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Abstract Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders
for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly
understood, and whether vitamin Bé supplementation improves cognition is unclear as well. Pyri-
doxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate
(PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry
point into vitamin Bé-associated pathologies. However, pharmacological PDXP inhibitors to test this
concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine
hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combina-
tion of small-molecule screening, protein crystallography, and biolayer interferometry, we discover,
visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-
DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In
mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings
validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder
models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP
inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated
effects in the brain.

elLife assessment

Following small molecule screens, this study provides convincing evidence that 7,8 dihydroxyfla-
vone (DHF) is a competitive inhibitor of pyridoxal phosphatase. These results are important since
they offer an alternative mechanism for the effects of 7,8 dihdroxyflavone in cognitive improvement
in several mouse models. This paper is also significant due to the interest in the phosphatases and
neurodegeneration fields.
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elLife digest Vitamin Bé is an important nutrient for optimal brain function, with deficiencies
linked to impaired memory, learning and mood in various mental disorders. In older people, vitamin
Bé6 deficiency is also associated with declining memory and dementia. Although this has been known
for years, the precise role of vitamin B6 in these disorders and whether supplements can be used to
treat or prevent them remained unclear.

This is partly because vitamin Bé is actually an umbrella term for a small number of very similar and
interchangeable molecules. Only one of these is ‘bioactive’, meaning it has a biological role in cells.
However, therapeutic strategies aimed at increasing only the bioactive form of vitamin Bé are lacking.

Previous work showed that disrupting the gene for an enzyme called pyridoxal phosphatase, which
breaks down vitamin B6é, improves memory and learning in mice. To investigate whether these effects
could be mimicked by drug-like compounds, Brenner, Zink, Witzinger et al. used several biochem-
ical and structural biology approaches to search for molecules that bind to and inhibit pyridoxal
phosphatase.

The experiments showed that a molecule called 7,8-dihydroxyflavone — which was previously found
to improve memory and learning in laboratory animals with brain disorders — binds to pyridoxal phos-
phatase and inhibits its activity. This led to increased bioactive vitamin Bé levels in mouse brain cells
involved in memory and learning.

The findings of Brenner et al. suggest that inhibiting pyridoxal phosphatase to increase vitamin B6
levels in the brain could be used together with supplements. The identification of 7,8-dihydroxyflavone
as a promising candidate drug is a first step in the discovery of more efficient pyridoxal phosphatase
inhibitors. These will be useful experimental tools to directly study whether increasing the levels
of bioactive vitamin B6 in the brain may help those with mental health conditions associated with
impaired memory, learning and mood.

Introduction

Vitamin Bé is an essential micronutrient that plays an important role in the nervous system (Bowling,
2011, Wilson et al., 2019), with the vitamin B6 status affecting cognitive function at any age (di Salvo
et al., 2012; Mitchell et al., 2014). Population studies indicate that low vitamin Bé levels are common
among older people (Malouf and Grimley Evans, 2003), and suggest that vitamin B6é deficiency
may influence memory performance and may contribute to age-related cognitive decline (Hughes
et al., 2017, Jannusch et al., 2017; Xu et al., 2022 Elias et al., 2006). Vitamin B6 deficiency is also
associated with other conditions characterized by impaired learning and memory, including neuropsy-
chiatric disorders (Tomioka et al., 2018, Toriumi et al., 2021, Arai et al., 2010), Alzheimer’s disease
(Paul, 2021), and inflammation (Ueland et al., 2017; Danielski et al., 2018). Nevertheless, the exact
molecular mechanisms linking vitamin Bé to these pathologies are often insufficiently understood, and
whether vitamin B6 supplementation improves cognition is unclear (Mitchell et al., 2014; Malouf and
Grimley Evans, 2003; Wang et al., 2022b; Behrens et al., 2020; Hassel et al., 2019; Rutjes et al.,
2018; Smith and Refsum, 2016; Aisen et al., 2008; Douaud et al., 2013).

The term vitamin B6 encompasses the enzymatically interconvertible compounds pyridoxine,
pyridoxamine, pyridoxal (collectively referred to as B6 vitamers), and their phosphorylated forms.
Among these, only pyridoxal 5-phosphate (PLP) is co-enzymatically active. In humans, PLP is known
to be required for 44 distinct biochemical reactions, including the biosynthesis and/or metabolism of
neurotransmitters, amino acids, lipids, and glucose. In addition, Bé vitamers display antioxidant and
anti-inflammatory functions (Percudani and Peracchi, 2003; Eliot and Kirsch, 2004; Percudani and
Peracchi, 2009; Parra et al., 2018).

Cellular PLP availability in the brain depends on numerous factors, including the intestinal absorp-
tion of Bé vitamers, extracellular phosphatases, inter-organ transport and intracellular enzymes, and
carriers/scavengers involved in PLP formation and homeostasis (Wilson et al., 2019). Specifically,
intracellular PLP is formed by the pyridoxal kinase (PDXK)-catalyzed phosphorylation of pyridoxal,
or the pyridox(am)ine-5'-phosphate oxidase (PNPO)-catalyzed oxidation of pyridox(am)ine 5'-phos-
phate to PLP. PLP is highly reactive and can undergo condensation reactions with, e.g., primary amino
groups or thiol groups in proteins or amino acids. Although the mechanisms of PLP delivery within
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the cells are still largely unknown, it is clear that the intracellular availability of PLP for co-enzymatic
functions depends on PLP carriers/scavengers and on the hydrolytic activity of pyridoxal 5’-phosphate
phosphatase (PDXP) (Wilson et al., 2019; Ciapaite et al., 2023; Fux and Sieber, 2020, Jang et al.,
2003; Jeanclos et al., 2019).

We have previously shown that the genetic knockout of PDXP (PDXP-KO) in mice increases brain
PLP levels and improves spatial memory and learning, suggesting that elevated PLP levels can improve
cognitive functions in this model (Jeanclos et al., 2019). We therefore reasoned that a pharmacolog-
ical inhibition of PDXP may be leveraged to increase intracellular PLP levels and conducted a high-
throughput screening campaign to identify small-molecule PDXP modulators. Here, we report the
discovery and the structural and cellular validation of 7,8-dihydroxyflavone (7,8-DHF) as a preferential
PDXP inhibitor. 7,8-DHF is a well-studied molecule in brain disorder models characterized by impaired
cognition, and widely regarded as a tropomyosin receptor kinase B (TrkB) agonist with brain-derived
neurotrophic factor (BDNF)-mimetic activity (Liu et al., 2016). However, a direct TrkB agonistic activity
of 7,8-DHF has been called into question (Wang et al., 2022a; Boltaev et al., 2017, Pankiewicz
et al., 2021; Todd et al., 2014; Chen et al., 2011). Our serendipitous discovery of 7,8-DHF as a direct
PDXP inhibitor provides an alternative mechanistic explanation for 7,8-DHF-mediated effects. More
potent, efficacious, and selective PDXP inhibitors may be useful future tools to explore a possible
benefit of elevated PLP levels in brain disorders.

Results
PDXP activity controls PLP levels in the hippocampus

The hippocampus is important for age-dependent memory consolidation and learning, and impaired
memory and learning is associated with PLP deficiency (di Salvo et al., 2012). To study a possible
contribution of PDXP and/or PDXK to age-related PLP homeostasis in the hippocampus, we performed
western blot analyses in young versus older mice. Unexpectedly, we found that both PDXP and
PDXK expression levels were markedly higher in hippocampi of middle-aged than of juvenile animals
(Figure 1a). These data suggest an accelerated hippocampal PLP turnover in older mice, consistent
with previous findings in senescent mice (Fonda et al., 1980).

An analysis of total hippocampal PLP levels in PDXP-WT and PDXP-KO mice showed an age-
dependent profile. PLP levels appeared to peak around 3 months of age (possibly reflecting PLP-
dependent neurotransmitter biosynthesis and metabolism during the postnatal developmental
period) and descended back to juvenile levels by 12 months of age in both genotypes. Although
total hippocampal PLP levels in PDXP-KO mice also decreased with age, they consistently remained
above PLP levels in control mice (Figure 1b; two-tailed, unpaired t-test of PLP levels in PDXP-WT vs.
PDXP-KO hippocampi, all ages combined: p<0.0001).

PLP is protected from hydrolysis by binding to proteins, and PDXP is expected to dephosphor-
ylate only non-protein-bound PLP (Gohla, 2019). To test this, we prepared protein-depleted PLP
fractions from PDXP-WT and PDXP-KO hippocampal lysates using 3 kDa molecular weight cutoff
centrifugal filters. The quantification of PLP in these fractions demonstrated that PDXP loss indeed
only increased the pool of protein-depleted PLP, both in young (18-42 days of age) and in older mice
(252-352 days of age, corresponding to mature/middle-aged mice), whereas the levels of protein-
bound PLP remained unchanged (Figure 1c). While the hippocampal levels of non-protein-bound PLP
dropped by about 60% over this time span in PDXP-WT mice, they remained elevated in PDXP-KO
mice (~2-fold higher in younger, and ~5-fold higher in older PDXP-KO compared to the respective
PDXP-WT, see Figure 1—source data 3 for exact mouse ages). We conclude that hippocampi of
older mice are characterized by a specific decrease in the levels of non-protein-bound PLP, and that
this age-dependent PLP loss is dependent on PDXP activity. These observations establish that PDXP
is a critical determinant of PLP levels in the murine hippocampus and suggest that intracellular PLP
deficiency may be alleviated by PDXP inhibition.

