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Abstract

Towards the end of the second trimester of gestation, a human fetus is able to register 

environmental sounds. This in-utero auditory experience is characterized by comprising strongly 

low-pass filtered versions of external sounds. Here, we present computational tests of the 

hypothesis that this early exposure to severely degraded auditory inputs serves an adaptive purpose 

– it may induce the neural development of extended temporal integration. Such integration can 

facilitate the detection of information carried by low-frequency variations in the auditory signal, 

including emotional or other prosodic content. To test this prediction, we characterized the impact 

of several training regimens, biomimetic and otherwise, on a computational model system trained 

and tested on the task of emotion recognition. We find that training with an auditory trajectory 

recapitulating that of a neurotypical infant in the pre-to-post-natal period results in temporally-

extended receptive field structures and yields the best subsequent accuracy and generalization 

performance on the task of emotion recognition. This strongly suggests that the progression 

from low-pass-filtered to full-frequency inputs is likely an adaptive feature of our development, 

conferring significant benefits to later auditory processing abilities relying on temporally-extended 

analyses. Additionally, this finding can help explain some of the auditory impairments associated 

with preterm births, suggests guidelines for the design of auditory environments in neonatal care 

units, and points to enhanced training procedures for computational models.

1. Introduction

Expectant mothers often report that their unborn child exhibits movements in response 

to loud environmental sounds (1). Further attesting to these anecdotal reports, systematic 

developmental psychoacoustic studies have demonstrated that by around 20 weeks of 

gestational age, the fetus is equipped with a functioning auditory system, capable of 

registering the mother’s soundscape (2) (see Figure 1A), and may even benefit from such 

auditory exposure, especially to the mother’s vocalizations (3). However, the quality of this 

auditory experience is quite limited. Factors such as the fluid medium and surrounding 

tissues in the intrauterine environment, the impedance of the fetal skull, and the immaturity 

of the cochlea lead to a strong reduction of the audibility of high frequencies present in 

environmental sounds while affecting lower frequencies only marginally or even enhancing 
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them (2, 4, 5). In other words, the intrauterine environment essentially acts as a low-pass 

filter on incident sounds, significantly limiting the fetus’ exposure and sensitivity to high-

frequency auditory stimuli. This is further illustrated in Figure 1A.

The question we consider in this paper is whether these degradations of incident sounds 

are epiphenomenal limitations imposed by biological processes, or if they may, in fact, 

have any salutary implications later in life. In other words, might the degradation in 

prenatal experience not limit a child’s later auditory skills but possibly enhance them? This 

question has the potential to contribute to a broader and mostly unresolved debate in the 

field of developmental science, concerned with whether developmental constraints are to 

be considered as hindering, or rather helping, the acquisition of later perceptual abilities. 

In the traditional view, early limitations are typically seen as the outcome of constraints 

imposed by the physiological immaturities of the underlying neural and perceptual systems, 

and human development has to somehow surmount the challenges imposed by these 

early limitations to attain its later manifesting proficiencies. This perspective, despite 

its perhaps intuitive appeal, has been challenged in specific domains of investigation. 

The proposal put forward by (6) was among the first to promote the perspective that 

early limitations, rather than solely representing hurdles, may, in fact, be adaptive for 

later developmental proficiencies. Specifically, (6) proposed that by initially reducing the 

complexity of environmental stimuli, a learner’s perceptual analysis would be rendered 

less overwhelming. Along similar lines, but focused specifically on learning, and using 

computational simulations to support their claims, other researchers have suggested that, for 

instance, developmental limitations in cognitive architectures can benefit language learning 

(7, 8) and that early limitations in an infant’s visual system can benefit the acquisition 

of binocular disparity detection capabilities (9). Here, we wish to extend this ongoing 

investigation to the domain of auditory processing as well as to prenatal, rather than 

exclusively postnatal, development.

