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Abstract
Motivation: Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting 
tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To in
crease tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients.
Results: We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice 
junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool 
EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions 
per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, 
healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target 
splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoe
pitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corre
sponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to addi
tional neoantigen candidates to expand the target repertoire for cancer immunotherapies.
Availability and implementation: The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON- 
Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.

1 Introduction
Neoantigens are tumor-specific mutated gene products that 
are presented in form of neoepitopes on major histocompati
bility complex (MHC) molecules and that are recognized by 
CD4þ or CD8þ T cells (Lang et al. 2022). Individualized can
cer vaccines mediate successful anti-tumor responses by tar
geting these neoantigens (Sahin et al. 2017, Ott et al. 2017, 
Hilf et al. 2019, Keskin et al. 2019). Previous studies mainly 
focused on targeting neoantigens derived from single nucleo
tide variants (SNVs) as the most abundant mutation type. 
However, neoantigens can also derive from other mutation 
types such as short insertions and deletions (INDELs) or gene 
fusions which broaden the targetable neoantigen repertoire 
(Smith et al. 2019, Weber et al. 2022).

During mRNA splicing, multiple isoforms per gene may be 
created by removal of introns and joining of exons, increasing 
the functional diversity of the proteome (Rogalska et al. 
2023). Importantly, 60% of the alternative splicing events 
are variable between tissues (Wang et al. 2008), and inter- 
individual variability contributes to individual phenotypes 

(Mel�e et al. 2015). The highly diverse nature of splicing 
was recently demonstrated by long-read sequencing of more 
than 70 000 novel transcripts in healthy tissues (Glinos 
et al. 2022).

Alternative splicing is specifically dysregulated in many 
tumors, impacting protein function and contributing to tu
mor heterogeneity (Climente-Gonz�alez et al. 2017, Kahles 
et al. 2018, Escobar-Hoyos et al. 2019, €Other-Gee Pohl and 
Myant 2022). For instance, disrupting mutations or expres
sion changes of genes encoding RNA splicing regulators such 
as SF3B1 alter splicing specifically in tumors (Kahles et al. 
2018, Escobar-Hoyos et al. 2019, Bigot et al. 2021, Oka 
et al. 2021, €Other-Gee Pohl and Myant 2022). Previous stud
ies have shown that indeed novel peptides derived by alterna
tive splicing in tumors can be presented by MHC-I and elicit 
cytotoxic CD8þ T-cell responses in human leukocyte antigen 
(HLA)-A24 transgenic mice (Oka et al. 2021), uveal mela
noma (Bigot et al. 2021), acute myeloid leukemia (Ehx et al. 
2021) and lung cancer (Merlotti et al. 2023). Alternative 
splicing can result in frameshifts of the translational reading 
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frame, leading to mutated peptide sequences highly dissimilar 
to the wild-type proteome. Such dissimilarity could increase 
the likelihood of T-cell recognition and make them excel
lent targets.

However, it is challenging to ensure the tumor-specificity 
of such splicing events. A common strategy is to focus on 
splice junctions that are absent or low expressed in a set of 
matched or unmatched healthy tissues (Zhang et al. 2020, 
Ehx et al. 2021, Chai et al. 2022, Pan et al. 2023). However, 
given the great diversity and stochasticity of alternative splic
ing across healthy tissue, more evidence is required to con
sider splice junctions as truly tumor-specific candidates for 
individualized cancer vaccines (David et al. 2020).

Somatic mutations can directly alter splicing by disrupting 
canonical splicing motifs or creating novel splicing motifs 
(Jung et al. 2015, Jayasinghe et al. 2018, PCAWG 
Transcriptome Core Group et al. 2020, Cotto et al. 2023). 
Notably, integrating somatic mutations with splicing events 
in whole-genome sequenced pan-cancer cohorts suggested 
that 34% of the intronic mutations near exon–intron bound
aries may affect splicing (PCAWG Transcriptome Core 
Group et al. 2020). Multiple computational tools predicting 
the effect of mutations on splicing and recent deep learning- 
based methods considerably improved splicing effect predic
tion (Wai et al. 2020, Riepe et al. 2021).

In contrast to splice junctions detected from RNA-seq 
alone, expressed splice junctions that are caused by somatic 
mutations can be considered as truly tumor-specific splice 
junctions. However, it is currently unclear whether such 
tumor-specific splice junctions can be predicted reliably from 
somatic mutations for individual cancer patients and how 
many splicing-derived neoantigen candidates qualify as 
promising targets for individualized cancer vaccines. 
Although several computational tools and pipelines exist to 
predict neoantigen candidates from alternative splicing (Chai 
et al. 2022, Pan et al. 2023), it remains challenging to use 
them with sufficient flexibility in custom workflows to ana
lyze mutation effects on the level of splice junctions, integrate 
them with RNA-seq reads, and correct annotation on tran
script and peptide levels.

In this study, we present two novel computational tools, 
splice2neo and EasyQuant, to facilitate the integration of the 
predicted effect of somatic mutations on splicing with splic
ing events detected from RNA-seq. By combining these tools 
in a novel analysis strategy, we identified a small but relevant 
set of tumor-specific splice junctions that can be interesting 
targets for individualized cancer vaccines.

