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Abstract

Post-transplant cyclophosphamide (PTCy) is increasingly used to reduce graft-versus-host disease 

after hematopoietic cell transplantation (HCT); however, it might be associated with more 

infections. All patients who were ≥2 years old, receiving haploidentical or matched sibling donor 

(Sib) HCT for acute leukemias or myelodysplastic syndrome, and either calcineurin inhibitor 

(CNI)- or PTCy-based GVHD prophylaxis [Haploidentical HCT with PTCy (HaploCy), 757; 

Sibling with PTCy (SibCy), 403; Sibling with CNI-based (SibCNI), 1605] were included. Most 

bacterial infections occurred within the first 100 days; 953 patients (34.5%) had at least 1 infection 

and 352 patients (13%) had ≥2 infections. Patients receiving PTCy had a greater incidence of 

bacterial infections by day 180 [HaploCy 46%; SibCy 48%; SibCNI 35%; p<0.001). Compared 

with the SibCNI without infection cohort, 1.99-fold, 3.33-fold, 2.78-fold, and 2.53-fold increased 

TRM was seen for the HaploCy cohort without infection and HaploCy, SibCy, and SibCNI cohorts 

with infection, respectively. Bacterial infections increased mortality [HaploCy (HR1.84, 99% 
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CI: 1.45–2.33, p<0.0001], SibCy cohort (HR,1.68, 99% CI: 1.30–2.19, p<0.0001), and SibCNI 

cohort (HR,1.76, 99% CI: 1.43–2.16, p<0.0001)]. PTCy was associated with increased bacterial 

infections regardless of donor, and bacterial infections were associated with increased mortality 

irrespective of GVHD prophylaxis. Patients receiving PTCy should be monitored carefully for 

bacterial infections following PTCy.

Keywords

Post-Transplantation cyclophosphamide; allogeneic; hematopoietic cell transplantation; bacterial 
infections; survival; Graft-versus-host disease

Introduction

Bacterial infections in patients undergoing allogeneic stem cell transplant (alloHCT) are 

associated with significant morbidity and mortality.1–5 Bacterial infections are highest 

during the pre-engraftment phase,6 and are influenced by diagnosis,7 graft source,8 and 

graft-versus-host disease (GVHD) prophylaxis.4, 9, 10

In recent years, the use of post-transplantation cyclophosphamide (PTCy) has significantly 

increased in alloHCT due to its association with decreased rates of GVHD.11–13 PTCy 

was first used in haploidentical donor HCT,14 and its use has been extended to other 

donor type HCTs.15 Despite the lowered incidence of GVHD in patients undergoing 

alloHCT with PTCy, increased viral infections have been reported in these patients.16–

18 Additionally, recent analyses from the Center for International Blood and Marrow 

Transplant Research (CIBMTR) demonstrated an increased risk of Cytomegalovirus (CMV), 

community respiratory viral infections, and non-CMV herpes viral infections following 

PTCy in the haploidentical and matched sibling donor setting.19–21 Furthermore, several 

single-center analyses suggest increased rates of bacterial infections in patients receiving 

PTCy.22–24 However, these reports are limited by small sample size and do not include 

pediatric alloHCT recipients.

The purpose of this study was to evaluate bacterial infections in patients receiving PTCy. To 

do this, we evaluated three cohorts of patients in the CIBMTR database: patients undergoing 

alloHCT haploidentical HCT with PTCy (HaploCy), those receiving matched sibling donor 

grafts with PTCy GVHD prophylaxis (SibCy), and patients who received matched sibling 

donor grafts and calcineurin inhibitor based GVHD prophylaxis (SibCNI).

Material and Methods

Patient Population:

The study population was previously described.19 Briefly, we included all patients reported 

to the CIBMTR from 2012 to 2017 who were ≥2 years of age and undergoing first 

alloHCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and 

myelodysplastic syndrome (MDS). Cohorts were defined by GVHD prophylaxis and 

included the following:
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• HaploCy: Individuals undergoing alloHCT and receiving a haploidentical graft 

from a mismatched related donor. Haploidentical HCT was defined as ≥2 

antigen/allele mismatched within the loci HLA-A, -B, -C, -DRB1 and -DQB1 

between donor and recipient.