In the domain of auditory processing, the following logic makes a case for a way in which 

early degradations may be adaptive: By definition, low-pass-filtered audio streams, roughly 

mirroring the fetal experience in the uterus, contain markedly reduced fine-grained, high-

frequency information. As a consequence of this reduction of higher-frequency content that 

is available to the auditory system at any moment in time, brief audio snippets are rendered 

relatively uninformative for inference upon information and events in the environment. In 

order to, nevertheless, derive meaningful inferences, a strategy that the system may learn 

to employ is to gather information across longer time scales, which would consequently 

induce the development of neural mechanisms capable of integrating information over 

extended time spans. Such temporal integration is known to, later in life, be useful for the 

processing of information carried by slow variations in the auditory signal (i.e., those relying 

on temporally-extended analysis), including the expression of emotions or other prosodic 

content (10, 11). Contrasting this perspective, the early availability of high frequencies 

in the auditory environment may render even short audio snippets sufficiently informative 

for the perceptual system and may thus preclude the development of extended temporal 

integration and, hence, compromise specific auditory skills that depend on it. Taken together, 

this leads us to hypothesize that degraded, approximately low-pass filtered, inputs play 

an adaptive role in (i) instantiating extended temporal integration mechanisms and, (ii) 

Vogelsang et al. Page 2

Dev Sci. Author manuscript; available in PMC 2024 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as a consequence thereof, enable robust auditory analysis for tasks relying on temporally-

extended information, such as the recognition of emotions or other prosodic content.

To systematically probe these two predictions, and thereby evaluate our proposal’s 

overall plausibility, we need to be able to actively manipulate experience and assess the 

consequences of these manipulations. While ethical and practical considerations render such 

deliberate manipulation infeasible in human participants, studies with computational model 

systems, in particular deep convolutional neural networks (DCNNs), which are capable 

of learning from experience, offer a powerful way forward. These networks, while not 

perfect models of the biological system, can serve as useful approximations of early sensory 

processing (12) and allow us to systematically assess the impact of the nature of the stimuli 

they have been presented. In other words, we can expose a deep convolutional network (see 

Figure 1B for a sketch of the network architecture used in this paper) to different types of 

inputs (some of which are designed to recapitulate biological development in terms of their 

temporal progression, while others are not) and examine the differences in outcomes.

The following illustrates how we can probe our two key predictions through an examination 

of these outcomes: In brief, a network such as the one we use takes short audio recordings 

of spoken utterances (represented as raw audio waveforms) as inputs and, in rough analogy 

to the biological system, processes these through a hierarchical cascade of temporal filters 

(using the convolutional operation). Due to this hierarchical organization, as one proceeds 

along the processing stages, more and more complex speech properties are extracted. These 

properties, in turn, are learned to be associated with classification labels (in our case, one 

of the seven emotions that a given utterance was spoken with). While these associations 

are initially random, as part of the training procedure, numerous audio clips are fed into 

the network along with the desired classification label (e.g., ‘sad’ or ‘happy’), and the 

connections are iteratively refined so as to reduce classification error. Crucially, not only 

the links between higher-level features and final classification labels, but also the temporal 

filters in the early processing layers themselves (which are in rough analogy to temporal 

receptive fields found in the auditory cortex) are learned. The network starts out with 

randomly initialized receptive field structures across the different processing layers, but they, 

too, are subsequently sculpted to reduce classification error. Following the completion of 

training, the resulting receptive field structures can be examined, allowing us to probe the 

first key prediction we had stated earlier: that degraded, approximately low-pass filtered, 

inputs play an adaptive role in instantiating extended temporal integration mechanisms (i.e., 

receptive fields encoding lower frequencies and thereby encoding longer wavelengths). In 

addition, we can also probe our second key prediction, that as a consequence of instantiating 

extended temporal integration mechanisms, degraded, approximately low-pass filtered, 

inputs enable robust auditory analysis for tasks relying on temporally-extended information. 

To do so, we can directly examine the networks’ test performances, and generalization 

behavior, on the emotion classification task – a task that bears great ecological significance 

for humans and also relies on temporally-extended auditory analysis.

Taken together, the main goal of our computational investigation is to expose our network 

to different temporal progressions of filtered speech signals (one of which is inspired 

by the developmental progression from low-pass-filtered to full-frequency inputs, and 
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three other progressions serving as non-developmental controls) while evaluating the two 

above-mentioned aspects of the resulting networks: (i) their temporal integration profiles 

(as is visible in the resulting receptive field structures), and (ii) their performance and 

generalization abilities on a task relying on temporally-extended analysis (specifically, 

emotion classification).

