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Abstract

Metabolomic epidemiology is the high-throughput study of the relationship between metabolites 

and health-related traits. This emerging and rapidly growing field has improved our understanding 

of disease aetiology and contributed to advances in precision medicine. As the field continues to 

develop, metabolomic epidemiology could lead to discoveries of diagnostic biomarkers predictive 

of disease risk, aiding in earlier disease detection and better prognosis. In this review, we 

discuss key advances facilitated by the field of metabolomic epidemiology for a range of 

conditions, including cardiometabolic diseases, cancer, Alzheimer’s disease, and COVID-19, with 
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a focus on potential clinical utility. Core principles in metabolomic epidemiology, including 

study design, causal inference methods, and multi-omic integration, are briefly discussed. Future 

directions required for clinical translation of metabolomic epidemiology findings are summarised, 

emphasising public health implications. Further work is needed to establish which metabolites 

reproducibly improve clinical risk prediction in diverse populations and are causally related to 

disease progression.

1. Introduction

Metabolomic epidemiology is the study of the relationship between a high-throughput 

set of small-molecules collectively known as the human metabolome and health-related 

traits in population-based epidemiologic studies. The “metabolome”, coined in 1998, is the 

complete set of metabolites synthesised by a biological system1 (see Box 1 for common 

metabolomic epidemiology terminologies). Although “metabolomic epidemiology” was 

broadly introduced in 20212, such investigations have been ongoing for over two decades, 

as rapid technological developments have made the measurement of small molecules more 

efficient, accurate, and accessible for clinical and research applications.

Findings from this emerging field have already offered timely insights into disease aetiology, 

early detection, and progression, which could inform preventive, screening, and treatment 

strategies (Fig. 1). As metabolites represent the end product of many biological processes 

and are sensitive to environmental exposures, changes in metabolite levels could indicate 

disease risk at early subclinical stages of disease when prevention is still possible. For 

instance, a recent study reported that metabolomic states, or profiles, derived from 160 

circulating metabolites were associated with incidence rates of diseases including coronary 

heart disease, type 2 diabetes (T2D), dementia, chronic obstructive pulmonary disease, liver 

disease, and lung cancer, with metabolomic states significantly improving the discriminative 

performance of established clinical predictors3.

Several notable recent efforts have advanced the field of metabolomic epidemiology. The 

COnsortium of METabolomics Studies (COMETS) was established in 2014 to promote 

large-scale human metabolome collaborations4, currently including >380,000 participants 

from 79 cohorts. COMETS has informed the harmonization of metabolites between 

platforms and is anticipated to further our understanding of how metabolites relate to 

disease aetiology and progression. The Finnish Institute for Health and Welfare (THL) 

Biobank has metabolomic data for >40K participants, with early investigations identifying, 

for example, metabolic differences between risk of peripheral artery disease versus coronary 

artery disease (CAD)5,6. In 2023, the UK Biobank publicly released metabolomic data 

on 280K participants, with medical records available for >700 common diseases, with 

previous data releases providing disease risk insights beyond commonly investigated 

cardiometabolic conditions7. Further, the NHLBI Trans-Omics for Precision Medicine 

(TOPMed) programme is generating metabolomic data on >37K diverse participants, with 

plans for longitudinal data generation. Lastly, although standard quality control guidelines 

for untargeted metabolomics are currently lacking, the metabolomic Quality Assurance and 

Quality Control Consortium recently provided guidance on the reporting of quality control 
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and assurance procedures in untargeted metabolomic studies to increase transparency and 

reproducibility8.

In this review, we examine the biological insights provided by the growing field of 

metabolomic epidemiology with regards to prevention, screening, diagnostics, and treatment 

of several health-related traits that have been commonly examined in the field (Fig. 2). Study 

design considerations are briefly presented to provide context for interpreting findings. We 

discuss potential clinical applications for metabolomic epidemiology to advance disease 

treatment and healthcare in the coming years.

2. Study Design Considerations

Study design directly impacts research scope and interpretation of findings (Fig. 1). This 

is particularly important in metabolomic epidemiology due to the sensitivity of metabolites 

to disease onset, confounders or effect mediators (e.g., age, population, body mass index 

(BMI), fasting status), and technical factors related to sample collection and processing (e.g., 

sample handling, batch, stochastic drift). Among the most common study designs are case-

control studies. Although powerful and cost-effective, case-control studies are particularly 

prone to selection bias, which can occur when the control group is not representative 

of the source population. Matched case-control studies are used to control for potential 

confounders prior to the collection of samples. However, such study designs limit the ability 

to directly investigate the effect of the matching variables (e.g., age, sex, population) on the 

outcome, as matching distorts this relationship9, although matching factors can be examined 

as effect modifiers. As such, matching factors should not include secondary exposures of 

interest.

While cross-sectional studies are limited to evaluating correlative associations, as 

biospecimen collection and outcome ascertainment occur concurrently at a single time point, 

prospective cohorts with pre-diagnostic metabolomic measurements could facilitate time-to-

event investigations. Longitudinal repeated sampling enables investigations of metabolite 

trajectories that may be relevant to disease risk or other unrelated sources of variation, 

ultimately providing more stable association estimates. Generating metabolomic data in 

sampled longitudinal cohorts can be cost-prohibitive; however, nested case-control or case-

cohort studies that select cases and controls within a cohort provide an efficient way to 

evaluate pre-diagnostic metabolites in the pathogenesis of disease. Although randomised 

controlled trials are often based on smaller sample sizes and cost-prohibitive, they provide 

rigorous causal evidence, for instance, between an intervention and the metabolome. A 

detailed review of study designs is beyond the scope of this article; previous publications 

provide further insights10.

Another important study design consideration includes metabolomic technology selections, 

such as nuclear magnetic resonance (NMR) and mass spectrometry (MS), as metabolite 

measurements vary by methodology and platform. These include targeted approaches that 

profile select metabolites and untargeted approaches that profile all measurable metabolites 

within the range of the specific platform. While the identity of a subset of metabolite peaks 
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may be known, most peaks are unknown, necessitating significant downstream efforts in 

metabolite peak identification.

Platform considerations include metabolite separation techniques and determining the class 

and/or polarity of metabolites detected in the study. Technology selections also impact the 

interpretation of metabolite levels. Targeted methods can be quantitative, providing absolute 

concentrations using stable isotope labeled standards and calibration curves. Although 

these methods provide precise quantification, authentic standards are not available for 

all metabolites, thus limiting metabolite coverage. Further, quantitative methods should 

also consider protocols specific to the tissue type being analysed. Untargeted methods 

provide broader coverage, but are semiquantitative, reporting metabolite peak intensities, 

and measurements are highly dependent on pre-analytic methods. In-depth reviews of 

these technologies can be found elsewhere11. While this review focuses predominantly 

on circulating metabolites, biospecimen tissue type also influences the realm of research 

questions and interpretations of study findings, given that tissues of interest vary by disease.