2 Methods
2.1 Whole exome sequencing and somatic 
mutation calling
Whole exome sequencing (WES) and somatic mutation call
ing is described in the Supplementary methods.

2.2 Predicting the effect of somatic mutations 
on splicing
The effect of somatic mutations on splicing was predicted 
with SpliceAI (Jaganathan et al. 2019) (v1.3.1) and 
MMSplice (Cheng et al. 2019) (v2.1.1). For SpliceAI, the 
GENCODE V24 canonical annotation (grch37) included in 
the package was used. GENCODE v34lift37 was used as 

annotation for MMSplice. Both tools were run with de
fault settings.

2.3 Identifying alternative splicing events from 
RNA-seq
RNA-seq reads were aligned to the hg19 reference genome 
with STAR (Dobin et al. 2012) (v2.7.0a). The options 
“twopassMode Basic—outSAMstrandField intronMotif” 
were used to generate BAM files for the tool LeafCutter based 
on recommendation in the manual. Alternative splicing 
events were detected with SplAdder (Kahles et al. 2016) 
(v3.0.2) and LeafCutter (Li et al. 2018) (v0.2.9). Splicing 
events from exon skipping (ES), alternative 3’ or 5’ splice 
sites (A3SS, A5SS), intron retention (IR) and mutually exclu
sive exons were identified with SplAdder, ignoring mismatch 
information in the alignment file and using GENCODE 
(v34lift37) annotation. Splicing events were identified with 
LeafCutter annotation-free using the settings as recom
mended in the manual (-m 50 -l 500000—checkchrom). 
Here, the tool how_are_we_stranded_here (Signal and 
Kahlke 2022) (v1.0.1) was used to computationally deter
mine the strandedness of the RNA-seq and regtools (Cotto 
et al. 2023) (v0.5.2) was used to extract junctions using the 
recommended parameters of -a 8 -m 50 -M 500000. The 
union of RNA-seq derived junctions was considered per sam
ple if RNA-seq replicates were available.

2.4 Splice2neo: prediction of splice junctions and 
derived mutated transcript and peptide sequences
We developed the R-package splice2neo (https://github.com/ 
TRON-Bioinformatics/splice2neo) to identify mutation- 
retrieved splice junctions with RNA-seq support.

Splice2neo can identify splice junctions defined by the 
chromosome (chr), the last genomic position of the left exon 
(start), the first base of the right exon (end) and the transcrip
tional direction (strand) in the format “chr: start-end: strand” 
directly from the output of multiple tools. The R-package 
relies mainly on the functionalities of the Bioconductor pack
ages GenomicRanges (Lawrence et al. 2013) and Biostrings 
(Pag�es et al.). Splice2neo converts the raw output from 
LeafCutter, SplAdder, MMSplice, and SpliceAI into resulting 
splice junctions.

LeafCutter and SplAdder provide the genomic coordinates 
of the identified splicing events. Splice2neo transforms all 
events into the standardized junction format covering all po
tential splice junctions including canonical junctions.

SpliceAI predicts the probability of a mutation on splicing 
and provides the position of the alternative splicing events 
relative to the mutation. Table 1 describes the rules on how 
splice2neo creates splice junctions based on the predicted ef
fect by SpliceAI. Mutations can be covered by more than one 

Table 1. Rules on how splice junctions are created based on the mutation 
effect predicted by SpliceAI.

Change Class Left junction  
coordinate

Right junction  
coordinate

Donor loss IR pos pos þ strand_offset
Donor loss ES Upstream_end downstream_start
Donor gain A5SS pos downstream_start
Acceptor loss IR pos—strand_offset pos
Acceptor loss ES Upstream_end downstream_start
Acceptor gain A3SS Upstream_end pos
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gene and the splice effect of a somatic mutation may differ 
between genes depending of the position of the somatic muta
tion within the respective gene. Splice2neo optionally consid
ers only transcripts related to the gene annotated by SpliceAI 
while predicting the effect on splicing.

MMSplice predicts the change on percent spliced in (PSI) 
for a given annotated exon. Splice2neo considers events with 
PSI score ≤ 0 as ES events and uses the delta_logit_psi output 
as mutation effect score. Here, splice junctions are built by 
the end of the upstream exon and the start of the downstream 
exon.

The table describes the rules on how the left and right coor
dinate of the splice junction (“chr: start-end: strand”) are de
termined based on the predicted effect from SpliceAI. Pos 
refers to the position that is predicted to be affected by the 
mutation by SpliceAI. Upstream_end and downstream_start 
refer to exon end or start coordinates. Splice junctions that 
relate to an intron retention event are defined by the rule 
“chr: pos-(posþ1):strand” and must cover an exon-intron 
boundary. The strand_offset is þ1 for transcript on the posi
tive strand and −1 otherwise. IR: intron retention, ES: exon 
skipping, A5SS/A3SS: alternative 5’ or 3’ splice site.

Splice2neo provides function to annotate splice junctions 
with the resulting modified transcript and peptide sequences.

