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Transient brain activity dynamics
discriminate levels of consciousness
during anesthesia

Check for updates

Scott Ensel1,2,3, Lynn Uhrig4,5,6, Ayberk Ozkirli 7, Guylaine Hoffner4,5, Jordy Tasserie8,9,
Stanislas Dehaene5,10, Dimitri Van De Ville 7,11, Béchir Jarraya 4,5,12,13,17 &
Elvira Pirondini 1,2,3,11,14,15,16,17

The awakemammalian brain is functionally organized in terms of large-scale distributed networks that
are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving
patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events
may provide a signature of consciousness. For this, we analyze temporal dynamics of
spatiotemporally overlapping functional networks obtained from fMRI transient activity across
different anesthetics and levels of anesthesia.We first showastriking homology in spatial organization
of networks betweenmonkeys and humans, indicating cross-species similarities in resting-state fMRI
structure. We then track how network organization shifts under different anesthesia conditions in
macaquemonkeys.While the spatial aspect of the networks is preserved, their temporal dynamics are
highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-
specific configuration. Additionally, hierarchical brain organization is disruptedwith a consciousness-
level-signature role of the default mode network. In conclusion, large-scale brain network temporal
dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a
clinical translation of these cortical signature.

Recordings of spontaneous brain activity, assessed by resting-state func-
tional magnetic resonance imaging (rs-fMRI), have provided key insights
into the rich temporal dynamic and spatial organization of the awake
brain1–6. Large-scale distributed networks can be extracted from sponta-
neous fluctuations of the fMRI signals over time. The spatiotemporal
organization of these networks can reflect ongoing cognitive efforts and
reflect changes in pathological conditions7. Recent studies suggested that the
temporal dynamics of these networks could inform about the level of
consciousness8–11.

Detecting residual consciousness in patients remains an open clinical
problem for those suffering from disorders of consciousness, vegetative

states, or are minimally conscious. Several brain-imaging tests have been
proposed to uncover residual signs of consciousness, but the majority of
them require subjects to perform difficult and active cognitive tasks12,13.
Electroencephalography (EEG) has been a thoroughly studied modality to
understand consciousness due to its high temporal resolution14–16, however
its low spatial resolution in particular for subcortical structures limits its
clinical capabilities in this field16–21. Rs-fMRI could overcome these chal-
lenges and large-scale resting-state networks could provide reliablemarkers
of the presence or absence of consciousness. With these premises, rs-fMRI
dynamic connectivity has been investigated in sleep3,19,22,23, anesthesia in
humans24–27 and animals1,4,28,29, and more recently in unresponsive or
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minimally conscious patients8,10,11,30. Interestingly, all these unconscious
states shared hallmark brain changes. Specifically, cortical long-range
interactions are disrupted inboth space and time and spontaneousnetwork-
to-network transitions are less probable as configurations are rigid and tied
to the underlying anatomical connectivity. By contrast, wakefulness has
been associated with greater global integration and interareal cross-talk and
amore flexible repertoire of functional brain configurations departing from
anatomical constraints1,2,8.

While the dominance of rigid configurations tied to the underlying
structural backbone constitutes a putative common signature of uncon-
sciousness, lack of responsiveness can be associated with a variety of brain
lesions, varying levels of vigilance, anddistinct cognitive levels.Wepostulate
that these differences could be reflected in the spatiotemporal reorganiza-
tion of specific resting-state networks and/or brain regions. In this regard,
previous studies reported varying activations of the visual and of the fron-
toparietal networks3 as well as the posterior cingulate cortex25,31 and a
reduced activation of the thalamus24,32 across different unconscious states.
Yet these characterizations remained limited and speculativehamperingour
capacity to distinguish level of consciousness.

A critical factor hindering the identification of brain network sig-
natures of consciousness is the use of functional connectivity (FC)
measures that use spatial and temporal information as mutually depen-
dent. Indeed, the entirety of previous works used a sliding-window
technique, where time courses of sets of brain regions are segmented into
successive temporal windows and the different assessments of FC are
applied to thesewindows to obtain time-evolving connectivitymatrices1,2.
These time-windowed estimates confine the investigation to slow chan-
ges in connectivity7. As a result, the dynamic evolution of functional
networks interacting over time is not fully captured and their properties
remain singular in time.

Here we overcome these limitations by deploying a recently pro-
posedmethod termed innovation-driven co-activation patterns (iCAPs).
iCAPs captures transients (i.e., moments of significant physiological
changes in regional activation for each repetition time)33–35 through
regularized hemodynamic deconvolution of fMRI time series and sub-
sequent clustering of recurrent spatial patterns of transient activity into
large-scale brain networks that can be both spatially and temporally
overlapping.

Specifically, we adopted the iCAPs framework to recover functional
brain networks from fMRI data recorded during different levels of
anesthesia-inducedunconsciousness inmonkeys. For this, wefirstmodified
the deconvolution step to account for the hemodynamic response function
due to monocrystalline iron oxide nanoparticles (MION). We then vali-
dated the translational properties of the identified large-scale brainnetworks
comparing their spatial organization with networks obtained from human
rs-fMRI. Finally, we computed temporal properties of these networks and
showed that lack of consciousness resulted in longer duration and increased
co-occurrence of networks paralleling previously reported reduced brain
dynamics. Importantly, the networks co-occurrence and hierarchical
organization differed from the conscious wakefulness in an anesthetic-
specific configuration with an anesthetic-signature role of the default mode
network.

Results
We scanned 5 rhesus macaques during awake and under anesthesia with
three different anesthetics (ketamine, propofol, and sevoflurane) and two
different levels of anesthetic depths. Importantly, our sample size is
comparable to previous works in NHP with fMRI during anesthesia (see
Supplementary Table 1 for a summary of the acquisitions)36–38. We used
monkey sedation scale and low-density EEG traces to identify the depth
of anesthetic for the different anesthetic conditions. In all sessions and
animals, the anesthesia level for moderate propofol and moderate sevo-
flurane corresponded to level 3 on themonkey sedation scale; whereas the
anesthesia level for ketamine, deep propofol, and deep sevoflurane cor-
responded to level 42. We applied total activation (TA), which applies

hemodynamically informed deconvolution to the pre-processed fMRI
signal of each animal and run separately, to retrieve activity-inducing
time courses. Since a MION contrast agent was used during functional
scans to increase functional sensitivity1,2, we integrated the MION
hemodynamic response function (HRF) into the TA pipeline (Supple-
mentary Fig. 1). Then, transients (i.e. moments of activity changes) were
computed as the temporal derivative of these activity-inducing signals
(i.e., positive or negative spikes) and significant innovation frames were
obtained using a two-step spatial and temporal thresholding process.
Thresholding was used to identify time points with significantly high/low
(i.e. positive/negative spikes) transients. Finally, we used K-means clus-
tering procedure over all animals to label transients and obtain centroids
that correspond to large-scale brain networks (i.e., iCAPs) that are
potentially spatially overlapping. The optimal number of iCAPs was
selected via consensus clustering3,39 and the backfitting of the spatialmaps
of the iCAPs to the activity-inducing time courses revealed iCAPs time
series that could be temporally overlapping (Supplementary Fig. 2).

Typical human large-scale networkswere preserved inmonkeys
In order to validate the translational potential of our results to human
subjects, we first visually compared spatial networks extracted using the
iCAP framework between humans and monkeys. We considered 7
publications3,35,39–43 that computedhuman iCAPs to gather the predominant
human large-scale networks (Supplementary Table 2). We found that
generally humans had an optimal number of clusters of K = 18 ± 1.5,
whereas monkeys had a reduced number of networks (K = 11, Fig. 1a).
Interestingly, humans and monkeys shared low-level functional networks
such as the anterior and posterior cerebellum, primary and secondary visual
networks, and auditory network (Fig. 1b). Importantly, also anterior and
posteriordefaultmodenetworkswerepreserved inmonkeys44,45. In contrast,
monkeysmissedhigher level cognitivenetworks such as attention, language,
anterior salience and visuospatial networks. The lack of these high-level
cognitive networks might explain the difference in optimal number of
clusters. Yet, the majority of networks were preserved supporting the
translational value of our results and justifying the animal-model choice in
our work46.