Given the variety of measurement techniques, factors that impact metabolite measurements, 

quality control procedures, and study designs, replication of metabolomic epidemiology 

findings has been particularly challenging. As such, strategies to replicate findings, assess 

generalizability to different populations, and triangulate evidence (see “5.4. Triangulation 

and validation”) should be carefully considered at the study design stage of an investigation.

3. Metabolomic Epidemiology and Disease Aetiology

Here we discuss major metabolomic epidemiology findings and their clinical and 

translational implications, particularly highlighting untargeted investigations. Sections 

3.1–3.7 focus on traits that have been more commonly investigated in metabolomic 

epidemiology (Fig. 2) and/or yielded consistent findings across studies to date (Fig. 3), while 

emerging traits that have not been studied as extensively are briefly discussed in sections 

3.8–3.11.

3.1. Adiposity

Heightened adiposity increases risk of numerous health conditions, including T2D, 

cardiovascular disease (CVD), and numerous cancers. Despite this, mechanisms linking 

adiposity to adverse health outcomes are not fully understood, although the metabolome 

likely plays a key role12. Metabolomics has been used to predict adiposity and BMI13, 

improve our understanding of metabolic dysregulation resulting from increased adiposity14, 

and predict the success of obesity treatment15.

Metabolic perturbations resulting from increased adiposity are systemic and wide-reaching, 

including changes in glucose, lipid metabolism, and low-grade chronic inflammation, with 

strong associations consistently observed for branched chain amino acids (BCAAs)15. 

An untargeted study found that nearly a third of the metabolome was associated 

with BMI, particularly lipids, amino acids, and peptides12. Many of these metabolites 

were also associated with increased insulin resistance (including tyrosine, alanine, 

kynurenate, gamma-glutamyltyrosine, phospholipids, and glucose) and as such, could 
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mediate the association between adiposity and metabolic health conditions12. However, BMI 

insufficiently predicts adiposity and its health complications, and metabolomics provides an 

opportunity to improve such predictions. For example, comparing BMI matched European 

ancestry individuals, an obese versus healthy metabolome defined by 49 serum metabolites 

was associated with 2- to 5-fold increase in cardiovascular events12.

One key determinant of negative health outcomes resulting from increased adiposity is the 

distribution of adipose tissue, a metabolically active organ that has a substantial impact on 

the metabolome. When subcutaneous adipose tissue fails to sufficiently expand with dietary 

triglyceride consumption, visceral and ectopic fat depositions form, leading to inflammatory 

dysregulation and increased insulin resistance16. Understanding fat distribution hence 

plays a key role in understanding adiposity-related health outcomes; however, clinically 

implementing anthropometric measures remains cost prohibitive. Establishing metabolic 

profiles of adiposity may better inform clinical management of adiposity. Metabolomic 

epidemiology studies have found that plasma steroid sulfates and amino acids were 

characteristic of visceral and subcutaneous adiposity in individuals living with obesity 

without insulin resistance17. Future prospective studies may investigate whether these 

metabolites are protective against insulin resistance or markers of prodromal symptoms and 

provide intervention targets.

Individuals living with obesity can be characterised as metabolically unhealthy overweight 

and obese (MUHO) or metabolically healthy overweight and obese (MHO). MHO is 

typically defined as obesity with the absence of metabolic syndrome and insulin resistance15 

and may make up 20–40% of adults living with obesity, with ~50% of those with MHO 

expected to progress to MUHO12. Future large-scale metabolomic epidemiology studies 

may illuminate metabolic pathways characterising MUHO, leading to more precise MUHO 

and MHO definitions and improved obesity treatment.

3.2. Cardiovascular disease

CVD is highly heterogeneous, encompassing a range of conditions linked to atherogenic, 

proinflammatory, and thrombotic mechanisms. Metabolic dysregulation in CVD has 

been observed since the early 1900s18, when cholesterol was noted as a putative 

driver of atherosclerosis, spurring decades of research that established cholesterol as a 

cause of CVD19. Therapies targeting cholesterol metabolism are first-line treatments for 

atherosclerosis and have greatly reduced atherosclerotic CVD mortality20, demonstrating the 

value of metabolic approaches in studying and treating complex diseases.

Early efforts to characterise CVD-associated metabolomic alterations reported increases 

in inflammatory lipids, including carnitines, phosphatidylcholines (PCs), and fatty acids, 

and amino acids21,22. While these initial studies were primarily based on semi-targeted 

approaches in small prospective cohorts or case-control studies, many associations proved 

robust in expanded untargeted investigations across thousands of individuals. For example, 

an early untargeted metabolomic study with a limited sample size found that trimethylamine 

N-oxide (TMAO), a downstream microbial metabolite produced from dietary choline and 

carnitine, was positively associated with CVD risk22. This was validated in larger studies, 

including an untargeted meta-analysis of venous thromboembolism23 and a meta-analysis 
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estimating that higher circulating TMAO levels were associated with 23% increased CVD 

risk24. Although it remains up for debate whether TMAO is causally associated with CVD25, 

functional studies provide in vivo evidence that TMAO may accelerate atherosclerosis 

progression via suppression of reverse cholesterol transport in macrophages26. Similarly, 

initial positive associations between BCAAs and CVD were confirmed in multiple larger 

metabolomic studies23,27, with preliminary evidence for a causal relationship between 

BCAAs and CAD28.

Large untargeted metabolomic studies continue to identify additional metabolite-CVD 

associations, including nucleoside metabolites and steroid hormones29–31. Additional efforts 

to profile metabolite alterations associated with specific CVD outcomes will be critical 

for identifying disease subtypes within broad CVD event categories. For instance, a 

prospective study of ischemic stroke identified two long chain fatty acids (tetradecandioate 

and hexadecandioate) that were specifically associated with the cardioembolic stroke 

subtype32. Additionally, mediation analyses may help disentangle metabolite-related 

aetiologic mechanisms contributing to disease. For instance, plasma levels of organic acid 

dimethylguanidino valerate (DMGV) were positively associated with both incident CAD 

and T2D and inversely correlated with healthy dietary factors and exercise, the latter 

of which was supported by a subsequent in vivo study33,34. Subsequently, another study 

established that DMGV was positively associated with incident ischemic stroke, which was 

partially mediated by diabetes mellitus (13.0%) and hypertension (13.2%)31. Collectively, 

these studies suggest that associations between DMGV and CVD outcomes may capture a 

shared disease pathway between CVD and diabetes, influenced by lifestyle factors. Further 

investigation is needed to determine whether lifestyle factors mediate DMGV-associated risk 

of CVD and T2D.

CVD has many shared metabolic pathways (notably, organic acids), both within CVD-

related and non-CVD traits, particularly adiposity (Fig. 3). However, the lack of shared 

pathways between non-CVD traits likely reflects the fewer number of studies conducted, and 

consequently, fewer significant findings for other traits. As the field rapidly grows, shared 

mechanisms between traits will likely become more apparent.