The transcript context sequence covers by default 200-bp 
exonic sequence up- and downstream of a splice junction 
from an alternative 5’ or 3’ splice site (A3SS, A5SS) or ES 
event (“cts_seq”). In case of IR events, the sequences cover 
the complete intronic sequence, flanked by 200-bp (default) 
exonic sequence up-and downstream of the IR event. The po
sition of the splice junction in the sequence or the intron in
terval are given by “cts_junc_pos.” A unique id (“cts_id”) is 
given based on the context sequence and position as a 
XXH128 hash value.

Given the splice junction and coordinates of coding 
sequences (CDS) of reference transcripts, splice2neo com
putes the resulting protein sequence for each affected tran
script and the relevant peptide context sequence. First, wild- 
type CDSs are modified according to the junction coordinates 
and translated into protein sequences. A frameshift is anno
tated, if the wild-type and the modified CDS have a length 
difference that is not a multiple of three. Given the junction 
position in the modified CDS, we determine whether an event 
follows the first or the second/third reading frame. Then, we 
used the modified and wild-type protein sequence, the junc
tion positions in the CDS and protein, and reading frame and 
frameshift information to extract the relevant peptide context 
sequences from the modified protein sequence. This relies on 
the calculation of a “normalized” position of the junction in 
the protein which is defined as the amino acid of the last 
wild-type amino acid in the mutated on the left side of the 
event. In cases of in-frame events, this peptide context se
quence covers junctions with potentially novel amino acid 
sequences (residue at the junction position or inserted novel 
residues) flanked with 13 wild-type amino acids up- and 
downstream. Frameshift peptides are flanked by an upstream 
wild-type region and are translated until the next stop codon. 
If splice junctions do not generate mutated gene products, no 
peptide context sequence is provided. This can be the case if 
junction does not affect the CDS, or the “mutated” gene 
product is only a truncated version of the wild-type CDS.

In this study, we used splice2neo to convert the raw output 
from LeafCutter, SplAdder, MMSplice, and SpliceAI into 

resulting splice junctions. While converting the output of 
SpliceAI with splice2neo, only transcripts related to the anno
tated gene were considered. Using splice2neo, we further an
notated splice junctions with the resulting modified transcript 
and peptide sequences. Furthermore, splice junctions were 
annotated whether they are canonical using a database of ca
nonical splice junctions built from GENCODE v34lift37 us
ing the R-package GenomicFeatures (Lawrence et al. 2013) 
(v.1.46.5) and classified as “normal” if they were contained 
in a dataset of normal splice junctions previously identified 
by Jaganathan et al. (2019) with LeafCutter in 1740 RNA- 
seq samples of 53 healthy tissues from Gene and Tissue 
Expression (GTEx). We used splice2neo v0.6.2 in this study.

2.5 Requantification of RNA-seq reads for  
mutation-retrieved splice junctions
To quantify the number of supporting RNA-seq reads for 
given splice junctions in a sensitive and targeted manner, we 
developed and applied EasyQuant (v0.4.0) https://github. 
com/TRON-Bioinformatics/easyquant. Analogous to the 
requantification for gene fusions that we previously 
developed in EasyFuse (Weber et al. 2022), EasyQuant 
aligns reads to a context sequence (“cts_seq”) constructed 
from the splice junction and calculates the reads supporting 
the junction (Supplementary Fig. S1). RNA-seq reads 
are mapped to the context sequence with STAR (Dobin 
et al. 2012) with the following parameters:— 
outFilterMismatchNoverReadLmax 0.015—alignEndsType 
EndToEnd—outFilterMultimapNmax -1—outSAMattributes 
NH HI AS nM NM MD—scoreDelBase -2—scoreInsBase -2. 
The STAR parameter scoreDelOpen, scoreInsOpen and 
outFilterMismatchNoverReadLmax can be defined by the 
user in the configuration file of EasyQuant by providing 
indel_open_penalty, indel_extension_penalty, and mismat
ch_ratio, respectively in the section “general.”

Next, the context sequence is divided into intervals based 
on the provided positions. For each interval, the number of 
reads within the interval is counted as well as reads overlap
ping interval end positions. Junctions from alternative splice 
sites or exon-skipping events are divided into two intervals. 
The end of the first interval represents the splice junction of 
interest. Reads covering the junction position by at least 
10 bp are considered to support the splice junction (“junction 
reads”). Context sequences for IRs are divided into three 
intervals, whereby the second interval is the retained intron. 
We summarized the coverage of the entire intron by the me
dian number of reads per position in the interval. The output 
values from EasyQuant are defined in Table 2.

If RNA-seq replicates were available, read counts and sum
mary values were summed up per splice junction. To not 
overestimate IR read support, we considered here only poten
tial IR events for which the retained intron region did not 
overlap with any exon of any other transcript.