Slower brain dynamics during unconsciousness
We first compared the number of significant innovation frames between
awake and anesthetic conditions. We observed a statistically significant
difference between the number of significant positive and negative inno-
vation frames in the awake condition as compared to all anesthetics (Fig. 2a,
mean ± SEM over animals for awake: 213 ± 16.9, 222 ± 18.8, ketamine:
145 ± 5.0, 138 ± 3.4,moderate propofol: 132 ± 4.3, 139 ± 5.8, deep propofol:
130 ± 6.0, 132 ± 3.0, moderate sevoflurane: 102 ± 3.2, 92 ± 4.9, deep sevo-
flurane: 96 ± 10.3, 84 ± 12.2 for significant positive and negative innovation
frames, respectively). The statistically significant difference in the number of
significant innovation frames highlights reduced brain dynamics when the
animals were anesthetized.

We then clustered the significant innovation frames to obtain themost
prevalent brain spatial patterns (iCAPs) and used consensus clustering to
obtain the optimal number of clusters. When clustering significant inno-
vation frames for each anesthetized and awake condition separately, we
found that awake had the highest number of clusters (i.e., K = 10), whereas
the anesthetized conditions ranged from 8 to 4 clusters (Fig. 2b and Sup-
plementary Fig. 3), further supporting the slower brain dynamics during
anesthesia.

Spatial patterns of functional networks were preserved during
unconsciousness
When clustering significant innovation frames from all conditions together,
we obtained 11 large-scale iCAPs (Supplementary Fig. 4 for the results of the
consensus clustering), representing the different functional networks that
dominate brain activity across wakefulness and unconsciousness (Fig. 2c
and Supplementary Table 3). The iCAPs corresponded to well-known
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functional large-scale networks obtainedboth inhumans andmonkeyswith
similar and different analysis approaches.

Specifically, the iCAPs included sensory-related networks such as
the secondary visual system related to V2 and V3 brain areas, and part of
the thalamus (iCAP 1), the primary visual system (iCAPs 9 and 10), the
sensory-motor system with a strong activation of the primary motor
cortex (iCAP 3), and the auditory network with portions of the thalamus
and brainstem (iCAP 2). Importantly, iCAPs 1, 2, and 3 were found to be
equally prevalent in all conditions; whereas, iCAPs 9 and 10 were pre-
dominantly active during the awake condition. The absence of a network
for primary visual areas during unconsciousness parallels previous results
on sleep in humans3.

The anterior default mode network (aDMN, iCAP 4) and posterior
DMN (pDMN, iCAP 7), instead, showed a similar activation during
anesthetized conditions compared to the awake condition. It is of note
that the anterior and posterior DMN were separately extracted, which
emphasizes a dissociation between the temporal dynamics of these two
regions (Fig. 3a). This dissociation of the DMN into subnetworks is
commonly observed in other iCAP studies3 and in a study of rats under
different anesthetic conditions29. A similar dissociationwas also found for
the cerebellum, which split into anterior (iCAP 6) and posterior (iCAP
11) cerebellum (Fig. 3b). Importantly, the anterior portion was found
across all conditions, while the posterior cerebellum was present almost
exclusively in the awake condition again paralleling previous results on
sleep in humans3.

Lastly, iCAP 5 and iCAP8 represented the inferior temporal/amygdala
(iTEMP/amygdala) and the prefrontal cortex (PFC) network, respectively,
which were composed of significant innovation frames equally distributed
across all conditions.

Importantly, spatial patterns of the networks obtained when applying
the iCAP framework to each condition separately matched those of the

clusters found when conditions were combined as demonstrated by a high
cosine similarity (average ± SD over iCAPs and conditions: 0.87 ± 0.13,
Supplementary Fig. 5), further supporting that the spatial organization of
the networks was preserved during unconsciousness.

Altered temporal patterns of functional networks revealed
consciousness-dependent brain dynamics
We then computed temporal metrics from the iCAPs time courses and
considered in particular total and average duration for each iCAP. Impor-
tantly, analysis was limited to the first eight iCAPs as the remaining three
(iCAPs 9-11) were not present during anesthesia.

Interestingly, iCAPs total durationwas significantly longer in each of
the anesthetized conditions compared to awake (Fig. 4a) in particular for
the secondary visual cortex (iCAP 1), thalamus/auditory (iCAP 2),
anterior DMN (iCAP 4), and prefrontal cortex (iCAP 8). Yet, iCAPs
durationwas similar across anesthetics and depths of anesthetic.We then
looked at the average duration of iCAPs in a similar fashion (Fig. 4b).
Indeed, while total duration only considers the sporadic activation of a
network, average duration focuses on the length of continuous activation
of each iCAP. Importantly, the continuous activation of iCAPs during
anesthesia was also significantly greater than that in the awake condition
for all iCAPs. This was consistent with the decrease in the number of
significant innovation frames observed in anesthetized conditions,
highlighting the direct relation between slower dynamics and increased
duration.

To explore beyond the iCAPs’ individual temporal properties, we
then evaluated the temporal overlap between iCAPs and computed the
probability of having one, two or more iCAPs occurring concurrently
(Fig. 4c). iCAPs in the awake condition had a higher probability of
occurring alone, whereas during anesthesia they had a higher probability
of co-occurring. These results are consistent with iCAPs’ individual

Fig. 1 | Humans’ and monkeys’ functional networks. a Mean number of optimal
clusters (iCAPs) found using consensus clustering for 7 studies in humans3,35,39–43

(black) and for awake and all anesthesia conditions in monkeys (gray). Error bars
represent SD over the 7 studies. b Top rows: spatial patterns for the most common
iCAP spatial clusters aggregated from previous studies in humans (red) compared to

iCAP spatial clusters found from the monkeys (blue). All panels show a repre-
sentative human network, marked with H, on the left, compared to a representative
monkey network, marked with M, on the right. Bottom row: high-level cognitive
networks that were found only in human studies. For all panels, color bars represent
the z-scored voxel values in each spatial iCAP.
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temporal properties. Indeed, the longer total and average durations of
iCAPs in anesthetized conditions resulted in an increased co-occurrence
of iCAPs over time.

In summary, iCAPs temporal properties further supported reduced
brain dynamics during anesthesia that was evident in longer duration and
increased co-occurrence of brain networks but with no differentiation
across anesthetics.

Networks co-occurrence revealed anesthetic-specific brain
dynamics
To further explore the dynamic interactions across networks,we computed
the percentage of co-occurrence for every pair of iCAPs (Fig. 5a), i.e., the
number of time-points during which a pair of iCAPs were both active
divided by the total number of time-points that at least either one of them
was active. Anesthetized conditions had stronger co-occurrence between

Fig. 2 | Clustering distributions of significant innovation frames. a Bar graph
representing the mean number of positive (black) and negative (gray) significant
innovation frames for each condition. The error bars represent SEM over each
animal and inference on the mean differences is performed by bootstrapping, with
n = 10,000 bootstrap samples; *** indicates statistical significance of p < 0.001
adjusted with Bonferroni correction. (A: awake; K: ketamine anesthesia; MS:
moderate sevoflurane anesthesia; DS: deep sevoflurane anesthesia; MP: moderate
propofol anesthesia; DP: deep propofol anesthesia). b Bar plot representing the
optimal number of clusters (iCAPs) found for each individual condition using
consensus clustering (Supplementary Fig. 3). c Spatial patterns for the iCAPs
obtained clustering together significant innovation frames from all conditions. The
iCAPs are numbered according to the percentage of significant innovation frames

that contributed to the recovery of that network (descending order). The percentage
of significant innovation frames contributing to each iCAP is shown below the
spatialmaps in orange font. The cluster consensus of each iCAP is reported in green.
In Supplementary Fig. 5, the spatial patterns for the iCAPs extracted clustering the
significant innovation frames for each condition separately are shown. For each
iCAP, the pie charts indicate the distribution of the significant innovation frames for
each condition normalized over the total number of significant innovation frames
for each iCAP. MNI coordinates of each brain slice are indicated in black close to
each brain. The names of each iCAP are derived according to their correspondence
with the CHARM and SARM atlas91–93, which are presented in Supplementary
Table 3.

