among Hsp90, RUVBL1 ⁄ 2 and Tel2.

We confirmed co-purification of Hsp90 with RUVBL1 from a
HEK 293-cell extract stably expressing SBP-tagged RUVBL1
(Fig. 2A).(27) In addition, endogenous Tel2 co-immunoprecipi-
tated Hsp90 from HeLa TetOff cell extract (Fig. 2B).

Tel2 form an evolutionally conserved complex with SMG-10
(also known as Tti1) and Tti2.(37–39) In our experiments, tight
associations among Tel2, SMG-10 and Tti2 were also observed
(Fig. 2B,C). As with Tel2, both SMG-10 and Tti2 co-immuno-
precipitated RUVBL1 ⁄ 2 and Hsp90, indicating that the Tel2
complex associates with RUVBL1 ⁄ 2 and Hsp90 (Fig. 2B,C).

RUVBL1 ⁄ 2 has been identified in a complex named R2TP,
containing Tah1 (RPAP3 in mammals) and Pih1 (NOP17 in
mammals),(40) and URI-prefoldin complex together with RPB5
(see the schemes in Fig. 2).(41) Because the Tel2 complex com-
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Fig. 4. Knockdown of RUVBL1 ⁄ 2 and Tel2 interacting proteins affects
the phosphatidylinositol 3-kinase-related protein kinase (PIKK)
signaling. (A,B) HeLa TetOff cells were transfected with the indicated
siRNA. Sixty hours after transfection, total cell lysates were analyzed
by western blotting with the indicated antibodies. Same knockdown
samples were used in panels A,C,D in Figure 3, and panels A and B in
Figure 4. To estimate protein abundances, 33 and 11% of the
nonsilencing (NS) control were loaded. (C,D) HeLa TetOff cells were
transfected with the indicated siRNA. Sixty hours later, cells were
untreated, treated with 100 J ⁄ m2 of UV (C), or 10 Gy IR (D), and
incubated for 1 h. Total cell lysates were analyzed by western blotting
with the indicated antibodies. The anti-P-S ⁄ TQ antibody recognizes
phosphorylated serine or threonine in the SQ motif, potential
phosphorylation sites by ATM ⁄ ATR ⁄ SMG-1 ⁄ DNA-PKcs (B,D). Relative
phosphorylation levels of p70S6K (A), Upf1 (B), Chk-1 (C), Chk-2 (D)
were indicated under each blot. ATM, ataxia telangiectasia mutated;
ATR, ATM-and Rad3-related; DNA-PKcs, DNA-dependent protein
kinase catalytic subunit; SMG-1, suppressor with morphological effect
on genitalia 1.
ponents interact with RUVBL1, as confirmed in Figure 2A, we
probed the antibodies against these RUVBL1 interacting pro-
teins,(27,42) NOP17, RPAP3, RPB5 and URI, for the purified
RUVBL1 complex and Tel2, SMG-10 or Tti2 immunoprecipi-
tates. As expected, all of them co-purified and co-immunopre-
cipitated with SBP-RUVBL1 and endogenous Tel2, SMG-10
and Tti2, respectively (Fig. 2A–C). To confirm these protein
interactions, endogenous URI immunoprecipitate from HeLa
TetOff cell extract was analyzed. As shown in Figure 2C, URI
co-immunoprecipitated with Hsp90, RUVBL1 ⁄ 2, Tel2, and their
interacting proteins. These results indicate that Hsp90,
RUVBL1 ⁄ 2, Tel2, SMG-10, Tti2, NOP17, RPAP3 and URI can
physically interact and form complexes.

Because both RUVBL1 ⁄ 2 and Tel2 are common PIKK bind-
ing proteins, we investigated whether RUVBL1 ⁄ 2-interacting
and Tel2-interacting proteins also associate with PIKK. We
probed PIKK antibodies to purified SBP-RUVBL1 complexes
(Fig. 2A), immunoprecipitates of endogenous Tel2, Tti2
(Fig. 2B), SMG-10 and URI (Fig. 2C), and purified SBP-
NOP17, PARP3 and SMG-10 complexes (Fig. 2D). The results
indicate that all protein tested in this study can interact with
all PIKK, although the significances differ among precipitated
proteins (Fig. 2). Taken together, Hsp90, RUVBL1 ⁄ 2, Tel2,
SMG-10, Tti2, NOP17, RPAP3 and URI can physically inter-
act with PIKK, probably as a part of complex.