EasyQuant was run in the interval mode (—interval_mode) 
and reads covering the junction position by at least 10 bp 
were considered to support the splice junctions (-d 10). 
RNA-seq reads were mapped to the context sequence 
with STAR (Dobin et al. 2012) (-m star). The following 
STAR parameters were provided in the config file of 
Easyquant in the general section mismatch_ratio¼0.015 
(outFilterMismatchNoverReadLmax), indel_open_penalty ¼
−1000 (scoreDelOpen), indel_extension_penalty ¼ −2 
(scoreInsOpen).
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2.6 False discovery rate estimation for prediction of 
target splice junctions
We aimed to derive a detection rule to predict splice junctions 
derived from somatic mutations as tumor-specific targets in a 
discovery cohort of 85 melanoma patients (Van Allen et al. 
2015, Riaz et al. 2017) and to confirm it in a verification co
hort of 27 melanoma patients (Hugo et al. 2016).

To identify potential false positive splice junctions, we 
compared the RNA-seq support of novel mutation-retrieved 
splice junctions from the actual sample with the RNA-seq 
support from a different individual who does not has the cor
responding mutation. The permutation analysis was per
formed among all samples per study [e.g. within Van Allen 
et al. (2015) and within Riaz et al. (2017) separately]. 
Predicted splice junctions from somatic mutations were 
requantified with EasyQuant in the RNA-seq of all other in
dependent tumor samples. Second, mutation-retrieved splice 
junctions were searched among the RNA-seq derived junc
tions identified in other biological independent samples.

A mutation-retrieved splice junction with RNA-seq sup
port was labelled as false positive if there was support by 
requantification or SplAdder/LeafCutter derived splice junc
tions in at least one other independent sample. The estimated 
false discovery rate (FDR) was defined as the number of such 
false positives divided by all considered candidate splice junc
tions in the discovery or verification cohort.

To identify an appropriate detection rule, candidate splice 
junctions were gradually filtered by a grid of thresholds on 
the mutation effect scores from MMSplice and SpliceAI [0, 
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9], and the requantification read support [1, 2, 3, 4]. The 
number of remaining splice junctions and the FDR was esti
mated for each threshold combination. The threshold combi
nation with the lowest FDR in the discovery cohort was 
defined as the detection rule and remaining candidate splice 
junctions were defined as targets. This detection rule was ap
plied to the verification cohort to estimate the resulting num
ber of target splice junctions and the final estimated FDR.

2.7 Annotation of neoantigen candidates
MHC-I and -II genotypes were determined with HLA-HD 
(Kawaguchi et al. 2017) (v1.2.0.1) for each patient based on 
the WES-seq data of the normal sample. NeoFox (Lang et al. 
2021) (v1.0.2) was used to annotate neoantigen candidates 
derived by target splice junctions with neoantigen features. 
Here, the predicted mutated peptide sequences without infor
mation about variant allele frequency or transcript expres
sion was provided as input to NeoFox. Furthermore, MHC-I 

and -II genotypes of the patients were provided to the tool 
as input.

2.8 Confirmation of splice junction expression with 
qRT-PCR
Primer design and confirmation of splice junctions with qRT- 
PCR is described in Supplementary Methods.

3 Results
3.1 Splice2neo allows diverse analysis of splice 
junctions from mutation effects and RNA-seq
First, we developed the R package splice2neo as a software li
brary with multiple functions to integrate the effect of somatic 
mutations on splicing with splicing events detected in RNA- 
seq for the prediction of neoantigen candidates (Fig. 1a). 
Splice2neo leverages functionalities from Bioconductor pack
ages, such as GenomicRanges (Lawrence et al. 2013), to model 
genomic locations and associated annotations. Splice2neo pro
vides several functions to parse and format the output of multi
ple mutation effect prediction tools [MMSplice (Cheng et al. 
2019), SpliceAI (Jaganathan et al. 2019)] and splicing detec
tion tools [SplAdder (Kahles et al. 2016), LeafCutter (Li et al. 
2018)] in a unified splice junction format, defined by the geno
mic coordinates of the resulting splice junction positions. For 
example, the mutation effect tool SpliceAI outputs a VCF file 
with loss and gain predictions of splicing donors and accept
ors. These mutation effects can be parsed with the function 
“parse_spliceai()” and combined with reference transcripts in 
the function “annotate_mut_effect()” to compute the result
ing splicing event types for each potentially affected tran
script and resulting splice junctions. The splice event types 
include A3SS, A5SS, ES, and IRs. Further functions for splice 
junction analysis include the annotation of given splice junc
tions with putatively affected transcripts [“add_tx()”], the 
resulting transcript sequences [“add_context_seq()”], as well 
as, the resulting peptide sequences [“add_peptide()”]. The 
R-package is designed as a modular and easy-to-expand 
library and contains a range of independent functionalities 
for customized splice junction analysis on a joined dataset of 
multiple samples or for individual samples (Fig. 1a).