Fig. 3 | Dissociation of DMN and cerebellum into posterior and anterior parts.
a Overlay of the iCAPs corresponding to the anterior DMN (red, iCAP 4) and
posterior DMN (yellow, iCAP 7) with overlap (orange). b Overlay of the iCAPs

corresponding to the anterior cerebellum (red, iCAP 6) and posterior cerebellum
(yellow, iCAP 7) with overlap (orange). MNI coordinates of each brain slice are
indicated in black on the bottom of each brain.
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pairs of iCAPs when compared to the awake condition. Some pairs were
shared across anesthetics, whereas others were anesthetic-specific. Indeed,
every anesthetic, except ketamine, had a significantly increased co-
occurrence for secondary visual cortex (iCAP 1) and thalamus/auditory
(iCAP 2)with anterior DMN (iCAP 4) and for secondary visual cortex and
thalamus/auditory. Similarly, secondary visual cortex and thalamus/
auditory co-occurred with prefrontal cortex (iCAP 8) for ketamine and
sevoflurane. Additionally, while the anterior DMN co-occurred with the
anterior cerebellum (iCAP 6) for sevoflurane and propofol, the posterior
DMN(iCAP 7) co-occurredwith the anterior cerebellum for ketamine and
propofol. The anterior DMN co-occurred also with the posteriorDMN for
propofol and with the iTEMP/amygdala (iCAP 5) for sevoflurane. Finally,
ketamine had a significantly increased co-occurrence for prefrontal cortex
with the posterior DMN and the anterior cerebellum.

We then considered when co-occurrence was significantly different in
anesthetized conditions versus awake and looked at the co-occurrence in
terms of polarity. Indeed, iCAPs could have a positive or negative activation.
We termed the co-occurrence coupling if the two iCAPs were both posi-
tively or negatively activated [(+,+),(−,−)] and anti-coupling if the two
iCAPshadopposite activation [(+,-),(-,+)] (Fig. 5b).Not surprisingly, some
couplings and anti-couplings were common across anesthetics. Specifically,
the thalamus/auditory coupled with the prefrontal cortex for all the con-
ditions exceptmoderate propofol and anti-coupledwith the anteriorDMN,
except in deep sevoflurane (coupling). The secondary visual cortex, instead,
is anti-coupled with the thalamus/auditory except for ketamine. Interest-
ingly, the coupling between the secondary visual cortex and the anterior
DMN was positive for light depths of anesthetic (moderate propofol and
moderate sevoflurane) and negative for deeper depths of anesthetic (deep
propofol and sevoflurane). Under ketamine, moderate, and deep sevo-
flurane the prefrontal cortex was anti-coupled with the secondary visual
cortex and the anterior cerebellum (not for moderate sevoflurane) showing

similar interactions across these anesthetics in particular during deep
anesthesia. However, ketamine was distinct from the other anesthetics as it
had a higher proportion of anti-coupled pairs representing a strong dif-
ference in brain dynamics. Finally, the anterior DMN and anterior cere-
bellum were positively coupled under propofol and negatively under
sevoflurane.

Importantly, couplings and anti-couplings between iCAP pairs
paralleled findings obtained with a classic functional connectivity (FC)
analysis. Indeed, we computed Pearson correlation of the iCAPs time
courses andwe found that pairwise FC across iCAPs increased in all the
anesthetics as compared to awake except for ketamine (Fig. 5c).
Ketamine’s reduced correlation between networks matched its stron-
ger anti-coupling of iCAPs. Interestingly, the anterior cerebellum was
unique as compared to other iCAPs showing a reduced connectivity,
which parallels its susceptibility to be anti-coupled with other
networks.

In summary, while generally iCAPs co-occurred more during
unconsciousness for all anesthetics, different drugs and more importantly
different levels of anesthetic-induced unconsciousness altered coupling and
anti-coupling between specific iCAPs, supporting the need to assess spa-
tiotemporal networks interaction to discern alertness levels.

Network hierarchical organization revealed an anesthetic-
specific role of the DMN
Co-occurrence is evaluating when only two iCAPs occur at the same time,
but within the iCAP method more than two iCAPs can occur at each
timepoint. Therefore,we expanded our analysis to all possible combinations
of iCAPs and captured the most probable occurrences using hierarchical
clustering. This analysis ensures that we explore whole brain dynamics
instead of limiting our view to pairs of networks. The dendrogram reflects a
hierarchy of iCAPs based on their frequency of occurrence together (Fig. 6).

Fig. 4 | Durations of iCAPs in different conditions and probability of co-occurrences. a Total duration of the first 8 iCAPs (in seconds) for each condition in descending
order represented in awake. Each condition is represented in its own plot with awake (blue), ketamine (gray), moderate sevoflurane (light brown), deep sevoflurane (dark
brown), moderate propofol (light yellow), and deep propofol (dark yellow). Error bars on each bar represent SEM over each animal and the black dashed line represents 25%
of total possible duration. Dots represent average values for each animal individually. bAverage durations (in seconds) of iCAPs reflecting the length of continuous activity. c
The probability of a different number of iCAPs to overlap is displayed for each condition. For all panels, inference on the mean differences is performed by bootstrapping,
with n = 10,000 bootstrap samples; *** indicates statistical significance of p < 0.001 adjusted with Bonferroni correction.
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In awake, similarly to previous results in humans35, iCAPs were grouped
into two large clusters of sensory and default-mode networks. Interestingly,
this division was not preserved during anesthesia. Indeed, except for keta-
mine, the anterior and posterior DMN split into two different clusters
further supporting the strong dynamical dissociation of the DMN into
subnetworks. In the anesthesia conditions, except for ketamine, the anterior
DMN was clustered with the secondary visual, thalamus/auditory, and
anterior cerebellum. Instead, in the other large branch, there was a con-
sistent organization of the posterior DMN, prefrontal cortex, iTEMP/
amygdala, and sensory-motor cortex. Within this split light and deep pro-
pofol and moderate sevoflurane shared the same hierarchical organization
as opposite to deep sevoflurane. Ketamine, instead, was unique as it shared
the same organization of this split but included the anterior DMN.

In summary, unconsciousness disrupts the hierarchical organizationof
brain dynamics dissociating the anterior and posterior DMN. Importantly,

the association of the latter with other networks appears to be pivotal in
differentiating anesthetics and level of sedation.

Discussion
Recent experiments in sedated humans, rats, and monkeys24,25,29,47 have
shown that under general anesthesia spontaneous brain activity converges
to a few or even a single dominant brain dynamical pattern. This reduced
dynamic was confirmed in unresponsive or minimally conscious
patients8,10,11,30 validating the use of pharmacologically induced anesthesia
models to study loss of consciousness. However, these decreased dynamics
may not simply derive from an overall reduction of functional connectivity,
but it could be the result of a complex orchestration of preserved and
suppressed functional networks48. This composition may be occulted when
using static FC or sliding window methods1,2, challenging our ability to
distinguish levels of consciousness. Indeed, the correlation between two

Fig. 5 | Pairwise coupling between iCAPs across different conditions compared
to awake. a The co-occurrence pertains to the number of times in a pair of iCAPs
both iCAPswere active, divided by the total number of time points where at least one
of them was active. Top right of each square is the anesthetic condition and the
bottom left of each square is the awake condition. Inference on the mean differences
is performed by bootstrapping, with n = 10,000 bootstrap samples; *** indicates
statistical significance of p < 0.001 adjusted with Bonferroni correction. b Significant

total co-occurrences are broken down into coupling and anti-coupling. Co-
occurences dominated by coupling or anti-coupling are indicated in red and blue,
respectively, and the ratio between coupling and anti-coupling is indicated by the
number of dots in each arrow head. cMean of pairwise Pearson correlation applied
to the iCAP time courses. Each color indicates a different iCAP.
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distinct brain areas exhibiting both positive and negative correlations in
distinct time-windows would result in a low FC, despite the dynamic syn-
chronization existing between these regions. Here, we overcome the lim-
itations imposed by static FC or sliding windows methods by clustering
moments of significantly changing brain activity from multiple fMRI ses-
sions while animals at rest were awake or under anesthesia to extract large
scale brain networks or iCAPs. The use of transient fMRI activity allowed us
to obtain temporally overlapping spatial networks and to compute their
time courses at the resolution of repetition time. We established that
functional brain networks in the unconscious states preserved their spatial
organization compared to the awake state; yet they had fewer dynamic
fluctuations than conscious states, which resulted in longer temporal acti-
vation and higher co-activations. Importantly, network co-occurrence
showed anesthetic-specific trends and a hierarchical organization specific to
the depth of anesthetic. Altogether, these results advance the use of rs-fMRI
to detect the presence or absence of consciousness. Here, we discuss our
findings with an emphasis on key anatomical brain structures and temporal
measures that distinguish different anesthetics and sedation depth.