A high-throughput screening campaign identifies 7,8-DHF as a PDXP
inhibitor

Pharmacological small-molecule PDXP inhibitors are currently lacking. To identify PDXP inhibitor candi-
dates, we screened the FMP small-molecule repository containing 41,182 compounds for molecules
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Figure 1. Role of pyridoxal 5'-phosphate phosphatase (PDXP) in hippocampal pyridoxal 5'-phosphate (PLP) homeostasis. (a) Age-dependent expression
of pyridoxal kinase (PDXK) and PDXP in murine hippocampi. Left panels, representative western blots of three hippocampi for each genotype. The
same blots were reprobed with a-actin antibodies as a loading control. The age of the investigated mice is indicated above the blots. Right panel,
densitometric quantification of hippocampal PDXP and PDXK western blot signals, corrected by the corresponding actin signals. Young mice were

Figure 1 continued on next page
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18-42 days of age, older mice were 252-351 days of age; n=7 individual hippocampi were analyzed per group. Data are mean values + SD. Statistical
analysis was performed with unpaired, two-sided t-tests; p-values are indicated. (b) Age-dependent, total PLP concentrations in isolated hippocampi
of PDXP-WT and knockout of PDXP (PDXP-KO) mice. PLP was derivatized with semicarbazide and analyzed by HPLC. Each symbol represents the result
of the PLP determination in an individual hippocampus. Data were fitted by Gaussian least-squares analyses. (c) Determination of protein-bound and
protein-depleted PLP in PDXP-WT and PDXP-KO hippocampal lysates of young (18-42 days of age) and older mice (252-352 days of age). The number
of analyzed hippocampi is indicated in the bars. Data are mean values + SD. Statistical analysis was performed with two-way ANOVA and Tukey’s
multiple comparisons test. Significant differences (adjusted p-values) in protein-depleted PLP levels are indicated. The exact age of analyzed mice is
listed in Figure 1—source data 3. Source data are available for this figure.

The online version of this article includes the following source data for figure 1:

Source data 1. Western blot quantification (to Figure 1a).

Source data 2. Quantification of pyridoxal 5'-phosphate (PLP) levels in hippocampi of pyridoxal 5'-phosphate phosphatase (PDXP)-WT and knockout of
PDXP (PDXP-KO) mice (to Figure 1b and c).

Source data 3. Analysis of total hippocampal pyridoxal 5'-phosphate (PLP) levels in pyridoxal 5'-phosphate phosphatase (PDXP)-WT and knockout of

PDXP (PDXP-KO) mice.

able to modulate the phosphatase activity of recombinant, highly purified murine PDXP (see Figure 2—
figure supplement 1 for a schematic of the screening campaign). Difluoro-4-methylumbelliferyl phos-
phate (DiIFMUP) was used as a fluorogenic phosphatase substrate in a primary screen. Compounds
that altered DiIFMUP fluorescence by >50% (activator candidates) or <25% (inhibitor candidates) were
subjected to ECs/ICs, value determinations. Of these, 46 inhibitor hits were selected and counter-
screened against phosphoglycolate phosphatase (PGP), the closest PDXP relative (Seifried et al.,
2014; Jeanclos et al., 2022). Eleven of the PDXP inhibitor hits (with an ICs, PDXP < 20 pM, and ICs,
PDXP < ICs, PGP or no activity against PGP) were subsequently validated in a secondary assay, using
PLP as a physiological PDXP substrate (see Figure 2—source data 5 for all 11 inhibitor hits). Only
one PDXP-selective inhibitor hit (7,8-DHF, a naturally occurring flavone) blocked PDXP-catalyzed PLP
dephosphorylation (ICsy ~ 1 uM).

In vitro activity assays using PLP as a substrate confirmed that 7,8-DHF directly blocks murine and
human PDXP activity with submicromolar potency and an apparent efficacy of ~50% (Figure 2a and
b). We next examined whether commercially available 7,8-DHF analogs might be more potent or effi-
cacious PDXP inhibitors. We tested flavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (also known
as chrysin), 3,5,7-trihydroxyflavone (galangin), 5,6,7-trihydroxyflavone (baicalein), and 3,7,8,4'-tetrahy-
droxyflavone. Figure 2b shows that of the tested 7,8-DHF analogs, only 3,7,8,4'-tetrahydroxyflavone
was able to inhibit PDXP, albeit with an ICs, of 2.5 pM and thus slightly less potently than 7,8-DHF.
These results suggest that hydroxyl groups in positions 7 and 8 of the flavone scaffold are required for
PDXP inhibition. The efficacy of PDXP inhibition by 3,7,8,4'-tetrahydroxyflavone was not substantially
increased at concentrations >40 uM (relative PDXP activity at 40 pM: 0.46+0.05; at 70 uM: 0.38+0.15;
at 100 pM: 0.37+0.09; data are mean values = SD of n=6 experiments). Concentrations >100 uM
could not be assessed due to impaired PDXP activity at the DMSO concentrations required for solu-
bilizing the flavone.

We used a biolayer interferometry (BLI) optical biosensing technique to further characterize the
binding of 7,8-DHF to PDXP (Figure 2c). Consistent with a specific interaction, 7,8-DHF binding to
PDXP was concentration-dependent and fully reversible. As a result of the poor solubility of the mole-
cule, a saturation of the binding site was not experimentally accessible. Steady-state analysis of a
7,8-DHF serial dilution series yielded an affinity (Kp) value of 3.1+0.3 uM (data are mean values +
SE of n=4 measurements; see Figure 2—figure supplement 2 for the three other measurements)
using a 1:1 dose-response model. Global analysis of the sensorgrams assuming a 1:1 binding model
resulted in an affinity of 2.6+0.5 uM, in line with the steady-state results (Figure 2c). As expected,
5,7-dihydroxyflavone showed no signal in the BLI, in line with previous experiments (see Figure 2b).
With its molecular size of 254 Da and its physicochemical properties, 7,8-DHF is a typical fragment-like
molecule (Congreve et al., 2003). Typical association rate constants (k,,) for fragments are limited
by the rate of diffusion and are higher than 10¢M™" s7'. Interestingly, 7,8-DHF showed a slow k,, of
1.05-10* M™" 57", which is atypical and rarely found for fragment-like molecules (O’Connell et al.,
2019), and a k.4 rate of 0.03 s™'. With the commonly used estimation of AG~pKy and a heavy atom
number of 19, 7,8-DHF shows a high ligand efficiency of 0.39, which makes it an interesting molecule
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Figure 2. Characterization of the 7,8-dihydroxyflavone (7,8-DHF)/pyridoxal 5'-phosphate phosphatase (PDXP) interaction. (a) Determination of half-
maximal inhibitory constants (ICs) of 7,8-DHF (2D structure shown on top) for purified murine or human PDXP, using pyridoxal 5'-phosphate (PLP)
as a substrate. Phosphatase activities in the presence of 7,8-DHF were normalized to the respective enzyme activities measured in the presence of
the DMSO solvent control. Data are mean values + SD of n=3 (human PDXP) and n=4 (murine PDXP) biologically independent experiments. (b) I1Cs,

Figure 2 continued on next page
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Figure 2 continued

values of different flavones for purified murine PDXP with PLP as a substrate. Phosphatase activities in the presence of flavones were normalized

to the respective enzyme activities in the presence of the DMSO solvent control. All data are mean values + SD. The inhibition of PDXP by
3,7,8-trihydroxyflavone-4'-hydroxyphenyl (2D structure shown on top) was assessed in n=6 biologically independent experiments. All other data are from
n=3 biologically independent experiments. Apparently missing error bars are hidden by the symbols. (c) Biolayer interferometry (BLI) measurements

of the interaction of 7,8-DHF with purified murine PDXP. Left panel, example sensorgram overlayed with the global 1:1 binding model (red) and the
negative control (gray). The dashed line indicates the start of the dissociation phase. Right panel, steady-state dose-response analysis for 7,8-DHF based
on n=4 technically independent measurements. (d) Sensitivity of the indicated phosphatases to 7,8-DHF. Phosphatase activities in the presence of 7,8-
DHF were normalized to the respective enzyme activities measured in the presence of the DMSO solvent control. Data are mean values + SD of n=4
(PGP) or n=3 biologically independent experiments (all other phosphatases). Phosphatase substrates and haloacid dehalogenase (HAD) phosphatase
cap types are indicated in parentheses. PDXP, pyridoxal 5'-phosphate phosphatase (pyridoxal 5'-phosphate, C2); PGP, phosphoglycolate phosphatase
(2-phosphoglycolate; C2); LHPP, phospholysine phosphohistidine inorganic pyrophosphate phosphatase (imidodiphosphate; C2); NT5C1A, soluble
cytosolic 5'-nucleotidase 1A (AMP; C1); NANP, N-acetylneuraminate 9-phosphate phosphatase (6-phosphogluconate; C1); PHOP2, phosphatase orphan
2 (pyridoxal 5'-phosphate; C1); PSPH, phosphoserine phosphatase (O-phospho-L-serine; C1); PNKP, polynucleotide kinase phosphatase (3-phospho-
oligonucleotide; C0); MDP1, magnesium-dependent phosphatase-1 (D-ribose-5-phosphate; C0); PTP1B (protein tyrosine phosphatase 1B; EGFR
phospho-peptide); PP2B, protein phosphatase 2B/calcineurin (PKA regulatory subunit type |l phospho-peptide); CIP, calf intestinal phosphatase (oNPP).
Source data are available for this figure.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Phosphatase activity assays (to Figure 2a).
Source data 2. Phosphatase activity assays (to Figure 2b).

Source data 3. Biolayer interferometry (BLI) measurements with 7,8-dihydroxyflavone (7,8-DHF) and murine pyridoxal 5'-phosphate phosphatase (PDXP)
(to Figure 2c).

Source data 4. Effect of 7,8-dihydroxyflavone (7,8-DHF) on the phosphatase activity of different phosphatases (to Figure 2d).

Source data 5. Pyridoxal 5'-phosphate phosphatase (PDXP) inhibitor hits.

Figure supplement 1. Identification of pyridoxal 5'-phosphate phosphatase (PDXP) inhibitors.

Figure supplement 1—source data 1. Screening campaign for pyridoxal 5'-phosphate phosphatase (PDXP) inhibitors: ICs, data of the PDXP_PDXP
primary screen.

Figure supplement 1—source data 2. Screening campaign for pyridoxal 5'-phosphate phosphatase (PDXP) inhibitors: ICs, data of the PGP_PDXP
counter-screen.