3.3. Type 2 diabetes

T2D is an increasingly prevalent metabolic condition associated with complications 

including retinopathy, cardiovascular disease, and kidney disease35. One of the most 

prominent metabolite classes associated with T2D is BCAAs, with positive associations 

consistently identified across large metabolomic studies36,37. T2D risk prediction models 

have been improved by incorporating metabolites with traditional T2D risk factors, such 

as sex, age, parental history of T2D, fasting glucose, BMI, high-density lipoprotein, 

triacylglycerols (TAGs), and blood pressure38,39. For example, adding 19 metabolites 

enriched for nitrogen metabolism to traditional T2D risk factors significantly improved 

discriminative ability of T2D risk, with38 higher genetically predicted glycine levels 

associated with an 11% reduction in T2D risk and lower genetically predicted phenylalanine 

levels associated with a 60% increase in T2D risk38. These findings suggest potentially 
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causal relationships between the nitrogen metabolism pathway and T2D, providing 

mechanistic insights into disease onset.

Metabolites have also been used to investigate progression from prediabetes (i.e., the 

state above normal glucose tolerance but below the T2D threshold) to T2D and 

T2D-related complications. For instance, alanine, glutamate, and palmitic acids were 

higher in individuals with prediabetes than those with T2D40. Further, the addition 

of 13 metabolites to traditional T2D risk factors improved prediction of progression 

from prediabetes to T2D41. Serum levels of cyclohexylamine, 1,2-distearoyl-glycero-3-

phosphocholine, piperidine, N-acetylneuraminic acid, and stearoylethanolamine have been 

positively associated T2D complications, including retinopathy and kidney disease42. 

Additional research is needed to replicate these findings and determine their clinical 

significance.

3.4. Disorders of inborn errors of metabolism

Numerous rare metabolic diseases are defined by their lack, or modification, of critical 

metabolic enzymes and regulatory systems. These inborn errors of metabolism (IEMs) 

have long been studied in the context of metabolomic data, with early metabolomic 

genome-wide association studies (GWAS) confirming a strong relationship between known 

IEM genes and their corresponding and derivative metabolites43–46. Further, extensive 

work has characterised the metabolic effects of familial hypercholesterolemia variants, a 

particular class of IEMs47,48. As metabolomic technologies have matured, researchers have 

discovered IEMs using metabolomic outliers, providing an opportunity to connect IEMs to 

pharmacological interventions49. The advent of large cohorts with metabolomic and genetic 

data has dramatically increased the scale of known IEM-associated metabolites. As many 

of these still require additional interpretation for clinical relevance, researchers have begun 

synthesizing findings across studies using databases50. Consequently, efforts are underway 

to clinically apply these discoveries51,52.

3.5. Infectious disease: COVID-19

Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, has constituted a global 

pandemic for over three years. The devastating public health effects of COVID-19 have 

necessitated extensive research to mitigate and prevent infection. Untargeted plasma 

metabolomics has been integral in developing hypotheses about the metabolic underpinnings 

of COVID-19 viral pathophysiology and identifying infection and severity biomarkers53.

Amino acids citrulline, histidine, proline, and tryptophan have been consistently negatively 

associated with COVID-19 severity53–59. Meanwhile metabolites from the kynurenine 

pathway of tryptophan metabolism have been positively associated with COVID-19 

severity53–57, potentially reflecting increased inflammation in COVID-19. Creatinine has 

also been positively associated with COVID-19 severity53,54,57, potentially reflecting 

metabolic pathways related to renal dysfunction, a possible therapeutic target for severe 

COVID-19. Cytosine and uridine metabolites have been reported to have opposite 

associations with COVID-19 severity, with cytosine positively and uridine negatively 

associated with disease severity53,54,56. This has been suggested to reflect viral replication, 
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as SARS-CoV-2 has low levels of cytosine, which may play a key role in SARS-CoV-2 

pathology60. Thus, cytosine and uridine metabolism may pose a targetable pathway for 

decreasing COVID-19 severity.

Bile acids58 and PCs/sphingomyelins (SMs)59 have been positively and negatively 

associated with COVID-19 severity, respectively. Elevated bile acids may reflect metabolic 

and/or liver dysfunction that predisposes individuals to severe COVID-1953,58. However, 

decreased PCs and SMs may be related to pathophysiology, as both are components 

of cell membranes upon which ceramide rafts are required for SARS-CoV-2 to bind to 

ACE2 receptors61. Thus, decreasing conversion of PCs and SMs to ceramides for ACE2 

presentation may be a targetable pathway for decreasing SARS-CoV-2 infection.

Untargeted metabolomic studies have provided valuable evidence for targetable pathways 

and potential biomarkers related to COVID-19 severity and serve as a model for future 

infectious disease outbreaks. Additional untargeted studies are warranted and ongoing to 

identify additional COVID-19 biomarkers and reduce the burden of viral pandemics on 

healthcare systems.

3.6. Cancer

Metabolic alterations are often hallmarks of cancer. The Warburg effect is a well-known 

alteration in glucose metabolism, in which tumours catabolize glucose via glycolysis rather 

than the tricarboxylic acid (TCA) cycle even in the presence of oxygen. This produces 

increased lactate levels62, a metabolic marker of cancer in both tumour and circulating 

tissue63, that serves as an intermediate fuel source in the TCA cycle64,65. Emerging work 

indicates that alterations in cancer cell metabolism are highly heterogeneous, even among 

cells cultured under the same nutrient conditions66,67. Altered lipid metabolism has also 

been implicated in cancer aetiology. Hypoxia in the tumour microenvironment increases 

lipids in the cell and promotes the transition from aerobic to anaerobic metabolism68. 

Metabolomic epidemiology may reflect these processes and offer insights into cancer 

development and therapeutics.

Untargeted circulating prospective metabolomic studies have identified promising 

biomarkers of cancer risk. One study found that choline was positively associated with 

prostate cancer (PCa)-specific mortality69, consistent with targeted metabolite and dietary 

studies70,71. Choline and the choline-derivative TMAO produced by intestinal bacteria have 

also been positively associated with risk of overall and aggressive PCa and colorectal cancer 

(CRC)72–74, while inverse associations have been observed between choline derivatives PCs 

and lyso-PCs with risk of overall and aggressive PCa, CRC, breast cancer (BCa), and 

cancer in general73–77. Choline is essential for lipid metabolism, with a proportion of an 

individual’s necessary choline produced by the liver and the remaining obtained from diet, 

implicating that this is a partially modifiable risk factor. However, investigations in Chinese 

populations reported that choline intake was inversely associated with risk of CRC, BCa, 

nasopharyngeal cancer, and cancer in general78–81. While the reasons for these discrepancies 

are uncertain, population differences in dietary choline sources or metabolism may be 

contributing factors. Such discrepant findings highlight the importance of performing 

metabolomic epidemiology studies in diverse global populations.
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Untargeted circulating metabolomic studies have also reported an inverse association 

between bile acid tauro-beta-muricholate and PCa risk73,74. This was supported by an 

in vitro study reporting that bile acids selectively induce PCa cell death, sparing normal 

prostate cells82. Dysregulation of bile acid metabolism is particularly important in the 

pathogenesis of hepatocellular carcinoma (HCC). Targeted and untargeted metabolomic 

studies consistently found that glycine- and taurine conjugated-primary bile acids, including 

glycocholic acid, taurocholic acid, and glycochenodeoxycholic acid, were positively 

associated with HCC risk83–85, while retinol was inversely associated with HCC risk84,86.