RUVBL1 ⁄ 2, Tel2 and their associated proteins are involved in
phosphatidylinositol 3-kinase-related protein kinase signaling. The
physical association of the RUVBL1 ⁄ 2-associated and Tel2-asso-
ciated proteins with PIKK suggests the possibility that they are
involved in the regulation of PIKK abundance and ⁄ or PIKK sig-
naling, like RUVBL1 ⁄ 2 and Tel2. To test this, we analyzed
knockdown effects of each molecule. As shown in Figure 3A, the
siRNA efficiently knocked down each molecule. We found close
relationships among RUVBL1 ⁄ 2, Tel2 and their associated pro-
teins (Fig. 3A). For instance, SMG-10 and Tti2 interdependently
regulated the other protein abundance. NOP17 also depended on
RPAP3 for its abundance. Knockdown of RUVBL1, RUVBL2 or
Tel2 also decreased the abundance of SMG-10, Tti2 and NOP17.
NOP17 was also reduced by the knockdown of Tel2. Tel2 was
decreased by the knockdown of RUVBL1, RUVBL2, SMG-10,
Tti2, RPB5 or NOP17. The abundance of RUVBL1 and RUVBL2
was decreased to <50% by the knockdown of RPB5 or NOP17.
These observations indicate an interdependent relationship
among RUVBL1 ⁄ 2, Tel2 and their associated proteins. It might
reflect the change of their protein stability, based on the previous
reports.(38,43)

In addition, Hsp90 inhibition clearly decreased the abundance
of Tel2 and SMG-10 (Fig. 3B), suggesting a possibility that the
Tel2 complex components are Hsp90 clients. Note that any
knockdown of RUVBL1 ⁄ 2-associated and Tel2-associated pro-
teins did not decrease the abundance of Hsp90 (Fig. 3A).

Consistent with previous reports, knockdown of RUVBL1,
RUVBL2 or Tel2 decreased the abundance of PIKK
(Fig. 3C).(27,28) However, a slight reduction of DNA-PKcs and
ATM was observed by the knockdown of Tti2, SMG-10, URI or
NOP17 in this transient knockdown experiment (Fig. 3C).
Long-term knockdown of SMG-10 or Tti2 probably results in
the downregulation of all PIKK, as reported in recent report.(38)

RPB5 knockdown also modestly affects the abundance of
DNA-PKcs, mTOR and TRRAP; however, it might influence
transcription activity, given that RPB5 is an RNA polymerase
subunit (Fig. 3C).(44)

In contrast, knockdown of RUVBL1 ⁄ 2-associated and Tel2-
associated proteins partially affected PIKK signaling. For exam-
ple, the relative level of the mTOR-mediated phosphorylation of
p70S6 kinase at Thr389 without additional stimulation was
decreased by the knockdown of URI, NOP17 or RPAP3, in
addition to the knockdown of RUVBL1 or RUVBL2 (Fig. 4A).
54
The relative level of SMG-1-mediated Upf1 phosphorylation at
Ser1078 ⁄ 1096 was reduced only by the RUVBL1, RUVBL2 or
RPB5 knockdown but not affected by others (Fig. 4B). How-
ever, the phosphorylation of a 140-kDa protein detected by a
phospho-S ⁄ TQ antibody, which recognizes phosphorylated
ATM ⁄ ATR substrates, was reduced by the knockdown of Tti2
and SMG-10, in addition to the knockdown of RUVBL1, RU-
doi: 10.1111/j.1349-7006.2011.02112.x
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VBL2 or Tel2 (Fig. 4B). Furthermore, strong reduction of the
phosphorylation of a 110-kDa protein detected by the phospho-
S ⁄ TQ antibody was observed by the knockdown of RPB5, but
not others (Fig. 4B). In analogy to the situation with Hsp90
inhibition, Chk1 is downregulated by the knockdown of RU-
VBL1 ⁄ 2, Tel2 and their associated proteins (Figs 1D,4C). The
relative level of ATR-mediated phosphorylation of Chk1 at
Thr345 caused by UV irradiation was slightly decreased by the
knockdown of RUVBL2, Tti2 and NOP17 (Fig. 4C). In con-
trast, knockdown of RUVBL1 ⁄ 2-associated and Tel2-associated
proteins had different effects on the relative level of ATM-med-
iated phosphorylation of Chk2 at Thr68 in response to IR.
Whereas knockdown of RUVBL1 or RPB5 decreased the Chk2
phosphorylation, knockdown of Tti2, SMG-10, URI, NOP17 or
RPAP3 enhanced it (Fig. 4D). These results suggest that RU-
VBL1 ⁄ 2-associated or Tel2-associated proteins are involved in
the PIKK signaling and that their degree of contribution differs
according to each PIKK and its substrate. However, we cannot
exclude the possibility that the different effect is resulting from
knockdown efficiency of each molecule.