3.2 EasyQuant implements targeted 
requantification of splice junctions in RNA-seq
The unbiased de novo identification of splice junctions from 
short-read RNA-seq is a challenging task and benchmarking 
studies of splicing detection tools showed low overlap be
tween tools (Mehmood et al. 2020, Jiang et al. 2023). We 
reasoned that targeted mapping of RNA-seq reads to the can
didate splice junction sequence, as reference, allows more ac
curate and sensitive assessment of the RNA-seq read support 
per junction. Previously, we demonstrated accurate requanti
fication of gene fusion candidates (Weber et al. 2022). In this 
study, we implemented EasyQuant, a dedicated tool for tar
geted requantification of reads covering a presumed splice 
junction or a retained intron of interest (Fig. 1b). EasyQuant 
is written in python and expects as input the transcript con
text sequences around a splice junction together with the 
interval-defining coordinates which can be constructed by 
splice2neo. Context sequences of ES and alternative splice 
sites are divided into two intervals flanking the junction 
position. Context sequences of retained introns are divided 
into three intervals of which the middle interval represents 

Table 2. Read quantification in EasyQuant per interval and 
input sequence.

Value Definition

overlap_interval_end_reads Number of reads that overlap interval 
end position by at least 10 bp

span_interval_end_pairs Number of read pair that span the in
terval end. Each read of the pair 
must be map on a different interval.

within_interval Number of read that maps completely 
within the interval.

coverage_perc Percent of interval positions that are 
covered by at least one read read.

coverage_mean Mean number of mapped reads per in
terval position.

4                                                                                                                                                                                                                                       Lang et al. 

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae080#supplementary-data


the retained intron. RNA-seq reads from fastq or bam files 
are aligned with stringent settings to the context sequence. 
EasyQuant returns a table with the number of mapped reads 
and read pairs that overlap interval ends and interval ranges 
and thereby support the splice junction or retained intron in 
question (Supplementary Fig. S1).

3.3 Identification of mutation-retrieved splice 
junctions with support in matched tumor RNA-seq
Somatic SNVs and INDELs are truly tumor-specific as they 
are detected by comparing WES in tumor and matched nor
mal samples. Such mutations can lead to a loss or gain of 
splicing donor or acceptor sequence motifs. We reasoned 
that splice junctions can be defined as tumor-specific 
targets (i) if they are caused by a somatic mutation, (ii) if 
they are non-canonical and not detected in a large cohort 
of RNA-seq samples of unmatched healthy tissues 
(Jaganathan et al. 2019), and (iii) if they are detected in the 
RNA-seq of the patient’s tumor sample. To develop suffi
ciently stringent detection criteria for such targets, we ana
lyzed matched tumor and normal WES data and tumor 
RNA-seq data of 85 melanoma samples from two studies 

(Van Allen et al. 2015, Riaz et al. 2017) as a discovery 
dataset using the functionalities of splice2neo and 
EasyQuant (Figs 1c and 2a).

First, we identified between 93 and 10 931 (median 963) 
somatic SNVs or INDELs in exonic and intronic regions per 
sample (Fig. 2a, upper panel). Then, we retrieved the poten
tial effects of the identified somatic mutations on splicing 
with the deep learning-based tools MMSplice (Cheng et al. 
2019) and SpliceAI (Jaganathan et al. 2019). MMSplice was 
used to predict if a somatic mutation could cause ES events 
and SpliceAI was used to predict all potential A3SS, A5SS, 
ES, and IR events. Both tools report effect scores, which re
flect the probability or the effect strength of a mutation to al
ter splicing. Initially, we did not apply cut-offs on these effect 
scores, and all potential mutation effects on splicing from 
MMSplice and SpliceAI, including low scoring effects, were 
annotated with splice2neo and converted into a common 
splice junction format (“mutation-retrieved splice junction”) 
(Fig. 2a, middle panel). Next, we removed canonical 
splice junctions in reference databases (GENCODE) and 
normal splice junctions previously detected in RNA-seq of 
1740 samples of 53 healthy tissues from the GTEx atlas 

Figure 1. The tools splice2neo and EasyQuant provide diverse functions for identifying and analyzing of splice junctions as a source of neoantigen 
candidates. (a) Overview of functionalities implemented in the splice2neo R package. Splice2neo formats the output of several splicing tools into a 
unified junction format “chr: start-end: strand,” can exclude canonical or normal splice junctions (e.g. from GENCODE or GTEx) and annotates altered 
transcript and peptide sequences. (b) EasyQuant implements a targeted mapping approach to quantify RNA-seq reads that support a splice junction or 
retained intron. (c) Workflow to detect candidate splice junctions. The effect of somatic mutations on splicing was predicted with SpliceAI and MMSplice, 
and expressed splicing events were detected with LeafCutter and SplAdder for a given tumor sample, followed by formatting with splice2neo into the 
unified splice junction format. Novel mutation and RNA-seq retrieved splice junctions were intersected to identify mutation-retrieved splice junctions with 
RNA-seq support as candidates. To expand the number of candidates, novel mutation-derived were requantified in tumor RNA-seq with EasyQuant in a 
targeted manner.
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(The GTEx Consortium 2015, Jaganathan et al. 2019). After 
excluding canonical and normal splice junctions, we consid
ered between 15 and 4952 (median 430) junctions as novel 
mutation-retrieved splice junctions for further analysis 
(Fig. 2a, middle panel).