• SibCy: Those receiving matched sibling donor grafts with PTCy GVHD 

prophylaxis (SibCy)

• SibCNI: Patients who received matched sibling donor grafts with calcineurin 

inhibitor based GVHD prophylaxis. This cohort included patients receiving CNI 

(i.e., tacrolimus or cyclosporine) with either methotrexate (MTX) ± other or 

mycophenolate mofetil (MMF) ± other.

Patients receiving anti-thymocyte globulin and/or alemtuzumab were excluded. Other 

exclusion criteria included single mismatch related donors and umbilical cord blood donors. 

Matched unrelated donor graft were excluded due to smaller numbers of unrelated donors 

with PTCy and inadequate infection data. To minimize ascertainment bias due to potentially 

different practices for infection screening and prophylaxis between centers, patients from 

centers without a patient in both the SibCNI and the HaploCy cohorts were excluded.

Data Source

The CIBMTR is a research consortium consisting of over 500 transplant centers 

internationally. Through a collaboration between the Medical College of Wisconsin and 

the National Marrow Donor Program, patient and outcomes data from these centers are 

collected and analyzed. Central auditing of the data is performed to ensure consistency 

and quality. The CIBMTR collects the Transplant Essential Data (TED) form and 

Comprehensive Report Form (CRF) prior to transplantation, at 100 days (D100), 6 months 

(D180), and 1 year after transplantation and annually thereafter. All patients included in 

this study gave written consent to participate in the CIBMTR Research Database and 

to have their data included in observational research. This study was approved by the 

institutional review boards of the Medical College of Wisconsin and the National Marrow 

Donor Program. Infection data are reported only on the CRF. Centers report infections in 

accordance with instructions in the forms manual.25 Data collected include an organism, site 

of infection, and date of onset. There are no data on diagnostic methodology, or treatment of 

infection. Infection prophylaxis information is limited prior to 2017.

Outcomes and Study Definitions

The primary outcomes of this study were the cumulative incidence of any bacterial infection, 

excluding Clostridioides difficile, and bacterial infection density by day 180 for the three 

cohorts defined by donor and GVHD prophylaxis [HaploCy, SibCy, SibCNI]. Infection 

density is the number of bacterial infections per patient per days at risk during the first 

180 days.26 In addition to general bacterial infections, these outcomes were also examined 

for mucosal barrier injury–laboratory confirmed bloodstream infection (MBI-LCBI) and 

bacterial blood stream infections (BSI). MBI-LCBI used a modified definition as previously 

published.7, 27, 28 Other major outcomes were acute and chronic GVHD, overall survival 

(OS), disease-free survival (DFS), transplant-related mortality (TRM), and infection-related 
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mortality (IRM). Patients were considered an event for IRM if the primary cause of death 

was infection either concurrent (± 30 days) with or prior to relapse.

Statistical Analysis

Patient-, disease- and transplant-related factors were compared between cohorts using the 

Chi-square test for categorical variables and the Wilcoxon two sample test for continuous 

variables. The univariate probability of OS was calculated using the Kaplan Meier estimator, 

with the variance estimated by Greenwood’s formula. For values for other endpoints, 

cumulative incidence estimates to account for competing risks were calculated.

Outcomes were examined in six groups defined by cohort and the presence/absence of 

infection. Because neutropenia and infection as well as acute GVHD (aGVHD) and 

infection are intertwined time-dependent events, it was necessary to examine the interaction 

using a dynamic landmark analysis at three landmark times for each univariate analysis, 

defined as the median and interquartile range for the event [MBI-LCBI, BSI, any bacterial 

infection, acute GVHD (aGVHD), or neutrophil recovery].29 Death was the competing risk 

for cumulative incidence of infection, acute and chronic GVHD. Relapse was a competing 

risk for IRM and TRM.

Cox proportional hazards regression was used for outcomes of OS, TRM, IRM, chronic 

GVHD (cGVHD), and relapse. The variables considered in the multivariable regression 

models are listed (Supplemental materials) and all results were examined for center effect.30 

The assumption of proportional hazards for each factor in the Cox model was tested. When 

the proportional hazards assumption was violated, time-dependent variable was added in the 

model. The stepwise variable selection method was used to identify significant risk factors 

which associated with the outcomes. Factors significantly associated with the outcome 

variable at a 1% level were kept in the final model. As infections were expected to have the 

greatest impact around the time of infection, all outcomes were examined between day 100 

to 2 years from transplant.

Data Sharing Statement

The final analysis dataset will be posted to the CIBMTR website at: https://cibmtr.org/

CIBMTR/Resources/Publicly-Available-Datasets1#.