The circulating metabolite perturbations highlighted here, observed up to 20 years before 

cancer diagnosis or development of lethal disease, improve our understanding of cancer 

aetiology while demonstrating the potential to improve cancer risk stratification and tools 

for early detection. These findings are supported by tumoir metabolomic studies, which 

offer unique and complementary insights into cancer prognosis and treatment. For instance, 

circulating levels of the amino acid aspartate were positively associated with risk of PCa-

specific mortality87, while prostate tumour aspartate levels were positively associated with 

risk of biochemical recurrence and ERG translocation88.

Prostate tumour metabolomic profiles reportedly differ by ERG subtypes, with ERG-

positive tumours having higher levels of acylcarnitines and metabolites involved in purine 

metabolism and lower glutathione levels compared to ERG-negative tumours89. These 

metabolites are indicators of oxidative stress, which can lead to DNA damage and plays 

a major role in PCa development and progression89. Pre-diagnostic circulating metabolomic 

profiles also differ between by ERG or PTEN molecular subtypes, with ERG-positive 

tumours uniquely enriched for phosphatidylethanolamines, PTEN-loss tumours enriched for 

amino acids, and PTEN-intact tumours enriched for unsaturated diacylglycerols90.

Compared to normal tissues, tumours from women with triple negative BCa were 

enriched for phosphatidylinositols, fatty acids, and ceramides, and metabolomic profiling 

refined the classification of transcriptomic subtypes (i.e., luminal androgen receptor, 

basal-like immunosuppressed, immunomodulatory, and mesenchymal-like)91. Overall, these 

metabolomic findings suggest distinct etiologies and presentations of tumour subtypes, 

which could have important prognostic and treatment implications.

3.7. Alzheimer’s disease and related dementias

Although Alzheimer’s disease (AD) development is not completely understood, pathological 

changes that cause AD begin decades prior to its diagnosis92. Metabolomics may provide 

insights into AD aetiology and early risk factors. Higher levels of PCs and SMs have 

been associated with progression from mild cognitive impairment (MCI) to AD, faster 

cognitive decline, and changes in ventricular volume93. Some of these metabolites, including 

SM C16:0 and SM (OH) C14:1, have also been positively associated with AD severity94. 

Metabolite panels have also been shown to discriminate between AD and normal cognition. 

The diagnostic capability of a metabolite panel with six metabolites (arachidonic acid, 

N,N-dimethylglycine, thymine, glutamine, glutamic acid, and cytidine) was equivalent 

to diagnoses through clinical interviews95, which could have important implications for 

improving diagnostics.
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A defining feature of AD is the aggregation of hyperphosphorylated and misfolded tau 

proteins in neurons, leading to the hallmark neurofibrillary tangles96. Cerebrospinal fluid 

(CSF) metabolomic studies have reported 38 CSF metabolites enriched for pentose and 

glucuronate interconversions and glycerophospholipids explained ~70% of the variance of 

total and phosphorylated tau97,98. Adding seven of these metabolites to traditional AD risk 

factors notably improved the predictive ability of AD and MCI97.

The Alzheimer’s Disease Metabolomics Consortium was established to build a large 

comprehensive metabolomic database and can be queried with AD Atlas, an integrative 

network-based resource that enables analyses of multi-omic data and AD risk, biomarkers, 

and endophenotypes99. Additional consortium-scale analyses of prospective cohorts will be 

crucial to establish mid-life metabolomic predictors of late-life dementia.

3.8. Inflammatory bowel disease

Crohn’s disease (CD) and ulcerative colitis (UC) are two major forms of inflammatory 

bowel disease (IBD), a group of chronic, idiopathic gastrointestinal disorders characterised 

by inflammation of intestinal mucosa. A growing body of evidence is emerging for IBD 

metabolomics100. By profiling stool, plasma/serum, and urine samples, studies have 1) 

compared metabolomes of CD or UC to healthy controls; 2) developed metabolomics 

signatures distinguishing between UC and CD; and 3) identified metabolic profiles for 

disease activity and treatment response.

Circulating metabolomic investigations have consistently demonstrated perturbations of 

several amino acids. Tryptophan was significantly lower in IBD patients101 and indicated as 

a potential biomarker for response to infliximab, a commonly prescribed anti-inflammatory 

monoclonal antibody medication, in CD patients101. Higher isoleucine and lower glutamine, 

among other amino acid differences, have been observed in patients with CD and UC 

compared to controls102,103. Further, 3-hydroxybutyrate, a downstream metabolite of 

BCAAs, was upregulated in UC patients compared to controls104. Using blood samples 

collected four or more years prior to IBD onset, bile acids, amino acids, and steroid 

hormones were associated with CD risk, while fatty acids were associated with UC 

risk105. However, as few studies have characterised the circulating metabolome prior to 

IBD development, future prospective and longitudinal studies may provide further insights 

into the pathogenesis of IBD and biomarkers for early detection.

3.9. Chronic kidney disease

Diagnosis of chronic kidney disease (CKD) is based on the estimated glomerular filtration 

rate (eGFR), using creatinine values or cystatin C, and on albuminuria category106, which 

all indicate kidney function. However, these CKD markers are affected by non-renal 

processes (i.e., nutritional status), suggesting the need for additional diagnosis biomarkers. 

Although untargeted metabolomic studies of CKD have focused on detecting stage-specific 

metabolites to improve diagnostic accuracy, a consistent metabolite associated with the 

five stages of CKD is lacking. Untargeted metabolomic studies have identified amino 

acids107–109, nucleotides107, carbohydrates107,108, lipids107, and cofactors and vitamins107 

that were associated with declined kidney function and CKD. CKD progression has been 
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associated with the amino acid tryptophan109,110, which was also associated with diabetic 

glomerulopathy in T2D patients111. Since diabetes mellitus is the leading cause for CKD112, 

targeting metabolites related to diabetes may also aid in CKD prevention.

Circulating TMAO was positively associated with renal dysfunction in CKD patients in an 

untargeted metabolomic study113 and reportedly distinguished late-stage CKD from earlier 

stages and controls110. A targeted metabolomic study found that higher acetylcarnitine 

levels were associated with 54% lower eGFR and thus increased CKD risk114. Higher 

acylcarnitines have been observed in pediatric patients with CKD115 and also associated 

with decreased kidney function114, and thus, could be promising metabolites for early CKD 

diagnosis.

3.10. Pregnancy and gestational diabetes

The maternal metabolome associates with a variety of pregnancy related complications. 