Figure supplement 2. Biolayer interferometry (BLI) measurements of the interaction of 7,8-dihydroxyflavone (7,8-DHF) with purified murine pyridoxal
5'-phosphate phosphatase (PDXP).

for further medicinal chemistry optimization. Taken together, these data support a direct and revers-
ible physical interaction between 7,8-DHF and PDXP that leads to PDXP inhibition.

Selectivity of 7,8-DHF

PDXP is a member of the large family of haloacid dehalogenase (HAD)-type hydrolases (Seifried
et al., 2013). HAD phosphatases are Mg**-dependent phospho-aspartate transferases that consist of
a Rossman-like catalytic core linked to a cap domain. The insertion site, structure, and size of the cap
define the substrate selectivity of the respective enzyme. The ‘capless’ CO-type HAD phosphatases
contain either a very small or no cap, resulting in an accessible catalytic cleft that enables the dephos-
phorylation of macromolecular substrates. Larger C1 or C2 caps act as a roof for the entrance to the
active site; most C1/C2-capped HAD phosphatases consequently dephosphorylate small molecules
that can gain access to the catalytic cleft. Cap domains also contain the so-called substrate specificity
loops that contribute to substrate coordination. Hence, caps are distinguishing features of HAD phos-
phatases (Gohla, 2019, Seifried et al., 2013; Burroughs et al., 2006, Huang et al., 2015).

To probe the selectivity of 7,8-DHF for PDXP, a C2-capped HAD phosphatase, we tested eight
other mammalian HAD phosphatases, including two other C2-, four C1-, and two CO-type enzymes.
In addition, we analyzed the activity of 7,8-DHF toward the prototypical tyrosine phosphatase PTP1B
(which is known to be sensitive to specific flavonoids, Proenca et al., 2018); the serine/threonine
protein phosphatase calcineurin (PP2B); and a DNA/RNA-directed alkaline phosphatase (calf intes-
tinal phosphatase [CIP]) (Figure 2d). When assayed at nominal concentrations of 5, 10, and 40 uM
(i.e. up to ~40-fold above the ICs, value for PDXP-catalyzed PLP dephosphorylation), 7,8-DHF was
completely inactive against six of the tested enzymes. At the highest tested concentration of 40 pM,
7,8-DHF weakly inhibited PTP1B and the polynucleotide kinase-3'-phosphatase PNKP and appeared
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Table 1. Kinetic constants of pyridoxal 5'-phosphate phosphatase (PDXP)-catalyzed pyridoxal
5'-phosphate (PLP) hydrolysis in the presence of 7,8-dihydroxyflavone (7,8-DHF).

7,8-DHF [pM] 0 1.0 1.5 2.0 3.0 5.0 10.0
14.98 18.54 20.20 18.97 24.83 32.96 30.61
Ky [pM] +1.28 +6.24 +6.19 +5.15 +2.61 +2.13 +2.57
1.08 0.95 0.89 0.85 0.80 0.81 0.74
Vinax [HMol/min/mg] +0.04 +0.01 +0.04 +0.02 +0.04 +0.05 +0.06
0.57 0.5 0.47 0.45 0.42 0.43 0.39
Keat [57'] +0.02 +0.01 +0.02 +=0.01 +0.02 +0.03 +0.03
kea/ Kyt [s7-M7] 3.93 3.27 2.75 272 1.72 1.31 1.29
(x107%) +0.29 +0.84 +0.67 +0.66 +0.10 +0.06 +0.01

The data are mean values + SEM of n=3 technically independent experiments, except for the solvent control
samples (n=6). Curves were fitted and parameters Ky, (Michaelis-Menten constant); v,., (maximum enzyme
velocity); ke, (turnover number) were derived using the Michaelis-Menten model in GraphPad Prism 9.5.1. The
k.. values were calculated from the maximum enzyme velocities using a molecular mass of 31,828 Da for PDXP.
DMSO concentrations were kept constant (0.1% DMSO under all conditions, including the solvent control
samples). Source data are available for this table.

The online version of this article includes the following source data for table 1:

Source data 1. Kinetic constants of pyridoxal 5'-phosphate phosphatase (PDXP)-catalyzed pyridoxal 5'-phosphate
(PLP) hydrolysis in the presence of 7,8-dihydroxyflavone (7,8-DHF).

to increase the activity of calcineurin. As expected, 7,8-DHF inhibited PGP, the closest PDXP relative,
with an ICs, value of 4.8 uM. This result is consistent with the criteria applied during the initial counter-
screen (see above). In addition to PGP, 7,8-DHF inhibited the C1-capped soluble cytosolic 5’-nucleo-
tidase 1A (NT5C1A) with an ICs, value of ~10 uM. NT5C1A is an AMP hydrolase expressed in skeletal
muscle and heart (Bianchi and Spychala, 2003), which is also sensitive to inhibition by small molecules
that target the closest PDXP-relative PGP (Jeanclos et al., 2022). Together, the selectivity analysis of
7,8-DHF on a total of 12 structurally and functionally diverse protein- and non-protein-directed phos-
phatases show that 7,8-DHF preferentially inhibits PDXP, and that higher 7,8-DHF concentrations can
also target the PDXP paralog PGP and the nucleotidase NT5C1A.

Mode of PDXP inhibition

To probe the mechanism of PDXP inhibition, we assayed the steady-state kinetics of PLP dephosphor-
ylation in the presence of increasing 7,8-DHF concentrations (Table 1). Analysis of the derived kinetic
constants demonstrated that 7,8-DHF increased the Ky, up to ~2-fold, and slightly reduced v, values
~0.7-fold. Thus, 7,8-DHF mainly exhibits a mixed mode of PDXP inhibition, which is predominantly
competitive.

Co-crystal structures of PDXP bound to 7,8-DHF
To investigate the mechanism of PDXP inhibition in more detail, we co-crystallized homodimeric, full-
length murine and human PDXP (mPDXP, hPDXP) with this compound. 7,8-DHF-bound murine PDXP
co-crystallized with phosphate in the cubic space group 123, with protomer A containing the inhibitor
and protomer B representing an inhibitor-free state (Figure 3—figure supplement 1a). The structure
was refined following molecular replacement with full-length murine PDXP (here referred to as apo-
mPDXP; Protein Data Bank/PDB entry 4BX3) to a resolution of 2.0 A resulting in an R, of 18.4%
and an Ry, of 21.1% (PDB code 8QFW). We additionally obtained two co-crystal structures of human
PDXP with 7,8-DHF: one in a phosphate-containing and one in a phosphate-free form. Both forms
crystallized in the tetragonal space group P452,2, and each protomer of both structures contained the
inhibitor (Figure 3a). These structures were refined following molecular replacement with full-length
human PDXP (PDB entry 2P27, here referred to as apo-hPDXP) to a resolution of 1.5 A resulting in an
Ruor/ Riee ©f 17.0/19.4% (phosphate-bound 7,8-DHF-hPDXP, PDB code 9EM1), and to a resolution of
1.5 A resulting in an R,ou/Ryee Of 18.2/20.5% (phosphate-free 7,8-DHF-hPDXP, PDB code 8S8A). Data
collection and refinement statistics are summarized in Table 2.

Like their respective apo-forms, 7,8-DHF-bound murine and human PDXP homodimerize via their
cap domains (Figure 3a and Figure 3—figure supplement 1a). The Ca atom-based alignment of the
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Figure 3. X-ray crystal structures of human pyridoxal 5'-phosphate phosphatase (PDXP) in complex with 7,8-dihydroxyflavone (7,8-DHF). (a) The models
were refined to a resolution of 1.5 A for full-length human 7,8-DHF-PDXP with phosphate (PDB code 9EM1, colored in wheat yellow, left panel) and 1.5 A
for full-length human 7,8-DHF-PDXP without phosphate (PDB code 8S8A, colored in light blue, right panel). One protomer of each homodimeric PDXP
is shown in cartoon representation and the other protomer in surface representation. 7,8-DHF is displayed in sphere representation with its C-atoms

Figure 3 continued on next page
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Figure 3 continued

in cyan. Mg®* ions are shown as deep purple spheres and phosphate ions are shown in sphere representation with the phosphorous atom in orange.

(b) Orientation of 7,8-DHF in the active sites of human 7,8-DHF-PDXP in the presence or absence of phosphate. Structural details of bound 7,8-DHF and
adjacent residues of the active sites are shown. Left, phosphate-containing 7,8-DHF-PDXP (wheat yellow, cartoon representation). Right, phosphate-free
7,8-DHF-PDXP (light blue, cartoon representation). 7,8-DHF is shown in stick representation (cyan C-atoms). The corresponding amino acids in murine
PDXP are given in parentheses (see also Figure 3—figure supplement 1e and f). (c) Comparison of the Mg?* coordination spheres. From left to right:
human apo-PDXP (PDB: 2P27), human PDXP in complex with pyridoxal 5'-phosphate (PLP) (PDB: 2CFT), human PDXP in complex with 7,8-DHF in the
presence of phosphate (PDB: 9EM1), human PDXP in complex with 7,8-DHF in the absence of phosphate (PDB: 8S8A). The catalytically essential Mg**

is shown as a deep purple sphere. In 2CFT, Mg?* was exchanged for Ca?*, which is shown here as a light brown-colored sphere. Water molecules are
shown as blue spheres. (d) Verification of 7,8-DHF-PDXP interactions. Left panel, phosphatase activity of purified PDXP or the indicated PDXP variants.
Data are mean values + SD of n=3 biologically independent experiments. Right panel, determination of the ICy, values of 7,8-DHF for purified PDXP or
the indicated PDXP variants. Data are mean values + SD of n=3 biologically independent experiments. Apparently missing error bars are hidden by the
symbols.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Phosphatase activity and 7,8-dihydroxyflavone (7,8-DHF) sensitivity of pyridoxal 5'-phosphate phosphatase (PDXP) and PDXP variants (to
Figure 3g).

Figure supplement 1. X-ray crystal structures of murine pyridoxal 5'-phosphate phosphatase (PDXP) in complex with 7,8-dihydroxyflavone (7,8-DHF).