Results

Patient Characteristics

Detailed characteristics of 2765 HCTs (HaploCy, 757; SibCy, 403; and SibCNI, 1605) 

previously published in another CIBMTR study evaluating CMV are provided in Table 

1.19 The median age of patients in the SibCNI cohort was significantly lower and 

had less patients with performance scores <80% than the other two groups. However, 

the HCT-CI was similar between the three cohorts. The SibCNI cohort received more 

myeloablative conditioning (MAC) and peripheral blood stem cells (PBSC) but less TBI-

based conditioning and lower reported use of growth factor after HCT [HaploCy 82% vs 

SibCy 79% vs SibCNI 24%, p <0.001]. The SibCNI cohort also had a shorter time from 
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diagnosis to HCT. Finally, in addition to PTCy, 99% of patients in the HaploCy cohort, and 

95% in the SibCy cohort, received a calcineurin inhibitor (CNI).

Incidence of Bacterial Infections

A total of 1108 patients (40%) had at least one infection by day 180, with most infections 

occurring within the first 100 days. The median time to any bacterial infection was 12 – 

13 days, which was similar between the three cohorts (p=0.595). Additionally, 5 to 6% of 

patients in each cohort had a new bacterial infection between days 100 and 180. (Figure 1A).

Patients receiving PTCy had a higher cumulative incidence of bacterial infections within 

first 180 days (HaploCy, 46.1% vs. SibCy, 48% vs. SibCNI, 35.3%; p<0.001) (Figure 1A 

and 1B). MBI-LCBI occurred more commonly in patients receiving PTCy (MBI-LCBI: 

HaploCy, 15.5% vs. SibCy,15.4% vs. SibCNI, 7.7%; p<0.001) (Figure 2A and B). Similarly, 

any bacterial BSI were more common in the PTCy cohorts (HaploCy, 24.7% vs. SibCy, 

26.1% vs. SibCNI, 17.7%; p<0.001) within 180 days after alloHCT (Figure 2A and C).

The median day of neutrophil engraftment was 16 days (IQR: 14 – 19) in the entire 

population [HaploCy: 17 days (range, 1 – 125 days); SibCy: 16 days (<1 – 61 days); 

SibCNI:15 days (1 – 73 days)]. Using 14 days (lower bound IQR) as the landmark, the 

cumulative incidence of any bacterial infection by 100 days was higher for patients receiving 

PTCy, irrespective of donor compared to patients in the SibCNI cohort [HaploCy 19.1% 

(99% CI, 14 – 24.9%); SibCy 19.4% (12.7–27.2%); SibCNI 12.2% (9.5 – 15.1%); p = 

0.002]. Notably, this impact waned by day 180. Furthermore, examining the landmark of the 

median (16 days) and the upper bound of the IQR (19 days), significance was lost (16 days, 

p=0.013; 19 days p=0.04). When examining specifically for MBI-LCBI or any BSI, there 

was no difference between the cohorts at day 100 or day 180 for the median or the upper 

IQR; however, BSI at the day 14 landmark was higher in the PTCy cohorts [HaploCy 10% 

(6.5 – 14.1); SibCy 8.2% (4.2 – 13.4); SibCNI 5.1% (3.4 – 7); p = 0.006] (Supplemental 

Table 1).

Acute GVHD and infection are overlapping time-dependent events. Therefore, dynamic 

landmark analysis (DLA) was again used to examine the cumulative incidence of infection 

with the left truncation landmarks of the onset of acute GVHD [median: 38 days, IQR: 26 

– 63 days]. There was no difference in the cumulative incidence of any bacterial infection, 

MBI-LCBI, or BSI between the cohorts at day 100 or day 180 at any of the landmarks 

assessed (Supplemental Table 2). Of note, in a separate landmark analysis, the impact of 

infections on acute or chronic GVHD was evaluated and found no impact on acute GVHD or 

chronic GVHD (Supplemental Table 3 and 4).

As noted previously, 517 patients (19%) had more than one bacterial infection in the first 

100 days. To account for multiple infections and varied time evaluable due to early deaths, 

infection density was examined by cohort to establish the rate of infection in the first 180 

days. For any bacterial infection, MBI-LCBI, and any BSI, infections were more likely in 

the PTCy cohorts irrespective of donor source. The rate of any bacterial infection was 0.884, 

0.855, 0.604 (p<0.001) in HaploCy, SibCy, and SibCNI, respectively (Table 2). Overall 
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MBI-LCBSI rates were 0.194, 0.177, and 0.092 (p<0.001) and any bacterial BSI rates were 

0.36, 0.36, and 0.24 (p<0.001) in HaploCy, SibCy, and SIBCNI, respectively.