During unconsciousness, the amount of transient brain activity sig-
nificantly decreased as compared to awake resulting in a reduced number of
clusters, which was explained by the absence of activation of primary visual
cortex andposterior cerebellum.The lack of a primary visual cortex network
might be explained by the difference in eyes-opened during awake, and eyes
closed when under anesthesia. The absence of the posterior, but not the
anterior cerebellum, instead, might be explained by the organization of the
cerebellum lobules. Indeed, the anterior lobules have been reported to be
responsible for the sensorimotor domain, while the posterior ones for the
cognitive domain49. Additionally, previous works reported a lack of the
posterior cerebellum network during sleep3 and a marked correlation of
larger lobules (i.e., anterior region of the cerebellum)50 with slow-wave sleep
and slow spindles in different sleep stages51. Yet the anterior cerebellum
showed a reduced correlationof activity compared to all the other functional
networks across all anesthetic conditions highlighting a unique functional
organization of the anterior lobules. Importantly, the spatial organization of
the other brain networks was preserved.

To explain how the predominance of temporal reorganization can
explain loss of consciousness during anesthesia while anatomical networks
are preserved, we showed a global increase in simultaneous coupling and
anti-coupling of the different brain networks. These results are in line with
previous studies52 and commonly interpreted to reflect reduced con-
sciousness during sleep53. We here showed that a similar mechanismmight

occur during anesthesia further supporting the idea that consciousness is
not the persistence of functional brain networks, but rather the degree of
interactions among them29,52,54–56. This lack of integrity and synchronization
could be due to a reduced activation of the thalamus. Yet, the role of the
thalamus in inducing loss of consciousness remains controversial. Indeed,
several studies show that anesthesia-induced loss of consciousness ismostly
associatedwith a change in cortical correlation rather thanwithanalteration
of thalamic activity57,58. On the other hand, because of its pivotal role in the
exchange of information between the periphery and cortex, the thalamus
has been hypothesized to be essential in inducing loss of consciousness32. In
this regard, a previous work in rats under multiple conditions of anesthesia
found consistent suppression of the thalamo-cortical pathways suggesting
less dynamic functional connectivity29. Additionally, recent studies showed
that stimulation of the thalamus during anesthesia restored arousal and
wake-like neural processing as depicted by brain fluctuations similar to the
awake state9,59,60. The spatiotemporal organizationof iCAPs further supports
this second hypothesis. Indeed, both iCAPs 1 and 2, which included por-
tions of the thalamus, presented the strongest temporal changes during loss
of consciousness. Specifically, they fluctuated with the longest average
durations and had an increased co-occurrence with other networks, parti-
cularly with the anterior DMN and the prefrontal cortex. These areas are
highly coupled together through the lateral forebrain bundle, which con-
nects the temporo-parietalDMNnodes,whose connectivity is believed to be
essential for conscious awareness61,62. Interestingly, these cortical areas also
hada significantly longer total durationduring anesthesia further suggesting
that loss of consciousness might induced by a reduced activation of the
thalamus that caused a slowing down of the prefrontal cortex and DMN.

Importantly, while the reduced fluctuations in the thalamo-prefrontal
pathways was a common signature of anesthesia-induced loss of con-
sciousness no matter the initial molecular mechanism of the anesthetic, co-
activations of other brain areas were, instead, anesthetic-specific. In parti-
cular, the activation of the anterior cerebellumdifferentiated themost across
opiates.While the cerebellumhas longbeen considered amarginal target for
general anesthesia63, recent studies suggested a possible involvement of this
structure explained by its strong connectivity with prefrontal and frontal
cortical areas64. Our results further support this hypothesis. Indeed, the
anterior cerebellum anti-coupled with the anterior DMN when uncon-
sciousness was induced with sevoflurane, but these networks positively
coupled during propofol-induced anesthesia. The anterior cerebellum
likewise anti-coupled more with the prefrontal cortex under ketamine and
sevoflurane sedation than during the awake condition. Importantly, these

Fig. 6 | Hierarchical clustering of iCAPs according to their temporal overlap.The
dendrogramminimizes the distance at each leaf with respect to the neighboring leaf,
clustering the most similar iCAPs. Each condition is represented by their own tree

with some branches highlighted by unique colors to emphasize similarities or dif-
ferences for each cluster. Awake is the only condition separated into a sensory and
default networks; whereas the other conditions have unique formations.
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more probable cortical co-activations of the anterior cerebellum during
anesthesia as compared to the awake condition reflect a reduction of low-
frequency fluctuations in the frontal regions and cerebellum, which is
consistentwith frontal to sensory-motor cortical disconnection as a possible
mechanism of loss of consciousness65.

Also, thehierarchical organizationof thenetworkswasuniquebetween
conscious and unconscious states and differentiated levels of alertness.
Indeed, brain activity during consciousness arranged into components
related to sensory and attention, matching organization shown in previous
studies of awake humans3. During unconsciousness, instead, this organi-
zation was altered in particular at the level of the DMN connectivity. Spe-
cifically, the anterior and posterior parts of theDMN split into two different
hierarchical clusters: the anterior DMN reorganized with the secondary
visual, thalamus/auditory, and anterior cerebellum; while the posterior
DMN clustered with the prefrontal cortex, iTEMP/amygdala and sensory-
motor cortex. These findings parallel previous works showing that func-
tional correlation decreased in the DMN during all the anesthetic condi-
tions, as compared to the awake condition66–68. Similarly, the DMN
dissociates into posterior and anterior parts upon reaching deep sleep56,69

with an increased activation of the posterior DMN3. These similarities
suggest a common neurophysiological role of the posterior DMN in
inducing unconsciousness between sleep and anesthesia. Importantly,
within the hierarchical split containing the posterior DMN, moderate and
deep propofol, and moderate sevoflurane shared the same hierarchical
organization as opposite todeep sevoflurane. Finally, ketaminehad aunique
hierarchy of iCAPs with the anterior and posterior DMN in the same split
together with the prefrontal cortex, iTEMP/amygdala and sensory-motor
cortex. If we assume a finer definition of level of alertness with moderate
propofol the lowest depth of anesthesia and deep sevoflurane and ketamine
the strongest, our results hint to a critical role of the posterior DMN; i.e., the
posterior cingulate cortex, in determining the level of consciousness.

Overall these results have important clinical implications. First of all, it
is important to highlight here the rich literature that used EEG to determine
level of consciousness15,16,57,70–72. While EEG is critical during surgical pro-
cedures tomonitor thedepthof the anesthesia and the level of consciousness
and for longitudinal assessments over time, EEG cannot directly access the
thalamo-cortical and cerebellar-cortical functional connectivity that seems
to be critical in maintaining consciousness16–21. Clinical application, there-
fore, needs to be complemented with high spatial resolution fMRI
exploration. In this regard, previous fMRI works in humans using the iCAP
method reported large-scale brain networks that are consistent with our
results demonstrating similar cognitive processes and neurobiological cor-
relates in humans and non-human primates which enables translation of
discoveries. Common FC network structures across species were reported
also in other studies further supporting the generalizability of our work to
patients4,47,73–77. Importantly, the similarity across networks was preserved
even if our approach uses a custom MION HRF instead of the standard
HRF. Additionally, our results nicely parallel finding from a previous work
that applied iCAPs to fMRI data acquired in humans during different levels
of sleep3 highlighting not only the shared neurophysiological mechanisms
between sleep and anesthesia3,22,23,50,51,53,56,69, but more importantly the
translational potential of our results to human subjects. All together these
similarities open up the possibility that residual consciousness could be
monitored through the dynamics of brain activity and tentatively suggests
biomarkers of conscious activity. Our findings could help ameliorate the
accurate diagnosis of patients with disorders of consciousness.

In conclusion, dynamic functional connectivity for fMRI has been
investigated in different sleep stages3,22,23, under different anesthetic seda-
tion, and more recently in unconscious patients8,10,11,30 showing a decreased
brain dynamics. However, the investigation regarding the affected brain
areas remained limited and speculative, thus hindering our capacity to
distinguish alertness. Here we deployed the iCAPs framework that has the
unique ability to extract spatially and temporally overlapping functional
networks. We observed a clear dissociation of both the DMN and

cerebellum into anterior and posterior networks. Thanks to these features,
we identified key brain areas responsible for loss of consciousness and with
different effects depending on the anesthetic and the level of consciousness:
the default mode network, the anterior cerebellum, and the thalamus.
Specifically, the activation of the thalamusmay play a central role, common
to all anesthetics, on reducing the incoming information flow from the
periphery that reduces the whole-brain dynamics. Simultaneously, a
decreased activation of the anterior cerebellum could cause a disconnection
with the frontal regions, with an anesthetic-specific differentiation between
its connections to the anterior DMN and the prefrontal cortex. Finally, the
posterior DMNmay be key in regulating the desynchronization of multiple
networks during different levels of consciousness.