The reported effect scores from MMSplice and SpliceAI 
were low for most of the novel mutation-retrieved splice junc
tions (Supplementary Fig. S2A and B) and decreased with in
creasing distance of the mutation to the junction position 
(Supplementary Fig. S2C). Although SpliceAI and MMSplice 
effect scores were correlated for jointly identified ES splice 
junctions (Pearson correlation R ¼ −0.64), there were many 
splice junctions with divergent splice effect scores 
(Supplementary Fig. S2D).

Next, we identified splice junctions in matched tumor 
RNA-seq for the 85 melanoma samples using the RNA-seq- 
based tools LeafCutter (Li et al. 2018) and SplAdder (Kahles 
et al. 2016). The number of detected splice junctions differed 
strongly between the Van Allen et al. (2015) and the Riaz 
et al. (2017) cohort (Supplementary Fig. S2E and F). Overall, 
we identified between 16 826 and 110 419 splice junctions 
per patient, of which between 1597 and 24 480 were novel 
(i.e. absent from GENCODE and GTEx) (Fig. 2a, lower 
panel). The percentage of novel splice junctions was higher 
among mutation-retrieved splice junctions (26%) than 
among the splice junctions retrieved from RNA-seq (15%) 
(Supplementary Fig. S2G).

Next, we overlapped the novel mutation-retrieved splice 
junctions (total n¼ 59 210) with the novel RNA-seq retrieved 
splice junctions (total n¼ 642 032). For 85 melanoma 

patients, we identified in total 122 mutation-retrieved splice 
junctions that were also identified by SplAdder or LeafCutter 
in RNA-seq (Fig. 2b). We re-evaluated all novel mutation- 
retrieved splice junctions by quantifying RNA-seq reads sup
porting the splice junctions or read coverage of retained 
introns with EasyQuant (Fig. 1b). We observed at least one 
junction read (A3SS, A5SS, and ES) or a median read cover
age > 0 (IR) using this targeted approach for 732 out of 
59 210 mutation-retrieved splice junctions (Fig. 2b, 
Supplementary Fig. S2G and H). Requantified splice junc
tions and splice junctions identified by SplAdder or 
LeafCutter had a high overlap of 102 splice junctions (83% 
of the RNA-seq retrieved splice junctions) (Fig. 2b). Notably, 
mutation-retrieved junctions supported by RNA-seq were as
sociated with stronger mutation effect scores from SpliceAI 
and MMSplice (Fig. 2c and d).

For the identification of target splice junctions that are po
tentially tumor-specific, we focused on the subset of 
mutation-retrieved splice junctions with RNA-seq support 
(n¼ 752) for further analysis.

3.4 Prediction of target splice junctions in 
melanoma samples
Next, we wanted to identify stringent detection rules to pre
dict which mutation-retrieved splice junctions with RNA-seq 
support (“candidates”) are caused by a somatic mutation. To 
estimate the FDR, we assumed that a junction that is caused 
by a mutation should not appear in RNA-seq of other sam
ples without the mutation. In a sample permutation analysis, 
we assessed the support of such candidates in RNA-seq data 

Figure 2. Identification of mutation-retrieved splice junctions supported by RNA-seq in melanoma samples. (a) The number of somatic mutations, 
mutation-retrieved splice junctions and RNA-seq splice derived junctions per sample in the discovery cohort of 85 melanoma samples. (b) Overlap of 
mutation-retrieved splice junctions with those that were found in RNA-seq by SplAdder or LeafCutter and those that were requantified in RNA-seq with 
EasyQuant. Mutation-retrieved splice junctions with RNA-seq support (i.e. by SplAdder, LeafCutter, or EasyQuant) were defined as candidate splice 
junctions. (c, d) The distribution of (c) MMSplice and (d) SpliceAI scores of candidate splice junctions with RNA-seq support and mutation-retrieved splice 
junctions without RNA-seq support.
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from all other tumor samples without the corresponding so
matic mutation (Fig. 3a, Methods). RNA-seq support in 
other tumor samples was evaluated by requantification with 
EasyQuant and with the RNA-seq derived junctions identi
fied in the other samples. Here, we observed that half of the 
candidate splice junctions from ASS or ES events with RNA- 
seq support in the actual tumor sample were supported by 

RNA-seq reads in at least one independent tumor sample, 
resulting in a high estimated FDR of 0.50. This indicates that 
many of these candidate splice junctions can occur indepen
dently of the somatic mutation and, therefore, might not be 
tumor-specific and that more stringent filtering is required.