Due to this relationship between maternal and offspring metabolic health, pregnancy 

provides a unique opportunity to improve the metabolic health of the mother and the 

neonate. Predictive metabolic profiles for pregnancy related complications could inform 

preventive interventions for expectant mothers at risk of adverse pregnancy outcomes. 

Metabolic profiles of gestational diabetes116, preeclampsia117 and macrosomia118 have been 

characterised and include fatty acids, cholesterols, and triglycerides. A key challenge in 

studying the maternal metabolome is accounting for the metabolomic perturbations that 

accompany pregnancy, given the rising energy demands of the foetus116, necessitating 

longitudinally measured metabolomics.

3.11. Psychological distress and mental health

An emerging area of research in metabolomic epidemiology is the identification of 

metabolomic signatures associated with psychological disorders and subclinical levels 

of distress, including depression, anxiety, or posttraumatic stress disorder (PTSD). Prior 

studies have suggested associations between lipids and depression119 and highlighted key 

pathways implicated in the pathophysiology of mood disorders, such as glutamatergic 

metabolism and neurotransmission120. Literature in PTSD, anxiety, and subclinical distress 

is relatively sparse, with vast heterogeneity and inconsistency between studies. However, 

there is suggestive evidence for associations between fatty acids and general distress across 

disorders121. Understanding the metabolomic underpinnings of psychological distress has 

implications beyond mental health, as these pathways provide a potential mechanism linking 

chronic distress to heightened risks for cardiometabolic conditions and other ageing-related 

diseases122. Research in diverse population-based samples is needed to identify robust 

metabolomic signatures of psychological distress.

4. Integrating Metabolomics with Other Omics

In this section, we discuss insights gained by integrating metabolomics with other Omics 

data, particularly genetics, the microbiome, and the exposome, focusing on key translational 

insights.
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4.1. Metabolomics and Genetics

The heritability of circulating metabolites ranges on average from ~20–50%43,46,123–126, 

which is greater than what is often observed for complex traits127, including whole-blood 

gene expression, which ranges from ~10–25% on average128–130. As such, integrating 

metabolomics and genomics has strong potential to illuminate metabolic mechanisms and 

advance precision medicine.

The human metabolome is highly polygenic, with most associated variants leading to minor 

changes in metabolite levels43, although some variants can lead to severe IEMs and GWAS 

signals sometimes cluster near IEM-related genes131. Identifying variants that influence 

metabolites improves our understanding of the biological processes regulating metabolites 

and are impacted by metabolites, contributing to disease prevention and treatment43. Further, 

genetics provides a notable means of determining the chemical identity or compound class 

of unknown metabolites, which commonly result from untargeted experiments and pose 

major challenges to interpreting findings. Multiple metabolites are often associated with 

the same gene, highlighting shared metabolic and potentially causal pathways132, which 

was demonstrated in an investigation where the majority of 336 unknown metabolites 

associated with genomic loci were able to be successfully annotated using a combination of 

bioinformatics tools133.

To date, over 25 metabolomic GWAS have been conducted in European ancestry 

populations126,134, resulting in ~ 1,750 independent metabolite-variant associations 

identified (Fig. 4). Fewer metabolomic GWAS have been conducted in African133,135, 

Hispanic136, Asian134,137–139, and Middle Eastern124 populations, typically with smaller 

sample sizes. Nonetheless, metabolite-variant associations have been identified across the 

genome in all populations. One of the most notable genomic regions is the fatty acid 

desaturase (FADS) locus on chromosome 11q12.2, which contains three genes, FADS1, 
FADS2, and FADS3 (Fig. 4). FADS1 and FADS2 encode desaturase enzymes involved in 

long-chain polyunsaturated fatty acid (PUFA) biosynthesis, while the role of FADS3 is still 

unknown. FADS variants are highly associated with PUFAs across tissues and contribute to 

several diseases, including CAD, cancer, and T2D140–142. FADS highlights the importance 

of diversity in metabolomic GWAS, as this region essentially represents one large linkage 

disequilibrium (LD) block in individuals of European ancestry, but many smaller blocks 

in individuals of African ancestry143, narrowing the range of potentially causal variants to 

target for therapeutic applications. LD differences in this region likely reflect historically 

different dietary patterns between populations that acted as selective pressures143.

Several useful resources exist to explore published GWAS associations with metabolites, 

including the GWAS catalog144, mGWAS-Explorer145, Phenoscanner146, and PheWeb147. 

The UK Biobank atlas of polygenic risk scores (PRS) summarizes associations between 

129 PRS and 249 circulating metabolites148. Using this resource, robust associations were 

identified between an adiposity-related PRS and the majority of metabolites measured, 

demonstrating its potential to improve our understanding of how genetic risk of complex 

traits could impact metabolite levels and disease development.
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4.2. Host-gut microbiome and metabolome

The gut microbiome plays an important role in disease aetiology, as it reflects lifestyle 

factors, including diet and exercise, and markers of disease risk, including BMI, insulin 

resistance, cholesterol, and inflammation and also influences the circulating and peripheral 

organ metabolome via active and passive nutrient uptake149. As metabolomics gained 

recognition as an important component of the microbiome, the microbiome shifted from 

being studied from the taxonomic perspective via genomics/metagenomics to integrating 

metabolomics and metagenomics150.

Although metabolomics has suggested intriguing findings related to the gut microbiome 

(including the above-mentioned bile acid and TMAO findings), few published metabolomic 

epidemiology studies have integrated the gut microbiome. Reasons for this include sample 

collection challenges, microbiota sample heterogeneity, and the lack of universal approaches 

to process, analyse, and interpret samples and data. Efforts expected to increase the 

feasibility of microbiome-metabolomic studies include the Global Natural Product Social 

Molecular Networking (GNPS) tool151 that identifies the molecular fingerprint of unknown 

features in the microbiome and microbial metabolome. For example, GNPS identified 

a large group of previously unknown bile acids formed from the bacterial conjugation 

of amino acids to bile acids152. Further, collecting samples across the gastrointestinal 

tract using collection capsules will offer a more comprehensive understanding of the 

microbiome153.

4.3. Exposome

The exposome is the complete set of an individual’s exposures across the lifespan. 

Metabolomics is an important tool in studying the exposome, as environmental exposures 

can be measured via exogenous metabolites (e.g., those influenced predominantly by diet, 

medications, environment, and lifestyle). Endogenous metabolites (e.g., those influenced 

predominantly by the genome, epigenome, transcriptome, and proteome) are also thought 

to be influenced by the exposome, although it is not typically apparent whether a 

metabolite is endogenous or exogenous in origin. In one application, an environment-wide 

association study of T2D risk found a protective association for β-carotenes nutrients 

and negative associations for the phenol lipid γ-tocopherol and the pesticide heptachlor 

epoxide154. Efforts are ongoing to incorporate the exposome into integrated frameworks 

across molecular omics155.