Pathogens—In terms of bacteria type, vancomycin-resistant Enterococcus (VRE) and 

gram-negative rods (GNR) were more common in the PTCy cohorts by day 180. The 

frequency of VRE was 6%, 5%, and 3% in HaploCy, SibCy, and SibCNI, p<0.001, 

respectively. The frequency of GNR was 21%, 25%, and 15% in HaploCy, SibCy, 

and SibCNI, p=<.001, respectively. This was true for non-Enterobacteriaceae as well as 

Enterobacteriaceae GNR. (Supplemental Table 5 and Supplemental Figure 1).

TRM and Infection related mortality (IRM)—Patients diagnosed with a bacterial 

infection had a higher TRM by 2 years after HCT [HaploCy 27% (19–36); SibCy 20% 

(11–32%); SibCNI 19% (13 – 26%)] compared with those patients without a bacterial 

infection by day 16 [HaploCy 20% (15 – 24); SibCy 16% (11 – 23%); SibCNI 12% (10 – 

15%); p=0.002] (Supplemental Table 6). The 2-year TRM was higher in the cohorts with 

any bacterial infection, irrespective of the landmark of median, lower (9 days), or upper (63 

days) quartile examined. These findings were consistent when examining by BSI (median 

onset 48 days) and MBI-LCBI (median onset 10 days). Similar to 2-year TRM, 2-year IRM 

was lowest in the SibCNI without infection cohort [2.9% (1.7 – 4.5%)] and highest for 

the HaploCy with infection cohort [10.5% (4.7 – 18.1%)] and intermediate for the other 

4 cohorts [with bacterial infection: SibCy 3.4% (0.2 – 10.4); SibCNI 7.1% (3 – 12.7%); 

without bacterial infection HaploCy 6.9% (4.1 – 10.5); SibCy 5.5% (2.2 – 10); p = 0.002] 

(Supplemental Table 7).

In multivariable analysis, development of bacterial infection increased TRM 3.33-fold, 2.78-

fold, and 2.53-fold higher risk of TRM for the HaploCy, SibCy, and SibCNI cohorts (Table 

3). The HaploCy cohort, even without bacterial infection, had a 1.99-fold higher risk of 

TRM. Additional risk factors associated with increased TRM were female-to-male-donor 

HCT, transplant for intermediate or high/very high risk MDS, development of acute GVHD, 

and lack of neutrophil engraftment (Table 3). Bacterial infections were the primary cause of 

death in 5%, 4%, and 4% of patients in HaploCy, SibCy, and SibCNI, respectively.

Overall Survival—Relapse was the main cause of all mortalities in each cohort (>60%) 

(Supplemental Table 8). By the landmark of 16 days, patients with any bacterial infection 

had a lower OS by 1 year after HCT [HaploCy 61% (51 – 70); SibCy 68% (55–79%); 

SibCNI 61% (53 – 69%)] compared with those patients without a bacterial infection in 

the same period [HaploCy 66% (61 – 71); SibCy 68% (60 – 75%); SibCNI 71% (68 – 

74%); p<0.001] (Supplemental Table 9). Although the difference became less prominent, 

inferior survival persisted at 2 years. These findings were consistent when examining by BSI 

(median onset 48 days). Notably, the 1- and 2-year OS was not impacted by the development 

of MBI-LCBI by 10 days post-HCT

In multivariable analysis, compared with the SibCNI without bacterial infection cohort, 

development of bacterial infection increased mortality for the HaploCy, SibCy, and SIBCNI 

cohorts (Table 3 and Figure 3). The HaploCy cohort, even without bacterial infection, had a 

1.32-fold higher risk of mortality. Additional factors increasing the risk of death in the MVA 
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included age of recipient >60 years, advanced acute leukemia, high/very high risk MDS, 

development of acute GVHD prior to infection, and lack of neutrophil engraftment prior to 

infection.