Figure supplement 1—source data 1. Effect of 7,8-dihydroxyflavone (7,8-DHF) on the phosphatase activity of pyridoxal 5'-phosphate phosphatase
(PDXP)-D14A.

Figure supplement 2. 7,8-Dihydroxyflavone (7,8-DHF) coordination in pyridoxal 5'-phosphate phosphatase (PDXP).
Figure supplement 3. Alignment of human and murine pyridoxal 5'-phosphate phosphatase (PDXP).

Figure supplement 4. Salt bridge formation between Glu152 (Glu148) and Argé2 gates the active site entrance in pyridoxal 5'-phosphate phosphatase
(PDXP).

Figure supplement 5. Purity of the employed pyridoxal 5'-phosphate phosphatase (PDXP) and PDXP variants.

structures representing murine apo-PDXP and murine 7,8-DHF-bound PDXP resulted in root mean
square (RMS) deviations in the range of 0.43-0.71 A. Even smaller values were obtained when human
apo-PDXP, human PLP-bound PDXP, and human 7,8-DHF-bound PDXP were superimposed with RMS
deviations in the range from 0.29 to 0.54 A (Table 3). Hence, binding of the inhibitor did not result in
significant changes in murine or human PDXP backbone conformations. All catalytic core residues and
the Mg?" cofactor are correctly oriented in the presence of the inhibitor. We conclude that 7,8-DHF
binding does not appear to impact the overall fold of murine or human PDXP.

7,8-DHF was observed to only bind to one subunit (the A-chain) of murine PDXP (Figure 3—figure
supplement 1a) with well-defined density (Figure 3—figure supplement 1b) and full occupancy since
its average B-factor of 45.8 A closely matches the B-factors of the surrounding atoms. Binding to the
other subunit (B-protomer) is prevented by a salt bridge between Argé2 and Asp14 of a symmetry-
related A-protomer in the crystal (Figure 3—figure supplement 1c). The x, and x , torsion angles
of the Argé2 side chain observed in the B-protomer correspond to those observed for this side chain
in both protomers of the murine apo-structure (4BX3). To allow binding of the inhibitor, the side chain
of Argbé2 needs to adopt a completely extended conformation, which is prevented by the salt bridge.
However, preventing mPDXP salt bridge formation by mutating Asp14 to Ala did not alter the efficacy
of 7,8-DHF inhibition (Figure 3—figure supplement 1d; see also Figure 3d for the characterization
of the PDXP-Arg62Ala variant). It is therefore currently unclear whether the mPDXP crystal state with
only a single inhibitor bound per dimer reflects the state in solution. Due to the limited solubility
of 7,8-DHF, we were unable to address the stoichiometry of 7,8-DHF binding to the PDXP dimer
with isothermal calorimetry. It is conceivable that the mPDXP crystal packing is very stable (indeed,
7,8-DHF-bound mPDXP crystallized in the same cubic space group as apo-mPDXP, see Kestler et al.,
2014, including the aforementioned salt bridge between Argé2 of the B-subunit and Asp14 of a
symmetry-related molecule), and that the free energy generated by the formation of the crystal lattice
is higher than the free energy generated upon inhibitor binding.

In contrast to murine PDXP, 7,8-DHF bound to human PDXP with a ratio of two inhibitors per homod-
imer (Figure 3a) and well-defined density (Figure 3—figure supplement 2a). Interestingly, the orien-
tation of the inhibitor was markedly affected by the presence or absence of phosphate (Figure 3b). In
the presence of phosphate, the inhibitor moiety that is closest to the Mg?* cofactor is the uncharged
phenyl ring of 7,8-DHF. In the absence of phosphate, the inhibitor is flipped horizontally, with the
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Table 2. Data collection and refinement statistics.

mPDXP-7,8-DHF with phosphate

(8QFW)

hPDXP-7,8-DHF with phosphate

(9EM1)

Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

hPDXP-7,8-DHF without phosphate

(8S8A)

Data collection

Space group

123

P4;2:2

P4;2:2

a, b, c (A

167.01, 167.01, 167.01

53.96, 53.96, 211.75

54.04, 54.04, 212.49

a, By ()

90, 90, 90

90, 90, 90

90, 90, 90

Resolution (A)

47.21-2.00 (2.07-2.00)

48.08-1.50 (1.53-1.50)

48.17-1.50 (1.53-1.50)

Reym* 0.190 (4.101) 0.126 (4.893) 0.081 (3.670)
Roim' 0.030 (0.652) 0.018 (0.689) 0.017 (0.731)
CCip 1.00 (0.459) 0.991 (0.526) 0.999 (0.579)
<|/cl>* 20.7 (1.1) 24.6(1.4) 17.5(1.1)
Completeness 0.998 (0.973) 1.00 (1.00) 1.00 (1.00)
Redundancy 41.0 (38.5) 50.7 (51.0) 25.6 (26.0)
Refinement

Resolution (A)

20.00-2.00 (2.07-2.00)

38.16-1.50 (1.55-1.50)

48.165-1.50 (1.55-1.50)

R-work® 0.1838 (0.300) 0.1702 (0.2740) 0.1817 (0.2938)
R-free’ 0.21(0.322) 0.1939 (0.3217) 0.2050 (0.2955)
RMS deviations in

Bond lengths (A) 0.002 0.012 0.005

Bond angles (°) 0.50 1.08 0.80

Chiral centers (A%) 0.038 0.065 0.046

Planar groups (A) 0.005 0.014 0.010
Estimated coordinate error (A) 0.26 0.16 0.19
Ramachandran statistics (%) 98.95/1.05/0 98.63/1.37/0 98.63/1.37/0

Numbers in parentheses refer to the highest resolution data shell.

Ramachandran statistics reflect the percentage of residues in favored/allowed/outlier regions. Source data (raw diffraction images) have been
deposited in the Xtal Raw Data Archive and can be accessed under the XRDA entries 8QFW (https://xrda.pdbj.org/entry/8qgfw), 9EM1 (https://xrda.
pdbj.org/entry/9em1), and 8S8A (https://xrda.pdbj.org/entry/8s8a).

*Rym = Zpa Zi | = <I> |/ 21 Z I, where [ is the ith measurement and <I> is the weighted mean of all measurements of .
Rom = ZnaT/(N = 1) X [li(hkl) = I(hkI)|/ £ 2 I(hkl), where N is the redundancy of the data and I(hkl) the average intensity.
*<I/o1> indicates the average of the intensity divided by its standard deviation.

Ryore = Z it ||Fol = [Fll/ Z nialFo| where F, and F. are the observed and calculated structure factor amplitudes.
IR}ec same as R for 5% of the data randomly omitted from the refinement. The number of reflections includes the Ry.. subset.

hydroxylated chromone substructure of 7,8-DHF now located closest to the Mg?* ion (Figure 3b,
compare left and right panels). The inhibitor localization in the presence of phosphate was identical
in human and murine PDXP (Figure 3—figure supplement 2e). The localization of the phosphate ion
that co-crystallized with 7,8-DHF-bound human or murine PDXP overlaps exactly with the localization
of the PLP phosphate moiety introduced from PDB code 2CFT (human PDXP in complex with PLP)
for visualization purposes (Figure 3c and Figure 3—figure supplement 2b), indicating that the phos-
phate ion is bound in a catalytically relevant position.

Irrespective of the orientation of 7,8-DHF in the PDXP active site, the inhibitor is embedded in
a cavity that is exclusively formed by the active site of protomer A, without a contribution of the
dimerization interface with protomer B. All PDXP residues found to engage in 7,8-DHF interactions
are identical in murine and human PDXP (Figure 3—figure supplement 3). One side of this cavity
is formed by the more polar residues Asp27, Asné0, Ser61, and Argé2 (identical amino acid residue
numbering in mPDXP and hPDXP), whereas the opposite side is established by the more hydrophobic
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Table 3. Alignment of murine and human pyridoxal 5'-phosphate phosphatase (PDXP) structures.

7,8-DHF-mPDXP (+P), protomer A 7,8-DHF-mPDXP (- P), protomer B
7,8-DHF-mPDXP (+P), protomer B 043 A
Apo-mPDXP, protomer A 0.50 A 071 A
Apo-mPDXP, protomer B 0.60 A 0.69 A

7,8-DHF-hPDXP (+P) 7,8-DHF-hPDXP (-P)
7,8-DHF-hPDXP (-P) 037A
Apo-hPDXP 0.54 A 0.45A
PLP-hPDXP 0.39 A 0.29 A

Ca atom-based alignment of the structures representing murine apo-PDXP (PDB: 4BX3), 7,8-dihydroxyflavone (7,8-DHF)-bound murine PDXP (with
inhibitor-bound protomer A and inhibitor-free protomer B; PDB: 8QFW), human apo-PDXP (PDB: 2P27), 7,8-DHF-bound human PDXP with phosphate
(+P) (PDB: 9EM1), 7,8-DHF-bound human PDXP without phosphate (-P) (PDB: 8S8A) and pyridoxal 5'-phosphate (PLP)-bound human PDXP (PDB:
2CFT); mPDXP, murine PDXP; hPDXP, human PDXP. Root mean square deviations are indicated.

residues Tyr150, His182, Pro183, and Leu184 (corresponding to Tyr146, His178, Pro179, and Leu180 in
mPDXP). Adjacent to this hydrophobic stretch, the polar residue Glu152 (Glu148 in mPDXP) is located
at the active site entrance, directly opposite of Argé2 on the more polar side of the 7,8-DHF binding
channel (Figure 3b and Figure 3—figure supplement 1e).