Materials and methods
Animals
5 rhesus macaques (Macaca mulatta), 1 male (monkey J), and 4 females
(monkeys A, K, Ki, and R), 5–8 kg, 8–12 year of age, were tested; three for
each arousal condition (awake: monkeys A, K, and J; propofol anesthesia:
monkeys K, R, and J; ketamine anesthesia: monkeys K, R, and Ki; sevo-
flurane anesthesia: monkeys Ki, R, and J). See Supplementary Table 1 for
details on the exact number of acquisitions per animal and condition. All
procedures were conducted in accordance with the European Convention
for the Protection of Vertebrate Animals used for Experimental and Other
Scientific Purposes (Directive 2010/63/EU) and the National Institutes of
Health’s Guide for the Care andUse of Laboratory Animals. Animal studies
were approved by the institutional Ethical Committee (Commissariat à
l'Énergie atomique et auxÉnergies alternatives; Fontenay auxRoses, France;
protocols 10-003and12-086). Part of thedataused in thisworkwere already
presented in refs. 1,2. Anesthesia protocols were the same of these previous
works.Wehave compliedwith all relevant ethical regulations for animal use.

Anesthesia protocol
The monkeys were administered anesthesia using either ketamine78,
propofol1,78, or sevoflurane. We gauged the depth of anesthesia by
employing the monkey sedation scale, which considers spontaneous
movements and responses to various external stimuli such as shaking,
prodding, toe pinching, and assessing the corneal reflex. Clinical scoreswere
determined at the outset and conclusion of each scanning session, coupled
with continuous electroencephalography monitoring.

For ketamine anesthesia, themonkeys received an initial intramuscular
injection of ketamine (20mg/kg; Virbac, France) for induction, followed by
a continuous intravenous ketamine infusion (15–16mg kg–1 h–1) to main-
tain anesthesia. Atropine (0.02mg/kg intramuscularly; Aguettant, France)
was administered 10minutes prior to induction to reduce salivary and
bronchial secretions. For propofol anesthesia, the monkeys were scanned at
moderate propofol sedation and deep propofol anesthesia levels. For this,
the animals were trained to receive an intravenous propofol bolus
(5–7.5mg/kg; Fresenius Kabi, France) for anesthesia induction, followed by
target-controlled propofol infusion (moderate propofol sedation:
3.7–4.0 µg/ml; deep propofol anesthesia: 5.6–7.2 μg/ml) based on the
“Paedfusor”pharmacokineticmodel79.Despite the “Paedfusor”modelbeing
validated in humans, we previously applied it to macaque monkeys,
observing stable clinical scores and electroencephalography activity during
propofol anesthesia sessions1,78. Finally, for sevoflurane anesthesia, the
monkeys were subjected to moderate and deep sevoflurane anesthesia. The
induction of anesthesia was done by intramuscular ketamine injection
(20mg/kg; Virbac), followed by sevoflurane administration (moderate
sevoflurane anesthesia: sevoflurane inspiratory/expiratory, 2.2/2.1 volume
percent; deep sevoflurane anesthesia: sevoflurane inspiratory/expiratory,
4.4/4.0 volume percent; Abbott, France). We waited a minimum of
80minutes80 to elapse before initiating scanning sessions during sevoflurane
anesthesia to ensure the elimination of the initial ketamine injection. To
prevent movement-related artifacts during magnetic resonance imaging
acquisition, a muscle-blocking agent (Cisatracurium, 0.15mg/kg bolus
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intravenously, followed by continuous intravenous infusion at a rate of
0.18mg kg–1 h–1; GlaxoSmithKline, France) was co-administered during the
ketamine and deep propofol sedation sessions. Importantly, the muscle-
blocking activation has no impact on the hemodynamic response as it does
not affect the vasculature81. Indeed, Cisatracurium acts exclusively on the
level of the neuro-muscular junction, relaxing only skeletal muscles with no
vascular effects nor neuronal effects.

In all anesthesia experiments, the monkeys were intubated and ven-
tilated. Vital signs such as heart rate, noninvasive blood pressure (systolic/
diastolic/mean), oxygen saturation, respiratory rate, end-tidal carbon
dioxide, and cutaneous temperaturewere continuouslymonitored (Maglife,
Schiller, France) and recorded online (Schiller).

Electroencephalography
To assess the depth of anesthesia, we utilized low-density scalp EEG with a
MRI compatible system and custom-made caps, as detailed previously1.
Importantly, no EEG acquisitionswere possible during the awake condition
because of the difficulty to use the system with awake large animal. Our
analysis was conducted in real-time through visual inspection of EEG
patterns following established guidelines78. For ketamine, sedation level was
4, which was characterized by intermittent polymorphic δ activity
(0.5–2Hz) of large amplitude, overlaid by low-amplitude β activity70, and an
increase in γ power (30–100Hz)82. For propofol, sedation levels were 3
(moderate propofol sedation) featuringdiffuse andwideαwaves, alongwith
anterior theta waves83, and level 4 (deep propofol) marked by diffuse delta
waves, low-amplitude waves71, and anterior α waves (10 Hz)84. For sevo-
flurane, sedation levels were 3 (moderate sevoflurane) featured by elevated
frontal delta, α, and β waves72, and level 4 (deep sevoflurane anesthesia)
characterized by diffuse delta waves and anterior α waves72.

Functional magnetic resonance imaging data acquisition
The data were collected between July 2011 andAugust 2016.Monkeys were
scannedona3-Teslahorizontal scanner (SiemensTimTrio,Germany)with
a single transmit-receiver surface customized coil. Each functional scan
consisted of gradient-echoplanar whole-brain images (repetition time =
2400ms; echo time = 20ms; 1.5-mm3 voxel size; 500 brain volumes per
run). Before each scanning session,monocrystalline iron oxide nanoparticle
(MION, Feraheme, AMAG Pharmaceuticals, USA; 10mg/kg, intravenous)
was injected into the monkey’s saphenous vein1. For the awake condition,
monkeys were implanted with a magnetic resonance compatible headpost
and trained to sit in the sphinx position in a primate chair without per-
forming any task1,85. The eye position was monitored at 120 Hz (Iscan Inc.,
USA) only for the awake condition. For the anesthesia sessions, animals
were positioned in a sphinx position, mechanically ventilated, and their
physiologic parameters were monitored.

Functional magnetic resonance imaging preprocessing
Functional images were preprocessed using the Pypreclin pipeline for
monkey fMRI86. Images were slice-time corrected with FSL slice timer
function (FMRIB’s Software Library – FSL, Oxford, U.K)87. B0 inhomo-
geneities and B1 field were corrected using the SyN function and N4 nor-
malization of the Advanced Normalization Tool (ANTS). Images were
reoriented, realigned, and rigidly co-registered to the anatomical template of
themacaqueMontrealNeurologic Institute (MNI,Montreal, Canada) space
with use of JIP align (http://www.nmr.mgh.harvard.edu/~jbm/jip/, Joe
Mandeville, Massachusetts General Hospital, Harvard University, MA,
USA) and Oxford Centre Functional Magnetic Resonance Imaging of the
Brain Software Library software (UnitedKingdom, http://www.fmrib.ox.ac.
uk/fsl/; accessed 4 February 2018)85. The data were denoised using the
non-human primate adapted ICD-FIX command (https://github.com/
Washington-University/NHPPipelines) for spatial Independent Compo-
nent Analysis (ICA, i.e. melodic) followed by automatic classification
of components into ‘signal’ and ‘noise’. We then applied spatial
smoothing using an isotropic Gaussian kernel of 3mm full width at half
maximum.

Total activation and the iCAPs framework
In order to extract large-scale brain networks and their temporal char-
acteristics we deployed the iCAPpipeline33,35,40,42,43,88 (Supplementary Fig. 2).
We first implemented the Total Activation framework which takes the pre-
processed fMRI time series of each voxel and applies MION informed
deconvolution (Supplementary Fig. 1) to retrieve an activity-inducing signal
that shows block-type activation patterns (without any prior knowledge of
its timings, Supplementary Fig. 2). More details about the implementation
the TA framework can be found in Karahanoğlu et van De Ville, 201535.