RUVBL2 and Hsp90 are substrates of S ⁄ TQ-directed protein
kinases,(45) ATM, ATR, DNA-PKcs and SMG-1. This suggests
possible mutual regulatory mechanisms among PIKK. We ana-
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lyzed knockdown effects of each PIKK member on other PIKK
protein abundance. As shown in Figure 5, knockdown of DNA-
PKcs or mTOR caused downregulation of ATM.

Discussion

In this study, we showed that Hsp90 regulates all PIKK mem-
bers and PIKK-mediated signaling (Fig. 1). This finding high-
lights the importance of Hsp90 as a key regulator of signal
transduction and a target of cancer therapy. ATM, ATR and
DNA-PKcs are critical regulators of DNA damage response and
repair,(46–48) and other PIKK members, SMG-1 and TRRAP, are
also involved in these processes.(21–23) DNA repair pathway has
been studied as a target for cancer therapy in combination with
DNA-damaging drugs.(49) Moreover, NMD inhibition, including
SMG-1 inactivation, has attracted attention as a novel anti-can-
cer strategy by induction of tumor immunity.(50,51) mTOR con-
trols cell proliferation and angiogenesis, and mTOR inhibitors
have been developed as antitumor agents.(52) Hsp90 is required
for the maintenance of all PIKK and PIKK-mediated signaling,
as we have shown here. Therefore, Hsp90 inhibition is expected
to yield additive effects of all PIKK disruption-mediated defect
of cellular function mentioned above. Thus, our results support
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the effectiveness of Hsp90 inhibition for cancer therapy and pro-
vide new insight into the mechanisms of the anticancer effects
of Hsp90 inhibition, including the sensitization to DNA damage.
Because co-chaperone expression can affect the sensitivity of
cancer cells to Hsp90 inhibitors, putative Hsp90 co-factor com-
plex (see below) might be an additional molecular target to
enhance the efficacy of Hsp90 inhibitors in cancer therapy. (53,54)

In addition to the regulation of the PIKK family by Hsp90,
we demonstrated the relationship between Hsp90 and PIKK
common regulators RUVBL1 ⁄ 2 and Tel2. Hsp90 physically
interacts with RUVBL1 ⁄ 2 and Tel2 (Fig. 2A,B). Inhibition of
any molecule causes PIKK reduction and suppression of PIKK
signaling (Figs 1,3C,4).(27,28) These observations give rise to the
idea that RUVBL1 ⁄ 2 and Tel2 function in PIKK regulation
together with Hsp90. One possibility is that RUVBL1 ⁄ 2 and
Tel2 act as Hsp90 co-factors. In support of this idea, both RU-
VBL1 ⁄ 2 and Tel2 interact with two Hsp90 co-factors, Pih1
(NOP17 in mammals) and Tah1 (RPAP3 in mammals)
(Fig. 2A,B),(40) which bind to Hsp90 and affect its ATPase
activity.(55,56) Because all of RUVBL1, Tel2, SMG-10, Tti2 and
URI interact with Hsp90, RPAP3 and NOP17, and share interac-
tors (Fig. 2), a large protein complex is expected to act with
Hsp90. Indeed, it was recently reported that RUVBL1 ⁄ 2,
RPAP3 and URI interact with Tel2 through NOP17 in a phos-
pho-dependent manner of Tel2, and this interaction is required
for the maintenance of SMG-1 and mTOR.(57)