2. Methods

As introduced earlier, we utilized a deep convolutional neural network as our computational 

model system. More specifically, we used the model “M5” by (13), which is equipped 

with 4 subsequent convolutional layers (each involving convolution, batch normalization, 

application of the ReLU activation function, and max pooling), followed by global average 

pooling, and connected to the output nodes of the network, representing the 7 different 

emotion classes, through a single dense layer with softmax activation function.

As dataset for training and testing our network, we used the Toronto Emotional Speech Set 

(TESS). This sets contains 200 short spoken utterances (lasting 1–3 seconds) for each of 7 

different emotions (anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral) 

and 2 speakers (14). The dataset was divided into 10 equal-sized folds, yielding 10 different 

data splits with train/test set ratios of 90/10 each. The networks were trained and tested on 

all 10 folds, to investigate the stability of the findings.

To test our two key predictions, we trained different instances of the neural network on an 

emotion classification task, based on the Toronto Emotional Speech Set (14), using four 

qualitatively different regimens (of which one was developmentally-inspired and three were 

not), as illustrated in Figure 1C:

‘Low-to-full’, in which, inspired by the prenatal-to-postnatal progression in 

development, training commenced with low-pass-filtered and resumed with full-

frequency inputs,

‘Full-to-low’, in which, as a control condition, training followed an inverse-

developmental progression but had the same aggregate content as the previous 

(‘low-to-full’) regimen,

‘Exclusively-full’, in which, more simply, the entire training consisted of full-

frequency input, as an additional control, and

‘Exclusively-low’, in which, similarly simply, the entire training was based on 

low-pass filtered input, as a final control.

Each training regimen thereby comprised a total of 100 training epochs (representing the 

number of times that the entire input data was fed into the network during training), 

with the two different stages in the ‘low-to-full’ and ‘full-to-low’ regimens consisting of 

50 epochs each. Low-pass filtering was carried out at a cut-off frequency of 500 Hz, as 

inspired by previous recordings in the womb reported in (2) and illustrated in Figure 1A. 

The specifics of training, testing, and additional analyses are detailed in the Supplemental 

Methods section.
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3. Results

To assess the impact of training regimen on our networks’ early, learned representations, 

we examined the spectral profiles of their temporal receptive fields in the first convolutional 

layer. This analysis revealed that while the network trained on full-frequency inputs learned 

receptive fields with a broad range of peak frequencies, the network trained on low-pass 

filtered data acquired exclusively low-frequency receptive field structures (see Figures 

2A&B). Further illustrating this point, Figure 2C shows spectral profiles of individual filters 

(those with sorting indices corresponding to the x-axis ticks in Figures 2A&B) for training 

following exclusively-low and exclusively-full regimens.

Further, training on low-frequency inputs resulted not only in more, but also purer, low-

frequency filters. For filters with peak frequencies up to 0.5 kHz (126 filters following 

exclusively-low training, and 83 filters following exclusively-full training), there was a 

highly significant difference across the two training conditions in the contribution of 

frequencies up to 0.5 kHz to the filter responses (t(198) = 13.91, p<0.001 for two-tailed t-

test; see Figure 3A). This correspondence, as evident in Figures 2 and 3A, attests to the idea 

that initial exposure to exclusively low-frequency content, as is characteristic of prenatal 

hearing, may enforce the development of extended temporal integration mechanisms.

Moving beyond homogenous training regimens, we next studied the impact of biomimetic 

and reverse-biomimetic protocols on the network’s learned representations in the first 

convolutional layer. Specifically, we examined changes in receptive field properties as 

the network transitioned from one phase of training (low or full frequency inputs) to 

the other (full or low-frequency inputs). The results revealed that while only 13% of the 

receptive fields established during the first half of training on low-frequency inputs changed 

their peak frequencies upon transitioning to full-frequency inputs, this was the case for 

45% of the receptive field structures when full-frequency training was later followed by 

low-frequency training (see Figure 3B). That these filters were almost exclusively enlarged 

temporally, further resulted in the full-to-low model approaching the spectral distributions 

of the exclusively-low and low-to-full models (see Figure 3C). These results suggest that 

temporally extended receptive fields, acquired through initial low-pass filtered training, may 

comprise more robustly useful processing units for the task, rendering the need for their later 

adjustment superfluous.