Then, for each activity-inducing time courses we removed the first ten
volumes (i.e., 490 volume kept in total per run) and significant activation
change-points (i.e., transients) were computed as the temporal derivative of
these activity-inducing signals. Specifically, the derivative of the signal
results in negative or positive spikes that represents the positive andnegative
transient frames. Significant innovation frames (i.e. frames with significant
transitioning activities) were selected with a two-step thresholding proce-
dure with temporal and spatial thresholds selected based on previous
works33–35,40,42,43. This two-step thresholding allowed to select only frames
that contained significantly transient activity and to avoid including spur-
ious connectivity patterns. The purpose of the temporal thresholding was,
for each voxel, to find the time points where the activity was significantly
high/low (i.e. positive/ negative). To determine the temporal threshold a
surrogate data set, created byphase-randomization of the real data,was used
to build a surrogate distribution where the lowest 1st and highest 99th per-
centile was used to select significant voxels. We did that for all voxels, and
obtained, for each time point, a map of significant positive and negative
transients (regions that are jointly activation, positive, and regions that
jointly deactivation, negative). We then applied spatial thresholding on
these maps, and only select those that have more than 5% of significant
voxels (i.e., significant innovation frames).

Significant innovation frames across all animals, sessions, and anes-
thetics were then fed into a temporal k-means clustering to obtain large-
scale resting state networks, the iCAPs. We also clustered significant
innovation frames for anesthetic conditions separately. The iCAPs found
when clustering each condition individually were comparedwith the iCAPs
found when conditions were clustered all together using cosine similarity of
their spatial maps. In both cases, the optimal number of clusters was
determined by consensus clustering89. Themethod involved subsampling of
the data and multiple runs of the clustering algorithm. The number of
clusters was evaluated from K = 5–15. We chose K = 11 to be the optimal
number of clusters by considering the agreement between three criteria.
First of all, we monitored the consistency of each frame being grouped into
the same cluster over every subsample to create a consensus matrix. A
perfect consensus would result in a block diagonal with each block repre-
senting a cluster. Secondly, we looked at the slope of the cumulative dis-
tribution function (CDF) of the consensus clusteringmatrices. In the case of
perfect consensus, the CDF curve would look like a step function as the
consensus matrix would only contain 1 and 0. Instead, the higher the slope
of the CDF the less stable the clusters are.We lastly looked at the area under
the curve (AUC) of the CDF to find if the CDF increases or decreases as a
function of K. When going from a perfect consensus for one K to a perfect
consensus of a larger K, the AUC would show a large increase. However,
going from a perfect consensus to a less good consensus would lead to a
smaller increase in the AUC. The idea is to then look at the AUC plot as a
function of K and choose K such that the AUC is large and decreases
drastically after.

Finally, run-specific iCAP time courses were obtained by transient-
informed spatiotemporal back-projection of the 11 spatial maps (i.e. the
large-scale rs-fMRI networks extracted when clustering together significant
innovation frames concatenated across all sessions) onto the individual
activity-inducing signals. For each animal and run the iCAPs time courses
wereZ-scored inorder toobtainpositive andnegative activation signs. iCAP
positive/negative activations reflect the time-points when an iCAP is at least
1.5 standard deviations above/below the overall mean amplitude of iCAPs.
The choice of this particular thresholdwasmotivated bypreviousworks that
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implemented TA and iCAP framework3,40. For each iCAP and session, we
then computed the total duration of each iCAPoccurrence as the number of
time points that an iCAP was active or de-active. We also computed the
average duration measured in seconds: the length of time that an iCAP is
continuously active. We then evaluated the pair-wise iCAP percentage of
co-occurrences which is represented by the number of time-points during
which a pair of iCAPs were both active divided by the total number of time-
points that at least either one of themwas active.We also consider the signs
of the co-occurrence. Specifically, we considered the pair of iCAPs to be
coupled (coupling) if both iCAPs had positive or negative activation or anti-
coupled (anti-coupling) if one iCAPwas positively/negatively activated and
the other had opposite activation (i.e., negatively/positively, respectively).
Lastly, to measure the temporal overlap between groups of iCAPs, we
counted different combinations of iCAPs occurring at each time instance.
We then applied hierarchical clustering of iCAPs using the observed
combinations as features. Matlab (Mathworks, USA) code for the applica-
tion of the whole framework can be found at https://www.c4science.ch/
source/iCAPs.

Statistics and reproducibility
Testing for statistical differences of any iCAP measure was done through a
bootstrapping method90. A nonparametric approach that makes no dis-
tributional assumptions on the observed data. Bootstrapping instead uses
resampling to construct empirical confidence intervals (Cis) for a quantity
of interest. For each comparison we constructed bootstrap samples by
drawing with replacement from the observed measurement. We calculated
the null distribution of the observed difference by creating 10,000 bootstrap
samples. A 95% CI for the observed difference was obtained by identifying
the 2.5th and 97.5th quantiles of the resulting null distribution. The null
hypothesiswas rejected if 0wasnot included in the 95%CI. Ifmore thanone
comparison was being performed then Bonferroni correction was used. For
the analysis of temporal characteristics, we only included the first eight
iCAPs as they were equally prevalent across all conditions.

Data availability
The source data underlying the graphs in the manuscript are shown
in Supplementary Data. Raw data are uploaded in the BIOPROJ – Next-
cloud repository.Access to thedatawill be provided from the corresponding
author on reasonable request. Data supporting the findings of this manu-
script are available from the corresponding authors upon reasonable
request.

Code availability
fMRI data were analyzed using a publicly available algorithm. https://
miplab.epfl.ch/index.php/software/total-activation.

Received: 20 October 2023; Accepted: 15 May 2024;

References
1. Barttfeld, P. et al. Signature of consciousness in the dynamics of

resting-state brain activity. Proc. Natl Acad. Sci. USA 112,
887–892 (2015).

2. Uhrig, L. et al. Resting-state dynamics as a cortical signature of
anesthesia in monkeys. Anesthesiology 129, 942–958 (2018).

3. Tarun, A. et al. NREM sleep stages specifically alter dynamical
integration of large-scale brain networks. iScience 24, 101923 (2021).

4. Hahn, G. et al. Signature of consciousness in brain-wide
synchronization patterns of monkey and human fMRI signals.
Neuroimage 226, 117470 (2021).

5. Nir, T. et al. Transient subcortical functional connectivity upon
emergence from propofol sedation in human male volunteers:
evidence for active emergence. Br. J. Anaesth. 123, 298–308 (2019).

6. Del Pozo, S. M. et al. Unconsciousness reconfigures modular brain
network dynamics. Chaos 31, 093117 (2021).

7. Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional
connectome: state-of-the-art and perspectives. Neuroimage 160,
41–54 (2017).

8. Demertzi, A. et al. Human consciousness is supported by dynamic
complex patterns of brain signal coordination. Sci. Adv. 5, eaat7603
(2019).

9. Tasserie, J. et al. Deep brain stimulation of the thalamus restores
signatures of consciousness in a nonhuman primate model. Sci. Adv.
8, eabl5547 (2022).

10. Crone, J. S. et al. Impaired consciousness is linked to changes in
effective connectivity of the posterior cingulate cortex within the
default mode network. Neuroimage 110, 101–109 (2015).

11. Huang, Z. et al. The self and its resting state in consciousness: an
investigationof thevegetative state.Hum.BrainMapp.35, 1997–2008
(2014).

12. Owen, A. M. et al. Detecting awareness in the vegetative state.
Science 313, 1402 (2006).

13. Sitt, J. D. et al. Large scale screening of neural signatures of
consciousness in patients in a vegetative or minimally conscious
state. Brain 137, 2258–2270 (2014).

14. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and
cerebrospinal fluid oscillations in human sleep. Science 366,
628–631 (2019).

15. Golkowski, D. et al. Simultaneous EEG-PET-fMRI measurements in
disorders of consciousness: an exploratory study on diagnosis and
prognosis. J. Neurol. 264, 1986–1995 (2017).

16. Warbrick, T. Simultaneous EEG-fMRI: what have we learned and what
does the futurehold?Sensorshttps://doi.org/10.3390/s22062262 (2022).