Discussion

In this large study, our main finding is that bacterial infections are more common with PTCy 

regardless of donor type (i.e., haploidentical siblings or HLA-matched siblings). In addition, 

we demonstrated that early bacterial infections are associated with increased TRM as well as 

overall mortality in all 3 types of transplantation investigated.

Many studies showed a high incidence of bacterial infections (e.g., 40% to 64%) after 

HaploCy following PTCy prophylaxis within 1 year.31–33 The preponderance of these 

bacterial infections (approximately 30–40%) occurred in early phase (e.g., 30 days).31–33 

This is likely increased risk of infections in the pre-engraftment period given that median 

time to neutrophil engraftment is approximately 3 weeks after HaploCy.31, 33, 34

It is well-known that bacterial infections after an allogeneic HCT are associated with 

mortality.5 Most studies also showed bacterial infections after Haploidentical HCT following 

PTCy was associated with a higher mortality. Slade et al reported that risk of mortality 

increases by 2.32 (95%CI, 1.23–4.3) times when bacterial infection occurred after 

haploidentical HCT.33 In a Spanish Group for Hematopoietic Stem Cell Therapy study, 

IRM at year 1 was found to be 17% after HaploCy, and bacterial infections were the 

most common cause of IRM (51%). Likewise, the French stem cell transplantation group 

showed that bacterial infections constituted 46% of TRM.32 In a comparison study, patients 

with acute lymphoblastic leukemia receiving HaploCy (>90% patients receiving PTCy) had 

significantly higher IRM compared with those receiving SibCNI (>90% patients receiving 

non-PTCy) (33.1% vs. 19.7%).35

Following studies that used PTCy not only in Haploidentical HCT but also in other donor 

types shed some light whether this increased bacterial infections and higher IRM primarily 

due to donor type, GVHD prophylaxis or both. Khimani et al showed similar results in a 

relatively smaller single center study from Moffit Cancer Center.36 PTCy was used in 75 

haploidentical and in 38 MUD HCTs whereas a CNI-based GVHD prophylaxis was used in 

470 MUD HCTs. Overall infection density was significantly more common in PTCy patients 

(5.0 vs approximately 2 per 1000-person days; p<0.01) within the first year of alloHCT, 

and this difference resulted from higher bacterial and viral infections. Immune reconstitution 

analysis showed that PTCy led to slower CD4+ cell but faster CD19+ cell recovery. Salas 

et al. recent study revealed 2.4 times higher BSI in the first 30 days after PTCy compared 

with other GVHD prophylaxis regimens in 330 patients receiving an alloHCT from various 

donors, including in MRD, MUD, and MMUD, and Haploidentical an alloHCT.37

Supporting further the suggestion that GVHD prophylaxis has a more prominent impact 

than donor per se on infections, the study by Ciurea et al evaluated haploidentical HCT 

patients’ outcomes in two cohorts; the ones received PTCy and unmanipulated stem cells 

vs. those received antithymocyte globulin (ATG) and CD34+ selected stem cells.38 IRM 
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(although mainly due to viral and fungal infections) was significantly higher in the latter 

group (9% vs.24%, p=0.01). This indicates that GVHD prophylaxis affects infections and 

IRM even in the same donor type HCT (i.e., HaploHCT). Indeed, Goldsmith et al using 

our same CIBMTR patient population showed that cumulative incidences of CMV infection 

by day 180 in patients receiving HaploCy, (n = 757), SibCy (n = 403) and SibCNI (n= 

1605) were 42%, 37%, and 23%, respectively (p <0.001).19 PTCy also increased other viral 

infections in the haploidentical and matched sibling donor setting.20, 21 This observation 

is further supported by other studies using PTCy in different donor types; a single center, 

recent study used PTCy for 3 different donor type HCTs (i.e., haploidentical, MRD, and 

1-allele mismatched unrelated donor, n=117).34 In this study, neither bacterial infections nor 

IRM was different among the donor types. Another study from Italy investigated PTCy in 

235 patients, including 62% Hapto-PTCy, 21% MUD-PTCy, and 17% SibCy.24

Donor type had no effect on pre-engraftment bacterial infections although impacted viral 

and fungal infections. IRM at day 180 was 8%, patients had pre-engraftment bacterial 

infection had a higher mortality: GN BSI, 14% vs. GP BSI,7% vs. no BSI,2%, (Gray’s test: 

p =0.010). IRM was not impacted by donor type.24

In this study, we showed that PTCy increases bacterial infections and TRM regardless 

of donor type. However, it is also important to note that patients receiving HaploCy, 

irrespective of bacterial infection, had a higher risk of death compared to the SibCNI cohort 

that did not develop bacterial infections. Furthermore, looking at the patients who developed 

any bacterial infection, there was no impact of donor or PTCy as all patients had a higher 

risk of death ranging for 1.68x – 1.84x that of the SibCNI cohort without infection. This 

effect of infection did not seem related to increased acute or chronic GVHD in our study.