Consequently, we gradually filtered candidate splice junc
tions by thresholds on the mutation effect scores and the 

Figure 3. Prediction of tumor-specific target splice junctions based on mutation effect scores and RNA-seq support. (a) To calculate the amount of non- 
specific junctions and estimate a FDR, candidate junctions were compared to splice junctions identified by SplAdder/LeafCutter in other samples’ RNA- 
seq and their supporting reads were quantified in RNA-seq data of other samples with EasyQuant. (b) Candidate splice junctions from the discovery set 
were gradually filtered by thresholds on the mutation effect scores from MMSplice and SpliceAI, and the requantification read support and the resulting 
estimated FDR and number of target splice junctions was determined. The set of filtering thresholds with lowest estimated FDR was selected as an 
optimal detection rule for target splice junctions and applied to verification cohort of 27 melanoma samples. This figure shows a subset of data from 
Supplementary Fig. S4A. (c) Target splice junctions were predicted from candidate junctions by the following detection rule: (i) restriction to ES and ASS 
events, (ii) SpliceAI score ≥ 0.35 or MMSplice score ≤ −0.35, and (iii) identification by LeafCutter/SplAdder or requantification with at least 3 junction 
reads by EasyQuant. (d) Fraction of targets and non-targets found in any sample of the healthy tissue cohort. (e) Detection rate of the target and non- 
target splice junctions with splice junctions identified by SplAdder/LeafCutter in an additional RNA-seq dataset of 141 samples from 49 healthy tissues in 
the discovery and verification dataset. Transparent data points refer to targets or non-targets not found in any healthy tissue sample. (f) The fraction of 
splice junctions derived from RNA-seq found in additional RNA-seq dataset of 141 samples from 49 healthy tissues in the discovery and 
verification dataset.
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requantification read support (Fig. 3b). First, we focused on 
splice junctions from ES and ASS events. We estimated the 
FDR with the sample permutation analysis and selected the 
set of filtering thresholds with lowest estimated FDR as opti
mal detection rule for target splice junctions. This optimal de
tection rule was defined by (i) SpliceAI score ≥ 0.35 or 
MMSplice score ≤ −0.35 and (ii) identification by LeafCutter 
or SplAdder or requantification with at least 3 junction reads 
by EasyQuant (Fig. 3b and c). This detection rule resulted in 
an estimated FDR of 0.07 and identified 69 target splice junc
tions for 85 melanoma tumors in the discovery cohort 
(Supplementary Table S1). We evaluated the detection rule in 
an independent verification cohort of melanoma patients 
[Hugo 2016 cohort (Hugo et al. 2016)] and predicted 45 
splice junctions for 27 patients with an estimated FDR of 
0.04 (Supplementary Fig. S3A, B and Table S1).

For IR events no filter combination led to an estimated 
FDR lower than 0.50 in the discovery and verification cohort 
(Supplementary Fig. S4), and we, therefore, excluded IR 
events from further analysis.

To estimate the tumor-specificity of target splice junctions, 
we compared all candidate splice junctions with splice junc
tions identified by Leafcutter or SplAdder in an additional in
dependent RNA-seq dataset of 141 samples from 49 healthy 
tissues (Weber et al. 2022). Here, only 2 out of 69 (3%) and 
3 out of 45 (7%) splice junctions predicted as targets in the 
discovery and verification set, respectively, were found in any 
healthy tissue sample. This was a strong reduction compared 
to splice junctions that were not predicted as targets (39% in 
discovery set and 40% in verification set) (Fig. 3d and e). We 
also used the 141 healthy tissue samples to examine the 
tumor-specificity of splice junction sets derived from tumor 
RNA-seq alone. As expected, 97% of the canonical and 84% 
of the normal RNA-seq derived splice junctions overlapped 
with the healthy tissue splice junctions. However, also among 
the novel RNA-seq derived splice junctions, which were al
ready filtered against GTEx, 58% were also found in the in
dependent dataset of healthy tissues (Fig. 3f). Together, this 
data shows that the here described approach of associating 
splicing with somatic mutation effects using splice2neo and 
the detection rule leads to strong enrichment of tumor- 
specific splice junction targets.

3.5 Experimental confirmation of exon skipping 
junctions in tumor samples
Next, we experimentally confirmed ES targets by qRT-PCR, 
which were predicted from eight formalin-fixed, paraffin-em
bedded (FFPE) tumor samples (Weber et al. 2022) 
(Supplementary Fig. S5A, B and Table S2). In total, we tested 
21 ES events, of which only one was predicted as a target by 
the established detection rule (Supplementary Fig. S5B, C, 
and Table S3). This target splice junction (chr20:62606885– 
62608324:-) was predicted to be caused by a somatic muta
tion, disrupting an acceptor motif in the gene SAMD10 
(Sterile Alpha Motif Domain Containing 10) (Fig. 4a). The 
targeted requantification of RNA-seq reads resulted in only 
two supporting junction reads, but LeafCutter detected the 
target splice junction in RNA-seq and the associated muta
tion resulted in the maximal SpliceAI score of 1.0 (Fig. 4a, 
Supplementary Table S3), indicating a strong effect 
on splicing.

The expression of the target splice junction and two addi
tional non-target junctions could be confirmed with qRT- 
PCR on RNA level (Fig. 4a, Supplementary Table S3).