17. Burle,B. et al. Spatial and temporal resolutionsof EEG: Is it really black
and white? A scalp current density view. Int. J. Psychophysiol. 97,
210–220 (2015).

18. Nunez, P. L. & Westdorp, A. F. The surface Laplacian, high resolution
EEG and controversies. Brain Topogr. 6, 221–226 (1994).

19. Hale, J. R. et al. Altered thalamocortical and intra-thalamic functional
connectivity during light sleep comparedwithwake.Neuroimage125,
657–667 (2016).

20. Szaflarski, J. P. et al. Cortical and subcortical contributions to
absence seizure onset examined with EEG/fMRI. Epilepsy Behav. 18,
404–413 (2010).

21. Michel, C. M. et al. EEG source imaging. Clin. Neurophysiol. 115,
2195–2222 (2004).

22. Enzo, T. et al. Breakdown of long-range temporal dependence in
default mode and attention networks during deep sleep. Proc. Natl
Acad. Sci. USA 110, 15419–15424 (2013).

23. Chow, H. M. et al. Rhythmic alternating patterns of brain activity
distinguish rapid eye movement sleep from other states of
consciousness. Proc. Natl Acad. Sci. USA 110, 10300–10305 (2013).

24. Tagliazucchi, E. et al. Large-scale signatures of unconsciousness are
consistentwith a departure fromcritical dynamics. J. R. Soc. Interface
13, 20151027 (2016).

25. Amico, E. et al. Posterior cingulate cortex-related co-activation
patterns: a resting state FMRI study in propofol-induced loss of
consciousness. PLoS ONE 9, e100012 (2014).

26. Liu, X. et al. Variation of the default mode network with altered
alertness levels induced by propofol. Neuropsychiatr. Dis. Treat. 11,
2573–2581 (2015).

27. Stamatakis, E. A., Adapa, R. M., Absalom, A. R. & Menon, D. K.
Changes in resting neural connectivity during propofol sedation.
PLoS ONE 5, e14224 (2010).

28. Hudetz, A. G., Liu, X. & Pillay, S. Dynamic repertoire of intrinsic brain
states is reduced in propofol-induced unconsciousness. Brain
Connect. 5, 10–22 (2015).

29. Paasonen, J., Stenroos, P., Salo, R. A., Kiviniemi, V. & Gröhn, O.
Functional connectivity under six anesthesia protocols and the awake
condition in rat brain. Neuroimage 172, 9–20 (2018).

https://doi.org/10.1038/s42003-024-06335-x Article

Communications Biology |           (2024) 7:716 10

https://www.c4science.ch/source/iCAPs
https://www.c4science.ch/source/iCAPs
https://miplab.epfl.ch/index.php/software/total-activation
https://miplab.epfl.ch/index.php/software/total-activation
https://doi.org/10.3390/s22062262
https://doi.org/10.3390/s22062262


30. Zhang, H. et al. Posterior cingulate cross-hemispheric functional
connectivity predicts the level of consciousness in traumatic brain
injury. Sci. Rep. 7, 387 (2017).

31. Greicius, M. D. et al. Persistent default-mode network connectivity
during light sedation. Hum. Brain Mapp. 29, 839–847 (2008).

32. Franks, N. P. General anaesthesia: frommolecular targets to neuronal
pathwaysof sleep and arousal.Nat. Rev.Neurosci. 9, 370–386 (2008).

33. Karahanoglu, F. I., Caballero-Gaudes, C., Lazeyras, F. & Van de Ville,
D. Total activation: fMRI deconvolution through spatio-temporal
regularization. Neuroimage 73, 121–134 (2013).

34. Karahanoğlu, F. I. & Van De Ville, D. Dynamics of large-scale fMRI
networks: deconstruct brain activity to build better models of brain
function. Curr. Opin. Biomed. Eng. 3, 28–36 (2017).

35. Karahanoglu, F. I. & Van De Ville, D. Transient brain activity
disentangles fMRI resting-state dynamics in terms of spatially and
temporally overlapping networks. Nat. Commun. 6, 7751 (2015).

36. Milham,M. P. et al. Anopen resource for non-humanprimate imaging.
Neuron 100, 61–74.e62 (2018).

37. Yacoub, E. et al. Ultra-high field (10.5 T) resting state fMRI in the
macaque. Neuroimage 223, 117349 (2020).

38. Margulies, D. S. et al. Precuneus shares intrinsic functional
architecture in humans and monkeys. Proc. Natl Acad. Sci. USA 106,
20069–20074 (2009).

39. Pirondini, E. et al. Post-stroke reorganization of transient brain activity
characterizes deficits and recovery of cognitive functions.
Neuroimage 255, 119201 (2022).

40. Zoller,D. et al. Large-scalebrainnetworkdynamicsprovideameasure
of psychosis and anxiety in 22q11.2 deletion syndrome. Biol.
Psychiatry Cogn. Neurosci. Neuroimaging 4, 881–892 (2019).

41. Zoller, D. et al. Structural control energy of resting-state functional
brain states reveals less cost-effective brain dynamics in psychosis
vulnerability. Hum. Brain Mapp. 42, 2181–2200 (2021).

42. Zoller, D. M. et al. Robust recovery of temporal overlap between
network activity using transient-informed spatio-temporal regression.
IEEE Trans. Med Imaging 38, 291–302 (2019).

43. Piguet, C., Karahanoglu, F. I., Saccaro, L. F., Van De Ville, D. &
Vuilleumier, P. Mood disorders disrupt the functional dynamics, not
spatial organization of brain resting state networks.Neuroimage Clin.
32, 102833 (2021).

44. Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi,
A. Mapping and comparing fMRI connectivity networks across
species. Commun. Biol. 6, 1238 (2023).

45. Mantini, D. et al. Default mode of brain function in monkeys. J.
Neurosci. 31, 12954–12962 (2011).

46. Hutchison, R.M. & Everling, S.Monkey in themiddle: why non-human
primates are needed to bridge the gap in resting-state investigations.
Front. Neuroanat. 6, 29 (2012).

47. Bukhari, Q., Schroeter, A., Cole, D. M. & Rudin, M. Resting state fMRI
in mice reveals anesthesia specific signatures of brain functional
networks and their interactions. Front. Neural Circuits https://doi.org/
10.3389/fncir.2017.00005 (2017).

48. Nallasamy, N. & Tsao, D. Y. Functional connectivity in the brain:
effects of anesthesia. Neuroscientist 17, 94–106 (2011).

49. Catherine, J. S. & Jeremy,D. S. Evidence for topographic organization
in the cerebellum of motor control versus cognitive and affective
processing. Cortex 46, 831–844 (2010).

50. Dang-Vu, T. T. et al. Spontaneous neural activity during human slow
wave sleep. Proc. Natl Acad. Sci. USA 105, 15160–15165 (2008).

51. Canto, C. B., Onuki, Y., Bruinsma, B., van derWerf, Y. D. & De Zeeuw,
C. I. The sleeping cerebellum. Trends Neurosci. 40, 309–323 (2017).

52. Nofzinger, E. A. et al. Regional cerebralmetabolic correlates ofWASO
duringNREMsleep in insomnia. J.Clin. SleepMed.2, 316–322 (2006).

53. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol. 6, e216 (2008).
54. Spoormaker, V. I. et al. The neural correlates and temporal sequence

of the relationship between shock exposure, disturbed sleep and

impaired consolidation of fear extinction. J. Psychiatr. Res. 44,
1121–1128 (2010).

55. Horovitz, S. G. et al. Decoupling of the brain’s default mode network
during deep sleep. Proc. Natl Acad. Sci. USA 106,
11376–11381 (2009).

56. Sämann, P. G. et al. Development of the brain’s defaultmode network
from wakefulness to slow wave sleep. Cereb. Cortex 21,
2082–2093 (2011).

57. Boly,M. et al. Connectivity changes underlying spectral EEGchanges
during propofol-induced loss of consciousness. J. Neurosci. 32,
7082–7090 (2012).

58. Velly, L. J. et al. Differential dynamic of action on cortical and
subcortical structures of anesthetic agents during induction of
anesthesia. Anesthesiology 107, 202–212 (2007).

59. Müller, E. J. et al. The non-specific matrix thalamus facilitates the
cortical information processing modes relevant for conscious
awareness. Cell Rep. 42, 112844 (2023).

60. Redinbaugh, M. J. et al. Thalamus modulates consciousness via
layer-specific control of cortex. Neuron 106, 66–75.e12 (2020).