Risk factors for IRM after PTCy were found to be delayed neutrophil engraftment, older 

age, lymphoid malignancy, and the presence of severe GVHD also increased IRM.24, 34 In 

our study, we showed that the neutropenia following PTCy increased bacterial infections but 

that the incidence of bacterial infections was not different between the cohorts following the 

onset of aGVHD.

Enterobacteriaceae seemed to be more in PTCy patients in our study. Similar to our findings, 

in another HaploCy study, gram-negative bacilli were the most prevalent bacteria (59.3%) 

with a majority of Enterobacteriaceae.32 In another study, Enterobacteriaceae species 

were the most common documented gram-negative (66%) and all bacteria (31.6%) after 

HaploCy.33 The majority of gram-negative bacterial infection occurred after engraftment32, 

34 and associated with more mortality34 whereas gram-positive bacteria were more common 

in the pre-engraftment period.24, 34 Although it is logical to think that gram-negative 

infections were associated with acute GVHD, the findings in the literature remain 

controversial.33, 34 In fact, given that PTCy is generally associated with less GVHD, this 

also undermines the potential relation between acute GVHD and gram negative bacteremia 

observed in the later phases of HCTs.

Our study limitations are inherent to the retrospective nature of the study including lacking 

the the reasons a center chose to use a PTCy for GVHD prophylaxis in a matched sibling 
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transplant. Another limitation is that data on antibiotic prophylaxis, treatment, or evidence 

of multidrug-resistance were not captured in this transplant registry. Lack of these data 

might limit our interpretation of the results and outcomes following HCT. Our goal was 

to create as homogeneous population as possible to discern if PTCy or a haploidentical 

donor or both increased the risk of infection. The number of patients receiving MUD with 

PTCy was limited, therefore the effect of PTCy could not be evaluated. Similarly, there 

were low number of patients who received ATG; thus, to avoid additional confounders, these 

patients were not included in the study. However, our study has several important strengths 

including, first, a robust sample size from 102 centers from diverse geographic locations and 

reflecting current transplant practices. The inclusion of multiple centers provides a diverse 

population of all ages (our study included pediatric population as well), most of the common 

stem cell sources and transplant types; however, it also results in a small percentage of 

missing data. Given that it is less than 5% for nearly all pertinent variables, these data are 

unlikely to change the overall outcomes in this large dataset. It is also likely to minimize 

over or underreporting biases inherent in single center studies. Uniform definitions were 

used for data collection stipulated by CIBMTR and long term follow up is ensured. Second 

bacterial infections especially in 180 days are significant clinical events that are likely to be 

reported, even if the patient is no longer at the HCT center.

In conclusion, PTCY is a risk factor for early bacterial infections, TRM and OS regardless 

of donor type. As PTCy is almost always used with a combination of immunosuppressive 

drugs (e.g., CNI), increased infections may be more expected compared with only CNI-

based regimens. A subset of patients enrolled in the BMT CTN 1703 trial co-enrolled in 

the BMT CTN 1801 trial which prospectively captured detailed infectious complications 

including antimicrobial prophylaxis and treatment.39 These forthcoming results will add 

to the literature and include MUD HCT patients. Regardless, this study shows that PTCy 

(another great GVHD prophylaxis option e.g., decreased chronic GVHD) has adverse effects 

on infections. Therefore, appropriate preventions and close monitoring of patients for high-

risk infections are needed.
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Figure 1A. Cumulative Incidence of Bacterial Infections by Donor Type/GVHD Prophylaxis in 
Day 180
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Figure 1B. Frequency ofOne or More Bacterial Infection by Donor Type/GVHD Prophylaxis 
inDay 180
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Figure 2A. Rate of MBI, BSI and All Bacterial Infections by Donor Type/GVHD Prophylaxis in 
Day 180
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Figure 2B. Cumulative Incidence of MBI by Donor Type/GVHD Prophylaxis in Day 180
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Figure 2C. Cumulative Incidence of any BSI by Donor Type/GVHD Prophylaxis in Day 180
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Figure 3. 2-year Hazard Ratio of Mortality by Bacterial Infection by Day 180
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Table 1.