Interestingly, Glu152 (or Glu148) and Argé2 can form an intramolecular salt bridge that obstructs
the active site entrance (Figure 3—figure supplement 4). This interaction was observed in phosphate-
free 7,8-DHF-hPDXP and phosphate-free PLP-hPDXP, as well as in apo-hPDXP and apo-mPDXP. In
contrast, the 7,8-DHF binding pose that is dictated by the concomitant binding of phosphate and 7,8-
DHF interferes with the Glu152 (Glu148)-Arg62 interaction in both, hPDXP and mPDXP (Figure 3—
figure supplement 4). Thus, although we did not find evidence for major cap/core or substrate
specificity loop movements (Jeanclos et al., 2022; Kestler et al., 2014) in PDXP, the presence or
absence of a salt bridge formed between the cap domain residue Glu152 (Glu148) and the core
domain residue Arg62 indicates subtle conformational changes in PDXP that may mediate an opening
or a closure of the active site entrance.

Inhibitor binding in the presence of phosphate is identical in human and murine PDXP (Figure 3—
figure supplement 1f) and appears to be primarily stabilized by two hydrogen bonds, as well as polar
and non-polar interactions (Figure 3b, left panel). The side chain hydroxyl group of Seré1 forms a
direct hydrogen bond with the ketone group of the inhibitor, which is additionally coordinated by the
Ser61 backbone nitrogen atom. Furthermore, Glu152 (Glu148) forms a direct hydrogen bond via its
carboxylic acid with the 7-hydroxyl group of 7,8-DHF. The side chains of the polar residues Asp27,
Asné0, and Arg62 engage in van der Waals interactions with 7,8-DHF. The two hydroxyl groups of the
7,8-DHF benzyl ring engage in van der Waals interactions with the guanidinium group of Argé62 and
the carboxylic acid function of Glu148 (Glu152). On the more hydrophobic side of the binding cavity,
Tyr146 (Tyr150) forms m-electron stacking interactions with the pyrone ring of 7,8-DHF. In addition,
the His178 (His182) imidazole group coordinates the 7,8-DHF phenyl ring via a cation- interaction.
His178 (His182), located in the substrate specificity loop, and Asné0 and Argé2 are also important for
PLP binding (Kestler et al., 2014; Knobloch et al., 2015).

Inhibitor binding in the absence of phosphate is primarily stabilized by metal coordination and
hydrogen bonds, as well as polar and non-polar interactions (Figure 3b, right panel). The 7-hydroxyl
group of 7,8-DHF is involved in an octahedral Mg?* coordination, albeit with an elongated oxygen-Mg?*
distance of 2.7 A, leading to the displacement of a water molecule (Figure 3c). This inhibitor-based
water displacement is not observed in the phosphate-containing murine or human 7,8-DHF-PDXP
structures. The 8-hydroxyl group of 7,8-DHF forms a hydrogen bond with Arg239 and His182. The
ketone group of the inhibitor participates in a water-bridged hydrogen bond to the carboxyl group
of Asp27 and the backbone amine group of Gly33. Like in the phosphate-containing structure, the
His182 imidazole group coordinates the 7,8-DHF phenyl ring via -1 stacking. In addition, Tyr150
forms edge to face m-m stacking interactions with the phenyl ring of 7,8-DHF. The side chains of the
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polar residues Asp27, Asné0, and, to some degree, also of Argé2, engage in van der Waals interac-
tions with 7,8-DHF.

To verify the putative 7,8-DHF-PDXP interactions, we introduced single mutations into the binding
interface. Asné0, Arg62, Tyr146, Glu148, and His178 in mPDXP were each exchanged for Ala
(PDXPN0A PDXPRée2A, PDXPY46A, PDXPE'*8A or PDXPH1784, respectively). Since the carboxamide group
of Asn60 can form a hydrogen bond with the carboxylate moiety of Asp27, and a loss of this interac-
tion in the PDXPN¢* variant is predicted to alter the PDXP structure, we additionally mutated Asn60
to Ser (PDXP"N¢%). PDXP variants were recombinantly expressed and purified from Eschericha coli (see
Figure 3—figure supplement 5 for protein purity). Figure 3d (left panel) shows that all PDXP variants
were enzymatically active. As expected, the phosphatase activities of PDXPN** and of PDXP""78* were
reduced. The somewhat elevated phosphatase activity of PDXP"'** and PDXPE'%®* is currently unex-
plained. Importantly, all variants except PDXPN®* and PDXPN¢% were resistant to 7,8-DHF, supporting
the essential role of each of these residues for inhibitor binding and the minor contribution of the
weak van der Waals interactions between Asné0 and 7,8-DHF during inhibitor binding (Figure 3d,
right panel). These data also suggest that Asné1 contributes to the limited efficacy of 7,8-mediated
PDXP inhibition in vitro.

Based on the inhibitor-bound structures and the predominantly competitive component of PDXP
inhibition by 7,8-DHF (increased Ky, see Table 1), it seems likely that 7,8-DHF sterically hinders
substrate access to the active site, and competes with PLP coordination (Figure 3—figure supple-
ment 2b). In addition, BLI measurements (see Figure 2c) showed a relatively slow association rate and
extended residence time of 7,8-DHF ( - =30.3 s). This may indicate a reorganization of the Mg** coor-
dination due to inhibitor binding, and a reorientation of 7,8-DHF during the PDXP catalytic cycle. The
reduced rate of product formation may account for the apparent mixed mode of 7,8-DHF-mediated
PDXP inhibition (reduction of v,,,,, see Table 1).

7,8-DHF functions as a PDXP inhibitor in hippocampal neurons

To investigate cellular target engagement of 7,8-DHF, we isolated primary hippocampal neurons from
PDXP-WT and PDXP-KO embryos. PDXP deficiency increased total PLP levels 2.4-fold compared to
PDXP-WT neurons (Figure 4a). This finding is in good agreement with the PLP increase resulting from
PDXP loss in total hippocampal extracts (see Figure 1). The larger absolute PLP values in cultured
neurons are likely attributable to the high concentration of the PLP precursor pyridoxal (20 uM) in
the culture medium. We did not observe PDXP-dependent changes in PDXK expression (Figure 4b)
and could not detect PNPO in hippocampal neuronal cultures, suggesting that the PLP increase was
primarily caused by the constitutive PDXP loss.

To assess the consequences of 7,8-DHF treatment on PLP levels in hippocampal neurons, we
chose short-term incubation conditions (45 min, 20 pM) to avoid possible secondary effects of the
inhibitor. As expected, the acute effect of 7,8-DHF treatment in WT cells was much more subtle (~9%
increase in total PLP) than the impact of long-term PDXP deficiency (441.3+62.6 nmol PLP/g protein
in DMSO solvent control-treated cells versus 482.7+130.4 nmol PLP/g protein in 7,8-DHF-treated
cells; data are mean values + SE of n=4 independent experiments). However, this effect is likely
underestimated because only the PDXP-accessible pool of non-protein-bound PLP may be impacted
by 7,8-DHF (see Figure 1c). Due to the limited number of available hippocampal neurons, we were
unfortunately unable to obtain sufficient quantities of protein-depleted PLP pools to address this
question.

Acute changes in the PLP/PL ratio may be a more sensitive indicator of PDXP activity than changes
in total PLP levels alone, because PDXP inhibition is expected to increase cellular levels of PLP (the
PDXP substrate) and to concomitantly decrease the levels of PL (the product of PDXP phosphatase
activity). The PLP/PL ratio is also independent of the exact protein concentration in a given extract
of hippocampal neurons, thus optimizing comparability between samples. As shown in Figure 4, 7,8-
DHF significantly increased the PLP/PL ratio in PDXP-WT, but not in PDXP-KO hippocampal neurons
(+18% versus +1% compared to the respective DMSO controls). Together, these data indicate that
7,8-DHF can modulate cellular PLP levels in a PDXP-dependent manner and validate PDXP as a 7,8-
DHF target in primary hippocampal neurons.
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Figure 4. Effect of 7,8-dihydroxyflavone (7,8-DHF) on the pyridoxal 5'-phosphate (PLP)/PL ratio in cultured hippocampal neurons from WT or knockout
of pyridoxal 5'-phosphate phosphatase (PDXP-KO) mice. (a) Effect of long-term PDXP deficiency on total PLP levels in hippocampal neurons. Data are
mean values + SE of n=4 biologically independent experiments. Statistical significance was assessed with a two-tailed, unpaired t-test. A representative
image of primary hippocampal neurons stained for the neuronal marker protein MAP2 is shown in the insert (pixel intensities were color-inverted for
better visualization). Scale bar, 100 um. (b) Western blot analysis of PDXP and pyridoxal kinase (PDXK) expression in hippocampal neuron samples
shown in (a). The same blots were reprobed with a-actin antibodies as a loading control. The densitometric quantification of PDXK signals is shown on
the right; data are mean values + SE of n=4 biologically independent experiments. (c) Effect of 7,8-DHF (20 pM, 45 min) or the DMSO solvent control
(0.02% vol/vol, 45 min) on the PLP/PL ratio in hippocampal neurons of PDXP-WT or PDXP-KO mice. Source data are available for this figure.

The online version of this article includes the following source data for figure 4:
Source data 1. Quantification of pyridoxal 5'-phosphate (PLP) and PLP/PL levels in hippocampal neurons (to Figure 4a and c).

Source data 2. Quantification of western blots (to Figure 4b).

Discussion

PLP deficiency has been associated with human brain disorders for decades (di Salvo et al., 2012),
yet causal links remain unclear. Aside from vitamin B6 administration, pharmacological strategies to
elevate intracellular PLP levels are lacking. Here, we identify 7,8-DHF as a direct PDXP inhibitor that
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increases PLP levels in hippocampal neurons, validating PDXP as a druggable target to control intra-
cellular PLP levels in the brain. We also present three high-resolution 7,8-DHF/PDXP co-crystal struc-
tures that will facilitate the design of more potent, efficacious, and selective PDXP inhibitors in the
future. Such molecules might improve the control of intracellular PLP levels and help to elucidate
a possible contribution of PLP to the pathophysiology of brain disorders. Our observation that the
expression of PDXP is substantially upregulated in hippocampi of middle-aged mice suggests that a
therapeutic vitamin B6 supplementation alone may not suffice to elevate intracellular PLP levels under
conditions where the PLP-degrading phosphatase is hyperactive.