Complementing these results, we next examined the consequences of our four training 

regimens on the networks’ later generalization performance by testing emotion classification 

on full-frequency and various low-pass filtered test data. The results depicted in Figure 4A 

reveal that while the model trained on full-frequency inputs exhibited poor generalization 

(red curve), the low-to-full model (green curve) yielded high generalization, performing 

better than all other regimens across nearly the entire range of test frequencies. This is 

particularly noteworthy given that the full-frequency inputs subsume the entire low-passed 

content, and considering that the exclusively-full network could have learned to discard 

high frequencies were they not required to achieve high performance levels on the task. 

Generalization curves from the remaining two conditions (black curve for the exclusively-

low model; blue curve for the full-to-low model) are consistently lower than that of the 
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biomimetic one. Nevertheless, they indicate that including low-pass filtered inputs into some 

phase of the training enhances performance over the exclusively full-frequency training 

regimen.

To probe the relationship between performance scores and the receptive field 

characterizations described earlier, we assessed classification performance on full-frequency 

inputs while gradually ablating the individual networks’ filters with the highest peak 

frequencies. While the network trained on exclusively full-frequency inputs exhibited the 

largest performance decrement, the low-to-full model was least affected by the removal of 

higher frequency units, which is noteworthy given its spectral similarity to the networks 

trained using the full-to-low and exclusively-low regimens (see Figure 4B). Moving 

beyond the first network layer, we also examined the response stability of the deeper 

networks’ units when presented with full-frequency vs. low-frequency (500 Hz) test set 

inputs, operationalized as correlation score (r). As depicted in Figure 4C, across all four 

convolutional layers, activations in the network trained on full-frequency inputs were most 

varied, while the low-to-full network showed the least variation, further attesting to its 

invariance to high-frequency modulations.

4. Discussion

Taken together, the computational results presented in this paper lend support to the proposal 

that commencing auditory development with degraded (i.e., exclusively low-frequency) 

stimuli may help set up temporally extended processing mechanisms that remain in place 

throughout subsequent experience with full-frequency inputs. The early instantiation of 

such mechanisms may, in turn, facilitate robust analyses of long-range modulations in the 

auditory stream, as indicated by generalized performances of the developmentally-inspired 

model when tested on the task of emotion recognition in full- and low-frequency conditions.

Beyond the superior generalization on the temporally-extended task of emotion recognition, 

the observed robustness of classification performance to low-pass filtering not only mimics 

an important feature of auditory recognition in humans (15) but might also facilitate auditory 

analyses in more challenging environments. For instance, as sound travels through air, its 

energy is more substantially reduced in the higher, compared to the lower, frequencies (16). 

One of the benefits that facility with using low-frequencies could thus confer to the mature 

auditory system is robust classification even over large distances. Along similar lines, such 

proficiency may also be responsible for the ability of patients suffering from age-related 

hearing loss, which first affects the sensitivity of higher-frequency bands, to continue to be 

able to identify speech sounds for part of the progression of their hearing loss (17).

Our results suggest that precluding early experience with low-frequency inputs leads to 

a reduced emphasis on receptive fields tuned to low frequencies, with corresponding 

decrements in prosodic classification performance, while not necessarily affecting the 

processing of informational content in speech that is based on higher frequencies. 

Interestingly, this computationally-derived result is corroborated by clinical data. 

Prematurely born infants, who did not get to experience exclusively low-frequency sounds 

for as long as normal-term infants but were almost immediately immersed into a full-
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frequency environment (roughly akin to the exclusively-full regimen in the computational 

simulations presented here), have been reported to later exhibit impairments in the 

processing of low-frequency structure of sounds and show lower performance on prosody 

and emotion classification, even though their punctate acoustic detection thresholds are near 

normal (18–20). This result has implications for the design of auditory environments for 

pre-term babies in classical neonatal ICUs, which have been demonstrated to expose infants 

to frequencies above 500 Hz for the majority of the time (21). Auditory interventions in 

neonatal ICUs are, if applied, usually oriented towards silence (22, 23) or musical sounds 

(24–26) and have been reported to yield some benefits in terms of higher-level functioning. 

The findings presented in this paper, however, suggest that for pre-term babies, the auditory 

environment in a neonatal ICU, instead of, or in addition to, being controlled for the general 

type of audio signal, should be made more similar to the intrauterine one in terms of the 

specific spectral composition of sounds, thereby mirroring, and adding support to, previous 

perspectives on the impact of high-frequency noise in neonatal ICUs (21, 27). Specifically, 

based on the data we obtained in this paper, we argue that the environmental sounds allowed 

to reach the infant should be filtered with an approximation of the intra-uterine acoustic 

filtering characteristics.