Characteristics of patients receiving first Allogeneic HCT with or without PTCy conditioning regimen, 

reported to the CIBMTR, from 2012 to 2017

Variable Haplo-PTCy N(%) SibCy N(%) SibCNI N(%) P value

Number of patients 757 403 1605

Male 459 (61) 243 (60) 933 (58)

Age, median(range), years 58 (3 – 78) 46 (3 – 75) 57 (2 – 78) <0.001

KPS/LPS <80 119 (16) 65 (16) 200 (12) <0.001

HCT-CI =>3 348 (46) 175 (44) 761 (48) 0.817

Prior Fungal Infection, Yes 63 ( 8) 44 (11) 125 ( 8) 0.138

Race/Ethnicity <0.001

 Caucasian, non-Hispanic 444 (59) 239 (59) 1109 (69)

 African-American, non-Hispanic 131 (17) 56 (14) 107 ( 7)

 Asian, non-Hispanic 52 ( 7) 29 ( 7) 97 ( 6)

 Hispanic, Caucasian 72 (10) 45 (11) 134 ( 8)

 Other 10(1) 6 (1) 31 (2)

 Missing 48 ( 6) 28 ( 7) 127 ( 8)

Donor age, median(range), years 36 (9 – 76) 45 (4 – 72) 54 (2 – 82) <0.001

Donor/Recipient CMV status 0.04

 +/+ or −/+ 543 (72) 273 (68) 1067 (67)

 +/− or −/− 185 ( 24) 115 ( 29) 490 (30)

Disease Status <0.001

 AML/ALL, early 308 (41) 189 (47) 719 (45)

 AML/ALL, intermediate 143 (19) 77 (19) 210 (13)

 AML/ALL, advanced 97 (13) 61 (15) 144 ( 9)

 AML/ALL, unknown 6 (<1) 2 (<1) 15 (<1)

 MDS, early 76 (10) 24 ( 6) 179 (11)

 MDS, advanced 127 (17) 50 (12) 338 (21)

Peripheral blood stem cells 449 (59) 272 (67) 1405 (88) <0.001

MAC 314 (41) 222 (55) 935 (58) <0.001

TBI (cGy) <0.001

 No 226 (30) 169 (42) 1169 (73)

 Yes and >800 115 (15) 80 (20) 264 (16)

Growth Factor, Yes 620 (82) 319 (79) 379 (24) <0.001

Time from diagnosis to transplant, median(range), months 7 (1 – 165) 7 (<1 – 396) 5 (1 – 556) <0.001

Year of transplant <0.001

 2012–2014 170 ( 22) 87 (22) 806 ( 50)

 2015–2017 587 (78) 316 (78) 799 (50)

Median follow-up of survivors, months 25 (3 – 74) 25 (3 – 69) 37 (2 – 75)
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Table 2.

Infection density* by 180 days by cohort.

Variable (by day 180) HaploCy N(%) SibCy N(%) SibCNI N(%) P value

Infection Density Scores

 Any bacterial infection 0.884 0.855 0.604 <0.001

 MBI-LCBI overall density score 0.194 0.177 0.092 <0.001

 BSI overall density score 0.361 0.36 0.248 <0.001

*
Infection density accounts for multiple infections and normalizes for survival to 180 days
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Table 3.