5. Advancing Metabolomic Epidemiology Findings

Causal inference is often limited in epidemiologic investigations, making metabolomic 

epidemiology findings challenging to interpret. In this section, we discuss key examples of 

moving initial metabolomic findings towards clinical translation, focusing on approaches 

to investigate whether identified associations are causal or correlative in nature. Sections 

5.1–5.4 discuss statistical approaches applied in metabolomic epidemiology that have led to 

etiologic insights, focusing on the findings from these studies (statistical details provided in 

Boxes 2–3). Section 5.5 discusses findings from experimental investigations following up on 

metabolomic epidemiology results.
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5.1. Mendelian randomisation

Mendelian randomisation (MR) is a causal inference technique that determines the presence 

of causal relationships between exposures and outcomes by utilizing genetic variants as 

a proxy for an exposure (Box 2), making MR most suitable for heritable exposures. 

Since an individual’s genetics are randomized at conception, genetic variants are not 

subjected to the confounding observed in observational studies and can thus be used 

as instrumental variables (IVs). MR also bypasses issues of reverse causality, which is 

particularly important in metabolomics as metabolites are often influenced by the outcome. 

Large-scale metabolomic MR studies have identified putative causal associations between 

circulating metabolites and AD156, autoimmune diseases (type 1 diabetes and inflammatory 

bowel disease)157, T2D158, and cancer (lung, ovarian, breast cancer, and glioma)159.

MR has several key limitations and assumptions (Box 2), which are particularly impacted 

by the high correlation between metabolites. As such, MR findings should be interpreted 

with caution and additional follow up is necessary to validate findings, for example 

with triangulation of evidence (see “5.4. Triangulation and validation”) and by evaluating 

assumption violations.

5.2. Causal mediation analysis

Causal mediation analysis is a framework for researchers to identify pathways through 

which metabolites mediate the relationship between exposures and outcomes. These 

pathways can reveal etiologic insights and intervention targets. High-dimensional methods 

have been implemented to detect joint mediating effects of multiple metabolites and other 

omic markers, which led, for instance, to the identification of growth hormone receptor, 

caffeine metabolism, and valine, leucine, and isoleucine degradation as mediators of the 

effect of bariatric surgery on glycemia, insulin secretion, and insulin sensitivity, respectively, 

among T2D patients160. The validity and clinical implications of causal mediation analysis 

should be evaluated based on the plausibility of key assumptions (Box 2).

5.3. Network methods

Metabolites in similar pathways are often correlated, and correlation between metabolites in 

separate pathways also occurs due to the biochemical principles underlying metabolism161. 

This underlying correlation structure may be leveraged to generate or validate functional 

hypotheses about metabolic processes by mining network models of metabolomic data.

Correlation networks are a commonly used network modelling approach in metabolomic 

epidemiology models. Weighted Gene Coexpression Network Analysis (WGCNA) extends 

the concept of correlation networks by identifying network modules based on weighted 

edges corresponding to between-metabolite correlations (Box 2). For example, WGCNA 

was applied to untargeted circulating metabolites to identify six metabolite modules 

associated with measures of lung function in children with asthma, including one enriched 

for lipid metabolism162. Integrating this module with WGCNA-based gene expression 

modules led to the identification of an association between asthma and ORMDL3 and 

subsequently, a nearby asthma-associated variant, generating a mechanistic hypothesis about 

the role of genetic variation, gene expression, and lipid metabolism in asthma.
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Gaussian graphical models (GGMs, or partial correlation networks) are another type of 

network model that is commonly applied in metabolomic epidemiology. GGMs have been 

used to reconstruct metabolic classes163, and network-based clustering of GGMs was used 

to propose data-driven gender-specific metabolite modules164. Playdon et al. constructed 

a GGM on 113 diet-related prediagnostic circulating metabolites and identified three 

metabolite modules associated with ER-positive BCa risk, which mapped to three dietary 

categories: alcohol, vitamin E, and fats and oils165.

Although correlation networks and GGMs do not represent causal relationships, they can 

help develop causal hypotheses for subsequent investigations.

5.4. Triangulation and validation

Given the vast heterogeneity in metabolomic epidemiology regarding measurement 

techniques, populations, and study designs, it is important to triangulate evidence, 

meaning that evidence is combined across multiple statistical methods and/or data sources. 

Integrating results from different study designs, each with distinct sources of bias, enables 

researchers to assess the validity and generalizability of observed associations, including 

the strength of causal evidence166. For example, one study triangulated evidence from 

longitudinal observational cohorts and bi-directional MR to elucidate a causal relationship 

between the essential BCAA leucine and T2D risk158. Replication plays a pivotal role in 

establishing causal evidence and is a crucial validation step, particularly when the discovery 

sample is relatively small and limited to correlative inference (e.g., cross-sectional studies). 

When corroborating findings across studies, it is crucial to consider the degree to which 

differences in findings can be attributed to bias, measurement methods, and populations. 

To compare and synthesize results qualitatively and quantitatively, performing systematic 

reviews and meta-analyses may be important (Box 3).

5.5. Linking findings to biochemical and functional implications

Metabolomic epidemiology studies often rely on cross-sectional observational data based on 

a single tissue, typically plasma or serum. Follow-up experiments in animal models and cell 

lines are key to investigate biochemical and functional implications of metabolite-disease 

associations.

For example, an untargeted circulating metabolomic epidemiology investigation discovered 

and externally validated a positive association between phenylacetylglutamine (PAGln) and 

risk of major adverse cardiovascular events167. Subsequently, the investigators confirmed 

that PAGln production is dependent on gut microbiota in humans and mice, and a 

series of follow-up experiments revealed the mechanisms underlying associations between 

gut-microbial derived PAGln and CVD risk. Among these were ex vivo experiments 

demonstrating that PAGln promoted platelet functions, in vivo experiments in arterial 

injury mice models highlighting that PAGln and phenylacetylglycine (PAGly) can lead 

to increased rate of thrombus formation, and in vivo genetic engineering experiments 

identifying that gut microbial genes porA and fldH involved in PAGln production can 

regulate host platelet function and thrombosis. The authors also found that the use 

of a β-adrenergic receptor antagonist (β-blocker, propranolol) reduced PAGln-induced 
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platelet hyper-responsiveness, and carvedilol, a β-blocker used for hypertension and heart 

failure, reversed the prothrombotic effects of PAGln in mice. Collectively, these follow-

up experiments illuminate the pathophysiologic mechanisms underlying the association 

between PAGln and CVD risk.

In another example, a metabolomic study found that metformin treatment in T2D patients 

was associated with decreased serum citrulline, which was validated in murine tissues 

from metformin-treated diabetic mice168, highlighting mechanistic pathways altered via 

metformin treatment.

Experimental investigations can provide a mechanistic and complementary understanding of 

population-based findings and are thus an important aspect of metabolomic epidemiology. 

Experimental findings can also inform research questions to pursue in population-based 

studies, reflecting an iterative and interdisciplinary process that can offer dynamic insights 

into disease aetiology.

6. Future Developments and Clinical Implementation Outlook

Despite being a relatively new field, metabolomic epidemiology has provided critical 

insights into disease aetiology by linking the metabolome to various chronic diseases and 

identifying etiologic mechanisms across conditions. However, to fully realise the clinical 

utility of metabolomics and translate it into effective treatment strategies, several advances 

and avenues of future research should be pursued.