The discovery of 7,8-DHF as a direct PDXP inhibitor was unexpected. Interestingly, numerous in
vivo studies have reported the effectiveness of 7,8-DHF in brain disorder models, including rodent
models of Alzheimer's disease (Zhang et al., 2014a; Devi and Ohno, 2012; Bollen et al., 2013;
Castello et al., 2014; Aytan et al., 2018; Gao et al., 2016; Akhtar et al., 2021; Hsiao et al., 2014),
depression (Blugeot et al., 2011; Zhang et al., 2014b; Yao et al., 2016; Zhang et al., 2016; Li et al.,
2022; Amin et al., 2020), schizophrenia (Jaehne et al., 2021; Han et al., 2016; Yang et al., 2014,
Han et al., 2017, Ren et al., 2013), epilepsy (Becker et al., 2015; Guarino et al., 2022), and autism
(Johnson et al., 2012, Kang et al., 2017; Lee and Han, 2019, Chen et al., 2023). Although PLP defi-
ciency is thought to contribute to the respective human conditions (di Salvo et al., 2012; Majewski
et al., 2016; Sorolla et al., 2016), PLP-dependent processes have not yet been considered in the
context of 7,8-DHF-induced effects.

7,8-DHF was initially discovered as a small-molecule TrkB agonist with BDNF-mimetic activity (Jang
et al., 2010). BDNF, a high-affinity TrkB ligand, is an important neuropeptide for nervous system func-
tion and pathology. Consensus is emerging that BDNF plays a key role in the treatment response to
neuropsychiatric drugs (Wang et al., 2022a). Therapeutics that target BDNF/TrkB signaling are thus of
interest as disease-modifying agents in several brain disorders. Since BDNF does not cross the blood-
brain barrier, attempts have been made to develop small-molecule BDNF mimetics. Several candi-
dates have been reported, including 7,8-DHF (Boltaev et al., 2017, Jang et al., 2010). Nevertheless,
the on-target selectivity and efficacy of these compounds is actively debated. Using quantitative and
direct assays to measure TrkB dimerization and activation, TrkB downstream signaling pathways, TrkB-
dependent gene expression and cytoprotection, 7,8-DHF and other reported small-molecule TrkB
agonists failed to activate TrkB in cells (Boltaev et al., 2017; Pankiewicz et al., 2021; Todd et al.,
2014). An electrophysiological study in acute hippocampal slice preparations demonstrated that 7,8-
DHF potentiates hippocampal mossy fiber-CA3 synaptic transmission in a TrkB receptor-independent
manner (Kobayashi and Suzuki, 2018). Overall, it appears that the mechanism of action of 7,8-DHF
is incompletely understood, but 7,8-DHF targets other than TrkB so far have remained elusive. The
identification of 7,8-DHF as a PDXP inhibitor reported here indicates that this flavone may modulate
vitamin Bé-dependent processes and suggests that PDXP could be explored as a pharmacological
entry point into brain disorders.

Materials and methods

(species) or Source or

resource Designation reference Identifiers Additional information
Gene (Mus

musculus) Pdxp UniProtkKB P60487

Strain, strain
background

Stratagene Europe/

(Escherichia coli) BL21(DE3) pLysS VWR AGLS200132
Ozgene Ltd.;
Genetic reagent Jeanclos et al.,
(M. musculus; male) Pdxp'™'°"; C57BI/6J 2019 Floxed Pdxp mice
Genetic reagent
(M. musculus; B6.FVB-Tg(Ella-cre)
female) C5379Lmgd/J Jackson Labs RRID:MGI:2174520  Ubiquitous Cre deleter

Continued on next page
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Additional information

Genetic reagent

(M. musculus; male

and female)

Pdxp'™'®" x Ella-cre

Jeanclos et al.,
2019

Pdxp-deficient mice

Biological sample

Primary hippocampal

From embryos of Pdxp-deficient

(M. musculus) neurons This paper or floxed Pdxp control mice
Biological sample Freshly isolated tissues from
(M. musculus) Hippocampi This paper Pdxp-deficient or floxed Pdxp control mice

Anti-MAP2 (mouse Cat#t MAB3418,
Antibody monoclonal) Millipore RRID:AB_94856 IF (1:500)

Anti-actin (mouse Cat# MAB1501,
Antibody monoclonal) Sigma-Aldrich RRID:AB_2223041  WB (1:5000)

Anti-PDXP (rabbit Cell Signaling Cat# 4686,
Antibody monoclonal) Technology RRID:AB_2162520  WB (1:1000)

Cat# AV53615,
Antibody Anti-PDXK (rabbit polyclonal) Sigma-Aldrich RRID:AB_1855158  WAB (1:1000)
Thermo Fisher Cat# PA5-26400,

Antibody Anti-PNPO (rabbit polyclonal) Scientific RRID:AB_2543900  WB (1:1000)

Recombinant DNA

N-terminally GST-tagged,

reagent pGEX-4T-1 (plasmid) This paper human PDXP
Recombinant DNA N-terminally His,-SUMO-tagged
reagent pET-SUMO (plasmid) This paper human PDXP

Recombinant DNA
reagent

pET-M11 (plasmid)

EMBL Heidelberg

N-terminally His,-tagged,
human SenP2

Recombinant DNA
reagent

PET-M11 (plasmid)

Jeanclos et al.,
2022

Murine HAD phosphatases (PDXP, PGP,
LHPP, NT5C1A, NANP, PHOP2, PSPH, PNKP, MDP1)

Sequence-based TCGACCATGGCGCG
reagent Pdxp_F This paper PCR primers CTGCGAGCGG
Sequence-based AAAAGTGAATTCTCAGTC
reagent Pdxp_R This paper PCR primers CTCCAGCCCCTC
Sequence-based GCCCTGCGCGCCGTGCTG
reagent Pdxp-D14A_F This paper PCR primers GGCCAGGCGCAG
Sequence-based GCCCAGCACGGCGCGCAGGGC
reagent Pdxp-D14A_R This paper PCR primers CGCGCCGCG
Sequence-based TTCGTGAGCAACGCCAGC
reagent Pdxp-N60A_F This paper PCR primers CGGCGCGCG
Sequence-based CGCGCGCCGGLCTGGC
reagent Pdxp-N60A_R This paper PCR primers GTTGCTCACGAA
Sequence-based

reagent Pdxp-N60S_F This paper PCR primers TTCGTGAGCAACAGCAGCCGGCGCGLG
Sequence-based CGCGCGCCGGCTGCTG
reagent Pdxp-N60S_R This paper PCR primers TTGCTCACGAA
Sequence-based AGCAACAACAGCGCGC
reagent Pdxp-R62A_F This paper PCR primers GCGCGCGGCCC
Sequence-based GGGCCGCGCGCGCGC
reagent Pdxp-R62A_R This paper PCR primers GCTGTTGTTGCT
Sequence-based GTGCTCGTAGGCGCC
reagent Pdxp-Y146A_F This paper PCR primers GACGAGCAGTTT

Continued on next page
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Continued

Reagent type

(species) or Source or

resource Designation reference Identifiers Additional information
Sequence-based AAACTGCTCGTCGG
reagent Pdxp-Y146A_R This paper PCR primers CGCCTACGAGCAC
Sequence-based GTAGGCTACGACGCGCA
Reagent Pdxp-E148A_F This paper PCR primers GTTTTCCTTC
Sequence-based GAAGGAAAACTGCGC
reagent Pdxp-E148A_R This paper PCR primers GTCGTAGCCTAC
Sequence-based CGCGACCCTTGGG
reagent Pdxp-H178A_F This paper PCR primers CCCCGCTCAGCGAC
Sequence-based GTCGCTGAGCGGGG
reagent Pdxp-H178A_R This paper PCR primers CCCAAGGGTCGCG
Peptide,

recombinant

protein Bovine brain calcineurin Sigma-Aldrich Cat# C1907 PP2B

Peptide,

recombinant Phosphopeptide from PKA DLDVPIPGRFDRRVpSVAAE;
protein regulatory subunit type Il Sigma-Aldrich Cat# 207008 PP2B substrate
Peptide,

recombinant

protein Recombinant human PTP1B  Cayman Chemical Cat# 10010896 Amino acids 1-321
Peptide, EGFR phosphopeptide with

recombinant Tyr? autophosphorylation ~ Santa Cruz DADEpYLIPQQG;
protein site Biotechnology Cat# sc-3126 PTP1B substrate
Peptide,

recombinant Calf intestinal alkaline

protein phosphatase NEB Cat# M0525S

Commercial assay

or kit EZ-Link NHS-PEG4-Biotin Thermo Fisher Cat# 21455

Flavone;
3,7-dihydroxyflavone;
5,7-dihydroxyflavone;
3,5,7-trihydroxyflavone;

Cat# F2003; Cat#
419826; Cat# 95082;

Chemical 5,6,7-trihydroxyflavone; Cat# 282200; Cat#
compound, drug  7,8-dihydroxyflavone Sigma-Aldrich 465119; Cat# D5446
Chemical

compound, drug  3,7,8,4'-Tetrahydroxyflavone ~ Ambinter Cat# AMB30621919

Software, algorithm Prism version 9.5.1

GraphPad Prism

RRID:SCR_002798

Software, algorithm OriginPro 2021b OriginLab RRID:SCR_014212
Super Streptavidin For biolayer interferometry
Other Biosensors Sartorius Cati# 18-5057 experiments
Materials

Unless otherwise specified, all reagents were of the highest available purity and purchased from
Sigma-Aldrich (Schnelldorf, Germany). 3,7,8,4'-Tetrahydroxyflavone was obtained from Ambinter
(Orléans, France), all other flavones were from Sigma-Aldrich.