Multivariate analysis for OS and TRM

OS TRM

N HR (99% CI) P-value
Overall P-

value N HR (99% CI) P-value
Overall P-

value

Bacterial Infection 

BI no, SibCNI 1027 1.00 <.0001 1016 1.00 <.0001

BI yes, Haplo-PTCy 345 1.84 (1.45 – 2.33) <.0001 342 3.33 (2.09– 5.29) <.0001

BI yes, SibCy 191 1.68 (1.30 – 2.19) <.0001 191 2.78 (1.79 –4.33) <.0001

BI yes, SibCNI 558 1.76 (1.43 – 2.16) <.0001 551 2.53 (1.57 – 4.08) <.0001

BI no, Haplo-PTCy 396 1.32 (1.02 – 1.71) 0.0058 389 1.99 (1.24 – 3.18) 0.0002

BI no, SibCy 205 1.21 (0.84 – 1.75) 0.1727 201 1.69 (0.88 – 3.25) 0.0400

Donor-Recipient Sex Match 

Male-Male 924 1.00 0.0001

Male-Female 618 0.94 (0.68 – 1.30) 0.6041

Female-Male 655 1.33 (1.01 –1.77) 0.0082

Female-Female 493 0.76 (0.53 – 1.10) 0.0601

Age at transplant, Years 

0–20 236 1.00 <.0001

21–40 487 0.90 (0.61 – 1.32) 0.4660

41–60 955 1.34 (0.91 – 1.97) 0.0482

>60 1044 1.70(1.09 – 2.66) 0.0021

Disease Risk by disease status and cytogenetic risks 

AL favorable cytogenetic 
early/intermediate stage 69 1.00 <.0001 68 1.00 0.0001

AL intermediate/nl 
cytogenetic early stage 675 1.02 (0.58 – 1.81) 0.9267 667 1.32 (0.58 – 3.00) 0.3822

AL poor cytogenetic early 
stage 439 0.99 (0.58 – 1.68) 0.9598 435 0.97 (0.44 – 2.12) 0.9219

AL int/nl cytogenetic 
intermediate stage 215 1.19 (0.68 – 2.09) 0.4269 210 1.28 (0.57 – 2.89) 0.4275

AL poor cytogenetic 
intermediate stage 126 1.32 (0.72 – 2.42) 0.2306 126 1.16 (0.45 – 3.00) 0.6963

AL advanced (all cytogenetic 
categories) 296 1.93 (1.07 – 3.50) 0.0044 294 1.26 (0.56 – 2.82) 0.4691

MDS very low/low 312 0.94 (0.54 – 1.66) 0.7911 310 1.67 (0.68 – 4.09) 0.1437

MDS intermediate 227 1.69 (1.00 – 2.88) 0.0105 225 2.24 (0.92 – 5.45) 0.0198

MDS high/very high 164 2.11 (1.15 – 3.87) 0.0016 160 2.49 (0.99 – 6.25) 0.0108

Other/not test/missing 199 1.28 (0.67 – 2.46) 0.3287 195 1.44 (0.55 – 3.78) 0.3353

Acute GVHD, grade II - IV 

No 1744 1.00 <.0001 1724 1.00 <.0001

Yes 978 1.56 (1.28 – 1.91) 966 2.60 (1.71 – 3.96)

Neutrophil engraftment 
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OS TRM

N HR (99% CI) P-value
Overall P-

value N HR (99% CI) P-value
Overall P-

value

No 69 1.00 <.0001 69 1.00 <.0001

Yes 2653 0.20 (0.11 – 0.35) 2621 0.12 (0.07 – 0.22)

Contrasts 

BI yes, Haplo-PTCy vs. BI yes, 
SibCy 1.09 (0.81 – 1.47) 0.4475 1.19 (0.77 – 1.86) 0.3027

BI yes, Haplo-PTCy vs. BI yes, 
SibCNI 1.05 (0.83 – 1.33) 0.6173 1.32 (0.90 – 1.93) 0.0635

BI yes, Haplo-PTCy vs. BI no, Haplo-
PTCy 1.39 (1.01 – 1.91) 0.0072 1.67 (0.97 – 2.90) 0.0159

BI yes, Haplo-PTCy vs BI no, SibCy 1.51 (1.06 – 2.17) 0.0029 1.97 (1.11 – 3.50) 0.0023

BI yes, SibCy vs . BI yes, SibCNI 0.96 (0.75 – 1.23) 0.6616 1.10 (0.74 – 1.63) 0.5243

BI yes, SibCy vs BI no, HaploCy 1.27 (0.92 – 1.77) 0.0552 1.40 (0.84 – 2.35) 0.0933

BI yes, SibCy vs. BI no, SibCNI 1.39 (0.93 – 2.07) 0.0342 1.65 (0.91 – 3.01) 0.0313

BI yes, SibCNI vs BI no, Haplo-
PTCy 1.33 (1.00 – 1.76) 0.0098 1.27 (0.75 –2.16) 0.2445

BI yes, SibCNI vs. BI no, SibCy 1.45 (1.03 – 2.02) 0.0046 1.50 (0.82 – 2.74) 0.0854

BI no, HaploCy vs BI no, SibCy 1.09 (0.75 – 1.58) 0.5560 1.18 (0.62 – 2.25) 0.5106
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