It remains to be seen how the converging computational and empirical evidence on the 

benefits of initial exposure to exclusively low-frequency sounds early in development, as 

derived as part of the computational results presented in this paper in the context of emotion 

recognition, generalizes to other ecologically-relevant aspects and tasks of hearing such 

as the comprehension of other prosodic content. This could, in the future, be probed in 

pre-term vs. full-term babies and possibly be further examined as a function of the auditory 

intervention applied to the neonatal ICU environment.

Finally, it is worth noting that the data presented here are consistent with results previously 

reported in the visual domain (28). There it was found that initially low spatial acuity, 

that progressively improved over the first years of life, helped instantiate receptive fields 

capable of extended spatial integration, and more robust classification performance. The 

analogous results we have found in the auditory domain suggest that the adaptive benefits 

of initial sensory limitations may apply across different modalities. Thus, in addition to 

highlighting the potential benefits of sound degradation in the intrauterine environment, the 

results presented in this paper may also help explain the adaptive significance of some key 

human developmental progressions, prenatal or postnatal, and across sensory domains. The 

initially degraded inputs may provide a scaffold rather than act as hurdles. Taken together, 

this may not only help elucidate some of the mechanisms underlying our later auditory 

proficiencies, but also help us better understand why the choreography of developmental 

stages is structured in the way that it is. From the perspective of artificial intelligence, the 

salutary effects of these developmental trajectories upon later classification performance of 

biological systems, suggest that computational systems for analogous tasks may also benefit 

from incorporating biomimetic training regimens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• A human fetus’ auditory experience comprises strongly low-pass-filtered 

versions of sounds in the external world. We examine the potential 

consequences of these degradations of incident sounds.

• Results of our computational simulations strongly suggest that, rather than 

being epiphenomenal limitations, these degradations are likely an adaptive 

feature of our development.

• These findings have implications for auditory impairments associated with 

preterm births, the design of auditory environments in neonatal care units, and 

enhanced computational training procedures.
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Figure 1. 
A. Prenatal auditory sensitivity: Percentage of fetuses that responded to each of the given 

frequencies at different gestational ages, adapted from (2). B. Architecture of the network 

‘M5’ by (13), equipped with four convolutional layers (each involving convolution, batch 

normalization, application of the ReLU activation function, and max pooling) which are 

followed by global average pooling and a softmax layer containing seven output nodes of 

the network, representing the seven different emotion classes to be predicted (anger, disgust, 

fear, happiness, pleasant surprise, sadness, and neutral). C. Schematics of the four training 

regimens used, each comprising 100 epochs of training.
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Figure 2. 
Receptive field analysis. A&B. Spectral distribution of first-layer filters in the network 

trained on full-frequency (A) and low-frequency input (B). Colors code for normalized 

power obtained through frequency decomposition, with the sum of values up to 6 kHz 

normalized to 1. C. Close-up of spectral profiles of individual filters (filters with the 1st, 

32nd, 64th, 96th, and 128th lowest peak frequency), when training followed exclusively-full 

and exclusively-low frequency regimens, respectively.
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Figure 3. 
Additional receptive field analysis. A. Histogram of the proportion that frequencies up to 0.5 

kHz contribute, relative to all frequencies up to 6 kHz, to the response of individual filters 

with low peak frequencies (up to 0.5 kHz), following exclusively-low and exclusively-full 

frequency training. B. Histogram of units whose peak frequency changed from the first 

to the second half of training, separately for low-to-full and full-to-low training (pooled 

across 10-fold variations; see Methods section). C. Kernel density estimation plot of the 

distribution of filters’ peak frequencies for all networks (pooled across 10-fold variations).
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Figure 4. 
A. Mean and standard error of 10-fold cross-validated emotion recognition performances on 

full-frequency and various low-frequency test sets. B. 10-fold cross-validated classification 

performances (baseline-normalized, for visualization), when gradually removing the units 

with highest peak frequency. C. Distribution of correlations of units’ activities between 

low-pass filtered and full-frequency inputs, across layers (10-fold pooled).
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