PDXP knockout mice

Floxed PDXP mice (Pdxp™'®°") were generated on a C57BI/6J background, and whole-body Pdxp
knockouts were achieved by breeding with B6.FVB-Tg(Ella-cre)C5379Lmgd/J (Ella-Cre) transgenic
mice, as described (Jeanclos et al., 2019). All experiments were authorized by the local veterinary
authority and committee on the ethics of animal experiments (Regierung von Unterfranken). All anal-
yses were carried out in strict accordance with all German and European Union applicable laws and
regulations concerning care and use of laboratory animals.
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Preparation of hippocampi and hippocampal neurons and
immunocytochemistry

Mice were sacrificed by cervical dislocation, and brains were immediately placed on a pre-cooled
metal plate and dissected under a Leica M80 binocular (Leica, Wetzlar, Germany). Hippocampi were
weighed and flash-frozen in liquid nitrogen. The entire procedure was performed in <3 min. Hippo-
campal lysates were prepared by the addition of ice-cold PBS (200 pL PBS/10 mg hippocampal wet
weight) and homogenized for 1 min in a Tissuelyser Il instrument (QIAGEN, Hilden, Germany). One
fourth of the obtained volume of each lysate was used for the analysis of total PLP concentrations as
described below. To determine protein-depleted PLP (Ciapaite et al., 2023), the remaining volume
of each lysate was centrifuged at 14,000xg for 15 min at 4°C. The supernatant was applied to 3 kDa
MWCO filters (Amicon Ultra-0.5 Centrifugal Filter; Merck Millipore, Darmstadt, Germany), and centri-
fuged at 14,000xg for 45 min at 4°C. The flow-through was collected and prepared for HPLC analysis
(see below).

Primary hippocampal neuronal cultures were prepared from mouse embryos at embryonic day 17.
Hippocampi were incubated with 0.5 mg/mL trypsin, 0.2 mg/mL EDTA, and 10 pg/mL DNase | in PBS
for 30 min at 37°C. Trypsinization was stopped by adding 10% fetal calf serum. Cells were dissociated
by trituration, counted, and seeded at a density of 150,000 cells per 35 mm dish. Dissociated cells
were grown in neurobasal medium supplemented with L-glutamine and B27 supplement (A3582801,
Life Technologies, Dreieich, Germany) with an exchange of 50% of the medium after 6 days in culture.
After 21 days of differentiation (day in vitro 21 [DIV21]), 7,8-DHF (20 pM) or DMSO (0.02%, vol/vol)
was added to the hippocampal neuronal cultures for 45 min. Cells were rinsed once with PBS (37°C),
lysed in 150 pL ice-cold H,0, and placed at -80°C for at least 30 min.

For immunocytochemistry, DIV21 primary hippocampal neurons were fixed with 4% (wt/vol) para-
formaldehyde in phosphate-buffered saline (PBS) for 15 min at room temperature (RT). After washing
twice with PBS, 50 mM NH,CI was added for 10 min. Cells were then permeabilized with 0.1% (vol/
vol) Triton X-100 and blocked with 5% (vol/vol) goat serum in PBS for 30 min at 22°C. Cells were
incubated with mouse monoclonal anti-MAP2 antibodies (1:500 dilution, clone AP20, Millipore, Darm-
stadt, Germany) for 1 hr in 5% goat serum/PBS at 22°C. Alexa488-labeled secondary goat anti-mouse
antibodies (1:500 dilution; Dianova, Hamburg, Germany) were applied for 1 hr. Nuclei were counter-
stained with 4',6-diamino-2-phenylindole (DAPI), and slides were mounted with Mowiol. Images were
acquired using an inverted IX81 microscope equipped with an Olympus UPLSAPO 60x oil objective
(numerical aperture: 1.35) on an Olympus FV1000 confocal laser scanning system, using an FVD10
SPD spectral detector and diode lasers of 405 nm (DAPI) and 495 nm (Alexa488).

Determination of PLP and PL by HPLC

Samples were derivatized as described (Talwar et al., 2003). Briefly, 100 pL of lysate were mixed with
8 pL derivatization agent (containing 250 mg/mL of both semicarbazide and glycine), and incubated
on ice for 30 min. Samples were then deproteinized by the addition of perchloric acid (8 pL of a
72% [wt/vol] stock solution), followed by centrifugation at 15,000xg for 15 min at 4°C. Supernatants
(100 pL) were neutralized with 10 uL NaOH (25% [vol/vol] stock solution), and 2 yM pyridoxic acid (PA)
was added as an internal standard. PLP and PL were subjected to the same derivatization protocol to
establish a standard curve. Samples were analyzed on a Dionex Ultimate 3000 HPLC (Thermo Fisher
Scientific, Dreieich, Germany), using 60 mM Na,HPO,, 1 mM EDTA, 9.5% (vol/vol) MeOH; pH 6.5
as mobile phase. PL, PLP, and pyridoxic acid (PA) were separated on a 3 pm reverse phase column
(BDS-HYPERSIL-C18, Thermo Fisher Scientific). Chromatograms were analyzed using Chromeleon 7
software (Thermo Fisher Scientific).

Western blotting

Tissue or cell homogenates (prepared as detailed above for HPLC analysis) were extracted with 4x
RIPA buffer (final concentration, 50 mM Tris, pH 7.5; 150 mM NaCl, 1% [vol/vol] Triton X-100, 0.5% [vol/
vol] sodium deoxycholate, 0.1% [wt/vol] SDS, 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride [Pefa-
bloc], 5 pg/mL aprotinin, 1 pg/mL leupeptin, 1 ug/mL pepstatin) for 15 min at 4°C under rotation, and
lysates were clarified by centrifugation (20,000xg, 15 min, 4°C). Protein concentrations in the super-
natants were determined using the Micro BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins
were separated by SDS-PAGE and transferred to nitrocellulose membranes by semidry blotting. The
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following antibodies were used: mouse monoclonal a-actin, clone C4, Sigma Aldrich; rabbit mono-
clonal a-PDXP, clone C85E3, Cell Signaling Technology, Danvers, MA, USA, rabbit polyclonala-PDXK
(AB1), Sigma-Aldrich; and rabbit polyclonal a-PNPO, Thermo Fisher Scientific, as described in Jean-
clos et al., 2019. Western blots were densitometrically quantified with NIH ImageJ, version 1.45i.

Phosphatase plasmids and cloning

N-terminally GST-tagged, human PDXP was in pGEX-4T-1 (Amersham Biosciences, Amersham,
UK). N-terminally His,-SUMO-tagged human PDXP was cloned into pET-SUMO (coding for human
SUMO; a kind gift of Dr. Pedro Friedmann Angeli, Rudolf-Virchow-Center, University of Wiirzburg,
Germany); His,-SenP2 (EMBL Heidelberg) was in pET-M11. All other phosphatases were of murine
origin and were subcloned into pET-M11 (EMBL), as described (Jeanclos et al., 2022). Murine Pdxp
point mutants (generated by nested PCR) were subcloned into the Ncol (Pcil for Psph) and EcoRl
restriction sites of pET-M11, using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs,
Frankfurt/Main, Germany). Pdxp-D14N was generated with the Platinum SuperFi Il DNA Polymerase
Mastermix according to mutagenesis protocol A provided by the manufacturer (Thermo Fisher Scien-
tific) and cloned into pET-M11 as described above. Primers were purchased from Eurofins Genomics
(Ebersberg, Germany), and all constructs were verified by sequencing (Microsynth Seqlab, Gottingen,
Germany).

Expression and purification of recombinant proteins

Human His,-SUMO-tagged PDXP was grown in ZYP-5052 autoinduction medium for 7 hr at 37°C,
followed by 48 hr at 21°C (Studier, 2005). All purification steps of murine PDXP and murine PGP were
carried out exactly as described (Jeanclos et al., 2022). The purification of the His,-SUMO-tagged
human PDXP was carried out exactly as described for murine His,-tagged PDXP (Jeanclos et al., 2022),
except that human SenP2 protease was used to cleave the His,-SUMO-tag. N-terminally His,-tagged
PDXP variants and His,-SenP2 were expressed as described for PDXP-WT (Jeanclos et al., 2022).
With the exception of PDXP-D14, the His,-tag was not cleaved off. Human GST-PDXP was transformed
into E. coli BL21(DE3) plLysS (Stratagene Europe/VWR, Darmstadt, Germany). Protein expression was
induced with 0.5 mM isopropyl B-d-thiogalactopyranoside for 18 hr at 20°C. All subsequent purifica-
tion steps were carried out at 4°C. Cells were harvested by centrifugation for 10 min at 8000xg and
resuspended in lysis buffer (100 mM triethanolamine [TEA], 500 mM NaCl; pH 7.4) supplemented with
protease inhibitors (EDTA-free protease inhibitor tablets; Roche, Mannheim, Germany) and 150 U/mL
DNase | (Applichem, Renningen, Germany). Cells were lysed using a cell disruptor (Constant Systems,
Daventry, UK), and cell debris was removed by centrifugation for 30 min at 30,000xg. GST-PDXP was
batch-purified on a glutathione sepharose 4B resin (GE Healthcare, Uppsala, Sweden). After exten-
sive washing with 25 column volumes of wash buffer (50 mM TEA, 250 mM NaCl; pH 7.4), GST-PDXP
was eluted in wash buffer supplemented with 10 mM reduced glutathione, concentrated, and further
purified in buffer A (50 mM TEA, 250 mM NaCl, 5 mM MgCl,; pH 7.4) using a HiLoad 16/60 Superdex
200 pg gel filtration column operated on an AKTA liquid chromatography system (GE Healthcare).

High-throughput screen for PDXP modulators

The screening campaign (chemical library, screening protocol, concentration-dependent assays,
data analysis) was conducted exactly as described previously (Jeanclos et al., 2022), except that the
primary screen was done with PDXP, the counter-screen with PGP, and PDXP inhibitor hits were vali-
dated using PLP as a physiological PDXP substrate.