In contrast, we observed different knockdown effects of each
molecule on the PIKK signalling, as shown in Figure 4. This
result might reflect the different roles of each molecule, such as
a positive or negative regulator in the co-factor complex, or a
different degree of contribution to each PIKK. It is also possible
that multiple co-factor complexes function with Hsp90. In sup-
port of this possibility, the interaction of Tel2 complex with
R2TP ⁄ URI complex is dispensable for Tel2 to regulate the sta-
bility of ATM, ATR and DNA-PKcs.(57) In this view, further
investigations are required to clarify the role of each molecule
in the Hsp90 function and the specificity on each PIKK.

Intriguingly, Hsp90, RUVBL1 ⁄ 2, RPAP3 and NOP17 par-
ticipate in other cellular processes, including small nucleolar
ribonucleoprotein complex (snoRNP) maturation(43,58) and tel-
omerase complex assembly.(59,60) Furthermore, RPB5 is a
subunit of RNA polymerases(44) and all of RUVBL1 ⁄ 2,
RPAP3, NOP17 and URI not only physically associate with
RNA polymerase II transcription machinery(42) but also are
involved in their assembly, together with Hsp90.(61) There-
fore, R2TP ⁄ URI complex might broadly function with Hsp90
and such functions are not limited to PIKK. However, the
involvement of the Tel2 in these processes has not been
reported. Considering that Tel2 directly interacts with ATM
and mTOR(28) and that Tel2 is depend on the Tel2 complex
formation for its abundance (Fig. 3A),(39) Tel2-containing
complex is likely to be a mediator complex specialized for
PIKK to link them to Hsp90.
56
As another possibility, RUVBL1 ⁄ 2 or Tel2 complex itself is
an Hsp90 client and the reduction of PIKK induced by the
Hsp90 inhibition is an indirect effect of the inactivation of RU-
VBL1 ⁄ 2 and ⁄ or Tel2 complex. In fact, Hsp90 inhibition causes
apparent reduction of Tel2 and SMG-10 (Fig. 3B), and the inter-
action between Tel2 and PIKK is depend on Hsp90.(38) How-
ever, the physical associations between Hsp90 and at least two
PIKK, DNA-PKcs(62) and SMG-1,(27) support that PIKK are
direct Hsp90 clients.

As for the control of the PIKK abundance, some differ-
ences have been observed between RUVBL1 ⁄ 2 and Tel2.
Whereas RUVBL1 ⁄ 2 affects the mRNA abundance of PIKK
proteins except for SMG-1,(27) Tel2 affects the stability of
PIKK proteins but does not affect their mRNA abundance.(28)

This might be one reason for the strong effect of RUVBL1 ⁄ 2
knockdown on PIKK abundance. Moreover, mutual regulatory
mechanisms exist at least among DNA-PKcs, ATM, mTOR
and SMG-1 (Fig. 5).(63) Therefore, PIKK abundance is proba-
bly regulated by multiple mechanisms, including Hsp90-medi-
ated pathway.

In addition to the maintenance of PIKK abundance, RU-
VBL1 ⁄ 2, Tel2 and SMG-10 regulate the functional complex for-
mation of ATR, mTOR and SMG-1.(27,64,65) Hsp90 inhibition
also impairs the interaction between ATM and MRN complex
without affecting ATM abundance.(17) Given these observations,
Hsp90 potentially participate in the PIKK signaling in a positive
manner through facilitating assembly of PIKK protein com-
plexes not only during the PIKK protein synthesis. Further
investigation is required to reveal the precise roles of Hsp90 and
its putative co-factor complex containing RUVBL1 ⁄ 2 and Tel2
in PIKK regulation.
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