Currently, sample sizes of untargeted studies range from 100 to ~3,000, and while many 

findings have been robustly replicated (Fig. 3), many more have not been independently 

replicated or validated. As technologies improve and larger sample sizes become feasible, 

power to confidently identify and replicate findings will substantially increase. Concerted 

efforts to share metabolomic data (e.g., Metabolomics Workbench, dbGaP, BioLINCC, 

MetaboLights) will also ameliorate these issues. Recent progress in collecting and sharing 

large-scale metabolomics data in population-based biobank studies, such as the TOPMed, 

UK Biobank, THL biobank, and China Kadoorie Biobank hold great promise for improving 

statistical power and reproducibility.

Future research should aim to increase the diversity of participants included in metabolomic 

studies to ensure that the everyone can benefit from findings. The metabolome has 

been shown to differ between populations169,170, and population-specific metabolome 

associations have been observed, including for atherosclerosis171 and gestational 

diabetes172. While differences in metabolite-outcome associations may be influenced by 

exogenous factors that differ between populations (e.g., diet and environmental pollutants), 

they could also be attributed to genetic ancestry, which often is correlated (though not 

synonymous) with socially constructed population descriptors. As such, a lack of diversity 

limits the generalizability of metabolomic epidemiology findings and the potential for 

clinical translation. Increasing diversity will lead to a better understanding of the role of 

the metabolome in disease risk and may reduce health disparities.
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Another promising avenue for future research is metabolite risk scores (MRS), which 

represent the cumulative impact of metabolites on a trait. For example, an MRS was 

found to predict weight gain beyond the predictive ability of clinical covariates or single 

metabolites alone, indicating a potential clinical application of MRS in risk prediction173. 

Metabolite scores that are characteristic of dietary intake offer a unique opportunity to 

improve diet assessment and our understanding of how impacts health outcomes. For 

example, a metabolite score characterising red meat consumption was associated with 

increased T2D risk174, while a score characterising adherence to a Mediterranean diet was 

associated with decreased CVD risk175.

Metabolomic epidemiology has strong potential to contribute to the development of 

diagnostic tests, which has traditionally involved a labor-intensive process of selecting a 

few functionally validated metabolites from a panel of hundreds. Recent studies suggest 

that metabolomic-based diagnostics could simplify this process, with metabolomic profiles 

distinguishing between different autoimmune diseases and cancers and predicting disease 

outcomes3,176. Further, a newborn screening study found that untargeted metabolomic 

profiling led to a six-fold higher diagnostic rate of IEMs compared to traditional screening, 

which includes a limited number of validated metabolites and metabolic conditions177. 

However, regulatory challenges need to be addressed. A major challenge of clinically 

translating metabolomic epidemiology findings is the costly and time-intensive process of 

developing an analytically validated assay, which is conducted in clinical laboratories and 

typically using targeted platforms with absolute quantification, clinically validating the assay 

in clinical trials, and clinically implementing the assay, which includes obtaining approvals 

for medical testing (e.g., from the U.S. Food and Drug Administration)178.

Beyond challenges with replication, validation, and increasing the diversity of participants 

included in metabolomic investigations, overcoming several other limitations may further 

the clinical utility of metabolomic epidemiology findings. These include determining the 

chemical identity of unknown metabolites resulting from untargeted experiments, improving 

the harmonization of metabolites across platforms and experiments, reducing costs of 

untargeted experiments, and comprehensively modelling disease risk in integrative multi-

omic investigations.

Over the next decade, rapid technological and computational advances are expected to 

help address challenges in the field of metabolomic epidemiology and facilitate improved 

screening, diagnostics, drug development, and disease management. As the field continues 

to expand, particularly in less frequently studied non-cardiometabolic conditions, and more 

interdisciplinary collaborations form, expanding the breadth of knowledge that can be 

gained, a larger proportion of the global population will benefit from the promising field 

of metabolomic epidemiology.
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Box 1.

Metabolomic epidemiology terminologies.

Epidemiology: The study of the distribution and determinants of health-related states and 

events in populations.

Metabolomics: The unbiased identification and quantification of all metabolites in a 

biological system.

Metabolomic epidemiology: The high-throughput study of the relationship between 

metabolites and health-related traits in population-based epidemiologic studies.

Targeted metabolomics: The analysis of a pre-defined subset of metabolites (often 

hypothesis driven) that are chemically characterised and biochemically annotated.

Untargeted metabolomics: Hypothesis generating top-down strategy that analyse all 

measurable metabolites (within the range of the platform used) in a biological sample 

simultaneously.

Mass spectrometry (MS): Analytical technique that measures the mass/charge (m/z) ratio 

to identify metabolites within a sample.

Nuclear magnetic resonance (NMR) spectroscopy: Detects metabolites by determining 

the molecular structure of the molecule from the electromagnetic spectrum absorbed and 

readmitted when the sample is exposed to a magnetic field.

Absolute quantification: Determines the levels of absolute abundance of a metabolite in a 

sample using a standard curve method. An internal standard may be required, depending 

on the analytical method used.

Relative quantification: Determines metabolite spectral patterns and intensities in a 

sample relative to a reference sample.

Unknown or unidentified metabolites: Molecules that have been detected in a sample, but 

the molecular structure has not been determined.

Endogenous metabolites: Metabolites that are largely naturally produced by an organism 

and influenced by the genome, epigenome, transcriptome, and proteome.

Exogenous metabolites: Metabolites that are largely produced by external factors, such as 

diet, medications, environmental exposures, and lifestyle.
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Box 2.

Statistical Methods: Causal Mediation Analysis, Mendelian Randomization, 
and Correlation Networks.

Causal Mediation Analysis

Mediation analysis models the causal mechanism underlying the relationship between an 

exposure and outcome by disentangling the direct effect of the exposure on the outcome 

from the indirect effect mediated by a set of other variables (“mediators”). In recent 

years, the counterfactual approach to mediation analysis has allowed for more rigorous 

definitions of causal effects under explicitly stated identifiability assumptions and the 

development of more advanced models including multiple mediators and interactions183.

Under the counterfactual framework, the total effect between the exposure and outcome 

can be decomposed into the natural direct effect (NDE) and the natural indirect effect 

(NIE). The NDE is the effect when the mediator takes the value it would naturally 

take in the absence of the exposure. The NIE is the effect of switching the mediator 

from the value it would have taken in the absence versus presence of the exposure. To 

identify the NDE and NIE, it is required that 1) there be no unmeasured common causes 

of the exposure, mediator, and outcome and 2) no mediator-outcome confounders are 

affected by the exposure. In the setting of metabolomic epidemiology, if metabolites 

are considered as mediators, technical and biological variables that may not seem to 

confound the exposure-outcome relationship become crucial. Importantly, when multiple 

metabolites are involved in the causal mechanism, it may not be possible to disentangle 

every metabolite-specific pathway due to dependence between the metabolite levels.