ICs, determinations, enzyme kinetics, and compound selectivity

Conditions for enzymatic assays were as previously published (Jeanclos et al., 2022), with the
following modifications. Bovine brain calcineurin (PP2B, Sigma-Aldrich #C1907) activity against the
PKA regulatory subunit type Il (phosphopeptide DLDVPIPGRFDRRVpSVAAE; Sigma-Aldrich #207008)
was assayed at 37°C in 100 mM NaCl, 50 mM Tris, 6 mM MgCl,, 0.5 mM CaCl,, 0.5 mM DTT, 0.025%
(vol/vol) NP40; pH 7.5. Recombinant human PTP1B (amino acids 1-321, Cayman Chemical, Ann Arbor,
MI, USA) activity against the Tyr**? autophosphorylation site of EGFR (DADEpYLIPQQG; Santa Cruz
Biotechnology, Heidelberg, Germany) was assayed at 30°C in 150 mM NaCl, 50 mM 2-(N-morpholino)

Brenner, Zink, Witzinger et al. eLife 2024;13:RP93094. DOI: https://doi.org/10.7554/eLife.93094 19 of 27


https://doi.org/10.7554/eLife.93094

e Llfe Research article

Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

ethanesulfonic acid, 1 mM EDTA; pH 7.2. Murine PDXP-D14A was assayed exactly like PDXP-WT in
30 mM TEA, 5 mM MgCl,, 30 mM NaCl; pH 7.5, supplemented with 0.01% (vol/vol) Triton X-100.

Flavone stocks were prepared at 10 mM in 100% DMSO. A constant final DMSO concentration
of 0.4% was maintained under all conditions, and solvent control samples contained 0.4% DMSO
without compounds. Purified phosphatases were pre-incubated for 10 min at RT with serial dilutions of
flavones. Dephosphorylation reactions were started by the addition of the indicated substrate; buffer
with substrate and the respective flavone but without the enzyme served as a background control.
Prior to compound testing, time courses of inorganic phosphate release from the respective phospha-
tase substrates were conducted to ensure assay linearity. Inorganic phosphate release was detected
with a malachite green solution (Biomol Green; Enzo Life Sciences, Lérrach, Germany); the absor-
bance at 620 nm (A4,0) was measured on an Envision 2104 multilabel reader (Perkin Elmer, Rodgau,
Germany). Released phosphate was determined by converting the values to nmol P; with a phosphate
standard curve. Data were analyzed with GraphPad Prism version 9.5.1 (GraphPad, Boston, MA, USA).
For ICs, determinations, logiiter VErsus response was calculated (four parameter). To derive Ky, and
ket values, data were fitted by nonlinear regression to the Michaelis-Menten equation.

Biolayer interferometry

PDXP was biotinylated using the EZ-Link NHS-PEG4-Biotin kit, as recommended by the manufacturer
(Thermo Fisher Scientific), and loaded on Super Streptavidin Biosensors (SSA) (Sartorius, Gottingen,
Germany) as follows. SSA sensors were equilibrated for 1 hr at RT in BLI assay buffer (250 mM TEA,
5 mM MgCl,, 250 mM NaCl, 0.005% [vol/vol] TWEEN-20; pH 7.5), loaded with 200 pg/mL biotinylated
PDXP, blocked with 2 pg/mL biocytin, and washed in BLI assay buffer. Reference SSA sensors were
blocked with 2 pg/mL biocytin (Wartchow et al., 2011). Six point 1:1 serial dilution series of 7,8-
DHF and 5,7-DHF were prepared in DMSO, and BLI assay buffer was added to the wells to obtain
a 7,8-DHF starting concentration of 25 pM. The final DMSO concentration was 5% (vol/vol). Buffers
for baseline, dissociation, and buffer correction wells were supplemented with the same amount of
DMSO for identical buffer conditions. Four measurements were carried out per condition, using one
sensor set for two measurements. All measurements were conducted on an Octet K2 device (Sarto-
rius) using 96-well plates. Assay settings were as follows: baseline measurement 45 s, association time
90 s, dissociation time 150 s. The resulting data were processed using the double reference method
of the Octet analysis software for removal of drifts and well-to-well artifacts. Kinetic analyses were
performed using the Octet analysis software. The steady-state analysis was carried out with OriginPro
2021b (OriginLab, Northampton, MA, USA), using a dose-response model for regression. Due to the
poor solubility of 7,8-DHF, the highest concentration of 25 uM was not included in the analysis.

PDXP crystallization and data collection

For co-crystallization with 7,8-DHF, full-length murine PDXP (10 mg/mL in 50 mM TEA; 250 mM NaCl;
5 mM MgCl,; pH 7.4) was supplemented with a threefold molar excess of the flavone. Prism-shaped
crystals of 7,8-DHF-bound murine PDXP were grown at 20°C in 0.1 M phosphate citrate (pH 4.2) and
40% (vol/vol) PEG 300 using the sitting-drop vapor diffusion method. Human PDXP crystals were
grown at 20°C in 0.1 M Tris (pH 8.5) and 1 M diammonium hydrogen phosphate, or in 0.1 M HEPES
(pH 7.0), 15% (vol/vol) Tacsimat pH 7.0 (Hampton Research, Aliso Viejo, CA, USA) and 2% (wt/vol) PEG
3350 using the sitting-drop vapor diffusion method. Crystals were cryoprotected for flash-cooling in
liquid nitrogen by soaking in mother liquor containing 25% (vol/vol) glycerol. Diffraction data of murine
PDXP in complex with 7,8-DHF were collected from flash-cooled crystals at a temperature of 100 K on
beamline BL 14.1 at the BESSY synchrotron (Helmholtz Zentrum Berlin, Germany). Diffraction data of
7,8-DHF bound to human PDXP were collected on beamline ID23-2 at the ESRF (Grenoble, France)
(https://data.esrf.fr/doi/10.15151/ESRF-ES-1409594895). Diffraction data were processed using XDS
(Kabsch, 2010) and further analyzed with Aimless (Evans and Murshudov, 2013) of the CCP4 suite
(Winn et al., 2011). The structures of 7,8-DHF-PDXP were solved by molecular replacement with the
program Phaser (McCoy et al., 2007) with the structure of the murine PDXP (PDB entry 4BX3) or
human PDXP (PDB entry 2P27) as search models, and refined with Phenix (Adams et al., 2010). Model
building was carried out in COOT (Emsley et al., 2010). Structural illustrations were prepared with
PyMOL 2.5.1 (Schrodinger, 2021).
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Data availability

The previously published PDB entry 4BX3 of murine apo-PDXP [http://doi.org/10.2210/pdb4BX3/
pdb], 2P27 of human apo-PDXP [http://doi.org/10.2210/pdb2P27/pdb] and 2CFT of PLP-bound
human PDXP [http://doi.org/10.2210/pdb2CFT/pdb] are used in this manuscript. X-ray crystallo-
graphic data of 7,8-DHF-bound murine PDXP generated in this study have been deposited in the
PDB and can be accessed under the PDB entry 8QFW [http://doi.org/10.2210/pdb8QFW/pdb]. X-ray
crystallographic data of 7,8-DHF-bound human PDXP generated in this study can be accessed under
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the PDB entries 9EM1 (with phosphate) [http://doi.org/10.2210/pdb9EM1/pdb] and 8S8A (without
phosphate) [http://doi.org/10.2210/pdb8S8A/pdb]. The corresponding raw diffraction images have
been deposited in the Xtal Raw Data Archive and can be accessed under the XRDA entries 8QFW
[https://xrda.pdbj.org/entry/8qfw], 9EM1 [https://xrda.pdbj.org/entry/9em1], and 8S8A [https://xrda.
pdbj.org/entry/8s8a]. All other data generated or analyzed during this study are included in the manu-
script and source data files. All materials are available from the corresponding authors upon reason-
able request and without restrictions.

The following datasets were generated:

Dataset URL Database and Identifier

Murine pyridoxal http://doi.org/10. Worldwide Protein Data
phosphatase in complex  2210/pdb8QFW/pdb  Bank, 10.2210/pdb8QFW/
with 7,8-dihydroxyflavone pdb

Human pyridoxal http://doi.org/10. Worldwide Protein Data
phosphatase in complex  2210/pdb%EM1/pdb  Bank, 10.2210/pdb%EM1/
with 7,8-dihydroxyflavone pdb

and phosphate

Author(s) Year Dataset title

Schindelin H, Gohla A 2023

Brenner M, Gohla A, 2024
Schindelin H

Brenner M, Gohla A, 2024
Schindelin H

Human pyridoxal http://doi.org/10. Worldwide Protein Data
phosphatase in complex  2210/pdb8S8A/pdb  Bank, 10.2210/pdb8S8A/
with 7,8-dihydroxyflavone pdb

without phosphate

Schindelin H, Gohla A 2023 Murine pyridoxal https://xrda.pdbj.org/ Xtal Raw Data Archive,
phosphatase in complex  entry/8qgfw 8QFW

with 7,8-dihydroxyflavone

Brenner M, Gohla A, 2024
Schindelin H

Human pyridoxal https://xrda.pdbj.org/ Xtal Raw Data Archive,
phosphatase in complex  entry/9em1 9EM1

with 7,8-dihydroxyflavone

and phosphate

Brenner M, Gohla A, 2024
Schindelin H

Human pyridoxal https://xrda.pdbj.org/ Xtal Raw Data Archive,
phosphatase in complex  entry/8s8a 8S8A

with 7,8-dihydroxyflavone

without phosphate

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Knobloch G, Gohla A, 2013
Schindelin H

Crystal Structure of murine  http://doi.org/10. Worldwide Protein Data
Chronophin (Pyridoxal 2210/pdb4BX3/pdb  Bank, 10.2210/pdb4BX3/
Phosphate Phosphatase) pdb

Kang BS, Cho HJ, Kim 2006 Crystal structure of human  http://doi.org/10. Worldwide Protein Data

KJ, Kwon OS pyridoxal 5'-phosphate 2210/pdb2CFT/pdb  Bank, 10.2210/pdb2CFT/
phosphatase with its pdb
substrate

Ramagopal UA, 2007 Crystal Structure of Human http://doi.org/10. Worldwide Protein Data

Pyridoxal Phosphate 2210/pdb2P27/pdb  Bank, 10.2210/pdb2P27/
Phosphatase with Mg?* at Pdb
1.9 A resolution

Freeman J, lzuka M,
Toro R, Sauder JM,
Burley SK, Almo SG
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