61. Edlow, B. L. et al. Sustaining wakefulness: brainstem connectivity in
human consciousness. bioRxiv https://doi.org/10.1101/2023.07.13.
548265 (2023).

62. Boly,M. et al. Are the neural correlates of consciousness in the front or
in the back of the cerebral cortex? Clinical and neuroimaging
evidence. J. Neurosci. 37, 9603–9613 (2017).

63. Fabio, F. et al. Breakdown in cortical effective connectivity during
midazolam-induced lossof consciousness.Proc.Natl Acad.Sci. USA
107, 2681–2686 (2010).

64. D’Angelo, E. & Casali, S. Seeking a unified framework for cerebellar
function and dysfunction: from circuit operations to cognition. Front.
Neural Circuits https://doi.org/10.3389/fncir.2012.00116 (2013).

65. Xiaolin, L. et al. Propofol attenuates low-frequency fluctuations of
resting-state fMRI BOLD signal in the anterior frontal cortex upon loss
of consciousness. NeuroImage 147, 295–301 (2017).

66. Boveroux, P. et al. Breakdownofwithin- andbetween-network resting
state functional magnetic resonance imaging connectivity during
propofol-induced loss of consciousness. Anesthesiology 113,
1038–1053 (2010).

67. Schrouff, J. et al. Brain functional integration decreases during
propofol-induced loss of consciousness. Neuroimage 57,
198–205 (2011).

68. Huang, Z. et al. Altered temporal variance and neural synchronization
of spontaneous brain activity in anesthesia. Hum. Brain Mapp. 35,
5368–5378 (2014).

69. Larson-Prior, L. J. et al. Cortical network functional connectivity in the
descent to sleep. Proc. Natl Acad. Sci. USA 106, 4489–4494 (2009).

70. Schüttler, J. et al. Pharmacodynamic modeling of the EEG effects of
ketamine and its enantiomers in man. J. Pharmacokinet. Biopharm.
15, 241–253 (1987).

71. Murphy, M. et al. Propofol anesthesia and sleep: a high-density EEG
study. Sleep 34, 283–291a (2011).

72. Gugino,L.D. et al.QuantitativeEEGchangesassociatedwith lossand
return of consciousness in healthy adult volunteers anaesthetized
with propofol or sevoflurane. Br. J. Anaesth. 87, 421–428 (2001).

73. Annabelle, M. B. et al. Large-scale brain networks in the awake, truly
resting marmoset monkey. J. Neurosci. 33, 16796 (2013).

74. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized
monkey brain. Nature 447, 83–86 (2007).

75. Upadhyay, J. et al. Default-mode-like network activation in awake
rodents. PLoS ONE 6, e27839 (2011).

76. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl
Acad. Sci. USA 109, 3979–3984 (2012).

77. Francesco, S., Adam, J. S., Alberto, G., Angelo, B. & Alessandro, G.
Distributed BOLD and CBV-weighted resting-state networks in the
mouse brain. NeuroImage 87, 403–415 (2014).

https://doi.org/10.1038/s42003-024-06335-x Article

Communications Biology |           (2024) 7:716 11

https://doi.org/10.3389/fncir.2017.00005
https://doi.org/10.3389/fncir.2017.00005
https://doi.org/10.3389/fncir.2017.00005
https://doi.org/10.1101/2023.07.13.548265
https://doi.org/10.1101/2023.07.13.548265
https://doi.org/10.1101/2023.07.13.548265
https://doi.org/10.3389/fncir.2012.00116
https://doi.org/10.3389/fncir.2012.00116


78. Uhrig, L., Janssen, D., Dehaene, S. & Jarraya, B. Cerebral responses
to local and global auditory novelty under general anesthesia.
Neuroimage 141, 326–340 (2016).

79. Absalom, A. & Kenny, G. Paedfusor’ pharmacokinetic data set. Br. J.
Anaesth. 95, 110 (2005).

80. Schroeder, K. E. et al.Disruptionof corticocortical information transfer
during ketamine anesthesia in the primate brain. Neuroimage 134,
459–465 (2016).

81. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A.
Neurophysiological investigation of the basis of the fMRI signal.
Nature 412, 150–157 (2001).

82. Pinault, D. N-methyl d-aspartate receptor antagonists ketamine and
MK-801 induce wake-related aberrant gamma oscillations in the rat
neocortex. Biol. Psychiatry 63, 730–735 (2008).

83. Feshchenko, V. A., Veselis, R. A. & Reinsel, R. A. Propofol-induced
alpha rhythm. Neuropsychobiology 50, 257–266 (2004).

84. Purdon, P. L. et al. Electroencephalogram signatures of loss and
recovery of consciousness from propofol. Proc. Natl Acad. Sci. USA
110, E1142–E1151 (2013).

85. Uhrig, L., Dehaene, S. & Jarraya, B. A hierarchy of responses to
auditory regularities in the macaque brain. J. Neurosci. 34,
1127 (2014).

86. Jordy, T. et al. Pypreclin: an automatic pipeline formacaque functional
MRI preprocessing. NeuroImage 207, 116353 (2020).

87. Smith, S. M. et al. Advances in functional and structural MR image
analysisand implementationasFSL.NeuroImage23,S208–S219 (2004).

88. Farouj, Y., Karahanoglu, F. I. & Van De Ville, D. Bold Signal
Deconvolution Under Uncertain HÆModynamics: A Semi-Blind
Approach (IEEE, 2019).

89. Monti, S., Tamayo, P.,Mesirov, J. &Golub, T. Consensus clustering: a
resampling-based method for class discovery and visualization of
gene expression microarray data.Mach. Learn. 52, 91–118 (2003).

90. Efron, B. & Tibshirani, R. J. An introduction to the bootstrap.
(Chapman & Hall, 1993).

91. Benjamin, J. et al. A comprehensive macaque fMRI pipeline and
hierarchical atlas. bioRxiv https://doi.org/10.1101/2020.08.05.
237818 (2020).

92. Hartig, R. et al. The subcortical atlas of the rhesus macaque (SARM)
for neuroimaging. Neuroimage 235, 117996 (2021).

93. Reveley, C. et al. Three-dimensional digital template atlas of the
macaque brain. Cereb. Cortex 27, 4463–4477 (2017).

Acknowledgements
We thank the NeuroSpin support teams for help in data acquisition and
analysis, Dr. Anjali Tarun and Dr. Daniela Zöller for providing us with human
iCAPs for figures, and Dr. Younes Farouj for the code to run iCAPs. Part of
this work was supported by Institut National de la Santé et de la Recherche

Médicale, the Avenir program (B.J.), Commissariat à l’Energie Atomique,
Collège de France, ERC Grant NeuroConsc (to S.D.), Foundation
Bettencourt-Schueller, the Roger de Spoelberch Foundation, and internal
funding from the Department of Physical Medicine and Rehabilitation at the
University of Pittsburgh to E.P.

Author contributions
B.J., S.D.,D.V.D.V., E.P., andL.U. designed research; L.U. andB.J. acquired
the data; G.H. and J.T. pre-processed the data; S.E. analyzed data; S.E. and
A.O. adapted the TA framework; B.J., S.D., and E.P. secured funding; and
S.E., B.J., and E.P. wrote the paper and all authors contributed to its editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06335-x.

Correspondence and requests for materials should be addressed to
Elvira Pirondini.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editor: Benjamin Bessieres.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06335-x Article

Communications Biology |           (2024) 7:716 12

https://doi.org/10.1101/2020.08.05.237818
https://doi.org/10.1101/2020.08.05.237818
https://doi.org/10.1101/2020.08.05.237818
https://doi.org/10.1038/s42003-024-06335-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Transient brain activity dynamics discriminate levels of consciousness during anesthesia
	Results
	Typical human large-scale networks were preserved in monkeys
	Slower brain dynamics during unconsciousness
	Spatial patterns of functional networks were preserved during unconsciousness
	Altered temporal patterns of functional networks revealed consciousness-dependent brain dynamics
	Networks co-occurrence revealed anesthetic-specific brain dynamics
	Network hierarchical organization revealed an anesthetic-specific role of the�DMN

	Discussion
	Materials and methods
	Animals
	Anesthesia protocol
	Electroencephalography
	Functional magnetic resonance imaging data acquisition
	Functional magnetic resonance imaging preprocessing
	Total activation and the iCAPs framework
	Statistics and reproducibility

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