Various estimation methods are available for causal mediation analysis and implemented 

in common software packages (e.g., CMAverse and mediation packages in R and PROC 

CAUSALMED in SAS).

Mendelian Randomisation

Mendelian Randomisation (MR) is a statistical technique used to evaluate potentially 

causal associations between an exposure and outcome. A common approach to 

conducting MR uses summary statistics from a GWAS on the 1) exposure of interest 

and 2) the outcome of interest, referred to as two-sample MR184. For unbiased estimates, 

these GWAS should be conducted in non-overlapping participants from the same 

population.

The validity of MR is based on three assumptions: 1) IVs must be associated with the 

exposure, 2) must only associate with the outcome through the pathway in question 

(exclusion restriction), and 3) should be independent of confounders impacting both the 

exposure and outcome (i.e., no horizontal pleiotropy). Correlation between metabolites 

may violate the second and third assumption; therefore, MR findings should be 

interpreted with caution in the context of metabolomic epidemiology. MR sensitivity 

analyses can evaluate these assumptions and provide consistent effect estimates in the 

presence of pleiotropy. For instance, MR-PRESSO identifies and removes variants in 

horizontal pleiotropy while providing an estimate of the extent to which pleiotropic 
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variants impact results185. MR has also been extended to multivariable MR, which jointly 

models multiple exposures186 and to model bidirectional designs where the exposure and 

outcome are reversed in a secondary analysis187.

While MR can provide insights into potentially causal mechanisms between an exposure 

and outcome, it cannot unravel more complex relationships between genetic and other 

factors. Using MR in conjunction with other statistical and experimental approaches can 

help address limitations of this approach.

Correlation and partial correlation networks

Correlation networks capture the correlation structure of data in a network model, which 

consists of nodes representing metabolites and edges representing the correlation between 

them. Weighted Gene Coexpression Network Analysis (WGCNA) is an extension of 

this concept in which weighted edges are estimated based on soft thresholding of 

the between-metabolite correlations188. WGCNA can also be used to identify network 

modules and calculate module eigengenes, which can then be used to assign summary 

module scores.

Gaussian graphical models (GGMs, or partial correlation networks) are network 

models in which nodes correspond to variables (metabolites) and edges between two 

metabolites represent their partial correlation, i.e., their correlation conditioned on the 

other metabolites in the network189. These partial correlations represent direct pairwise 

associations between metabolites that cannot be explained by any of the other metabolites 

in the network; as such, GGMs are typically sparser than correlation networks and edges 

in GGMs reflect more direct associations.
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Box 3.

Statistical Methods: Meta-Analysis and Longitudinal Analysis.

Meta-analysis

Meta-analysis combines data from multiple studies to obtain a single estimate of 

an exposure-outcome association. Meta-analysis is particularly useful in the field of 

metabolomic epidemiology, where individual studies tend to be small and may be under-

powered. The most common methods for meta-analyses are fixed effect and random 

effect models. Fixed effect models assume that there is one true effect size across studies, 

with intra-study variability being solely a result of sampling variability. Random effect 

models assume heterogeneity of the true effect size across studies resulting from both 

intra- and inter-study variability190. Effect estimates resulting from meta-analysis studies 

are weighted based on sample size or error variance, giving more weight to studies with 

larger sample sizes or smaller error variance. In metabolomic epidemiology, care should 

be taken to ensure that metabolites measured are adequately harmonized and comparable 

between studies prior to analysis so that metabolites are similar enough to be combined.

Longitudinal analysis

Longitudinal analysis can provide insight into the metabolic changes that coincide with 

disease progression and partially account for temporal variation in metabolite measures 

from confounding factors such as diurnal variation and postprandial responses. Mixed 

models for longitudinal analysis explicitly account for the dependence structure of 

repeated measures. These models partition the exposure-response relationship into fixed 

effects, which model the average relationship between exposure and response among the 

population, and random effects, which model the deviation of an individual’s exposure-

response relationship from the population average191. There are several well-established 

software packages for mixed model estimation, including the lme4 package in R and 

PROC MIXED in SAS.
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Figure 1. 
Summary of the process and applications of metabolomic epidemiology studies.
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Figure 2. Number of metabolomic publications across commonly studied health-related traits 
over the years.
Results are based on a PubMed database search conducted on April 27, 2023. Search terms 

included the condition of interest along with metabolom* and NMR, GC-MS, or LC-MS. 

Each search was conducted separately; as such, it is possible that studies using more than 

one technology were counted twice. Search terms used for “mental health” included mental 

health, mental wellness, psychological distress, depression, anxiety, posttraumatic stress 

disorder, or PTSD. Search terms for “adiposity” included adiposity, BMI, body-mass index, 

WHR, waist-hip ratio, or obesity. Search terms for “COVID-19” included COVID-19, 2019-

nCoV, SARS-CoV-2, Coronavirus-2, or coronavirus 19. Search terms for “Cardiovascular” 

included cardiovascular, stroke, heart failure, coronary artery disease, coronary heart disease, 

venous thromboembolism, pulmonary embolism, myocardial infarction, cardiovascular 

mortality, or major cardiovascular event.
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Figure 3. Summary of consistently reported circulating metabolites associated with traits 
discussed in this review.
Metabolites reported are significantly associated with the trait of interest (FDR adjusted 

p-values <0.05) in a metabolomic investigation, with replication in at least one independent 

study. Due to the large number of metabolomic studies conducted in cardiovascular disease 

(CVD), only CVD studies exceeding >100 participants were included for the purpose 

of creating this figure. These UpSet plots indicate the number of metabolites uniquely 

associated with one indicated trait (e.g., 31 are associated with adiposity and no other 

traits shown here) and the number of metabolites associated with multiple traits (e.g., 

seven metabolites are associated with both adiposity and CVD). The inset plot depicts 

metabolites associated with sub-conditions of CVD. ClassyFire super classes were assigned 

to metabolites using RaMP-DB 2.0179.
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Figure 4. Significant associations identified in circulating metabolomic GWAS.
Studies were identified by conducting a literature review, including the studies cited in 

Supplementary Table 8 of Chen et al (2018)124,133–136,139,180,181. When the same metabolite 

was identified more than once within a 500kb region, the strongest single association 

was included. A. Significant associations identified in individuals of European ancestry. 

B. Significant associations identified in individuals with significant non-European ancestry. 

Pie charts in A and B indicate the proportion of significant associations identified by 

population. C. Lipid metabolite associations identified in the FADS region. “Other Organic 
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Compounds” class includes prenol lipids, alkaloids and derivatives, phenylpropanoic acids, 

hydroxycinnamic acids, and peptides. Pie charts represent the number of significant 

metabolite-variant associations identified in each population, with associations based on 

the metabolomic GWAS references provided in the “Metabolomics and Genetics” section. 

Note that lipids and amino acids are much more commonly measured and numerous than 

other metabolite classes. Figure 4 was created with PhenoGram182.
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