3.6 Splice junctions can generate 
neoantigen candidates
Next, we examined whether the predicted target splice junc
tions encode novel peptide sequences and, therefore, qualify 
as neoantigen candidates. For in-frame junctions, we consid
ered the peptide sequence (±13 amino acids) around the junc
tion and potentially inserted amino acids using splice2neo. 
For frame-shift junctions, the peptide sequence was extended 
until the next stop codon. We refer to peptide sequences from 
predicted tumor-specific targets as “neoantigen candidates.” 
In total, 42 of the 45 predicted target splice junctions affected 
CDS and were translated into at least one peptide sequence, 
resulting in 45 neoantigen candidates for the 27 melanoma 
patients (Supplementary Table S4). Depending on the muta
tion load, we identified in average 1.7 neoantigen candidates 
from alternative splicing per melanoma patient (Fig. 5a). We 
found that the majority of neoantigen candidates in the verifi
cation cohort derived from an A3SS event (42%), followed 
by ES events (31%) (Fig. 5b). Furthermore, 62% of splicing- 
derived neoantigen candidates were generated by a frame
shift. While also in-frame A3SS or A5SS events could gener
ate neoantigen candidates longer than 26 amino acids if 
additionally amino acids were inserted, frame-shift splice 
junctions led generally to longer novel peptide sequences of 
up to 134 amino acids (Fig. 5c and d).

Next, we predicted MHC-I and MHC-II binding features 
with NeoFox (Lang et al. 2021) using patient-specific MHC-I 
and MHC-II alleles. We found that 58% of the neoantigen 
candidates from alternative splicing were predicted to gener
ate at least one strongly binding MHC-I epitope (MHC-I 
binding rank < 0.5), and 47% of the neoantigen candidates 
were predicted to generate at least one strongly binding epi
tope for MHC-II (MHC-II binding rank < 2) (Fig. 5e). 
Neoantigen candidates from alternative splicing had compa
rable MHC-I and MHC-II binding ranks to neoantigen can
didates derived from non-synonymous SNVs of the same 
cohort (Fig. 5f and g). However, the best-predicted MHC-I 
neoepitope per neoantigen candidate from alternative splicing 
was less self-similar to the wild-type proteome (Bjerregaard 
et al. 2017) compared to the best-predicted neoepitope per 
neoantigen candidate from nonsynonymous SNVs (Fig. 5h), 
indicating a stronger potential for immunogenicity in the 
group of neoantigen candidates derived from alterna
tive splicing.

4 Discussion
Disruption of canonical splicing in tumors can generate novel 
gene products that might be excellent targets for individual
ized cancer vaccines (Frankiw et al. 2019, Smith et al. 2019). 
While RNA-seq can detect thousands of novel splice junc
tions in individual tumor samples, it is challenging to ensure 
their specificity to tumor cells (Baralle and Giudice 2017, 
David et al. 2020). One approach is to predict neoantigen 
candidates from alternative splicing by combining RNA-seq 
from tumor samples with RNA-seq from matched healthy tis
sue (Chai et al. 2022). Given the diversity of splicing across 
tissues and cell types, it is questionable which healthy tissue is 
suitable as a control and if a single normal sample is 
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sufficient. Alternatively, tumor-specificity might be defined 
by the absence of splice junctions from large healthy tissue 
sample collections of unrelated subjects (Zhang et al. 2020, 
Pan et al. 2023). Databases of canonical reference splice junc
tions or large RNA-seq sample collections of healthy tissues, 
such as GTEx (The GTEx Consortium 2015), are valuable 
resources for constructing exclusion lists. However, it 
remains unclear if such data is suitable to capture splicing 
variations in rare cell types or conditions as well as individual 
splicing events caused, e.g. by rare germline mutations.

In this study, we hypothesized that alternative splicing cre
ated by a loss or gain of canonical splicing sequence motifs 
by somatic mutations are eligible as tumor-specific targets 
and might be suitable neoantigen candidates for individual
ized cancer immunotherapy approaches. With splice2neo, we 
implemented an R-package with several modular functionali
ties to identify mutation-retrieved splice junctions with sup
port in RNA-seq as candidates for potentially tumor-specific 
targets for individual cancer patients.

Multiple pipelines were recently described to predict neo
antigen candidates from alternative splicing. NeoSplice (Chai 
et al. 2022) and ASNEO (Zhang et al. 2020) rely on a single 
RNA-seq-based method for splicing detection and are end-to- 
end pipelines from raw files to neoantigen candidates. IRIS 

(Pan et al. 2023) is a modular neoantigen prediction pipeline 
based on RNA-seq and supports customized pipelines. 
Regtools (Cotto et al. 2023) provides functionalities to inte
grate DNA sequencing and RNA-seq data to identify poten
tial splice-associated variants. DICAST (Fenn et al. 2023) 
integrates several RNA-seq splicing tools for unified junction 
analysis. Both, Regtools and DICAST lack the transcript and 
protein sequence annotation for functional downstream anal
yses. In contrast to static end-to-end pipelines, splice2neo is 
designed as a modular library of multiple functionalities for 
customized splice junction analysis. The functionalities in
clude the unified integration of results from upstream tools, 
exclusion of canonical or normal junctions, and annotation 
with transcript and peptide sequences. The implementation 
of splice2neo as an R-package allows compatibility with mul
tiple other methods from the Bioconductor project 
(Gentleman et al. 2004, Huber et al. 2015) for interactive 
analysis or integration into target identification pipelines. 
Splice2neo is not limited to the currently supported upstream 
tools but can be easily extended in the future to support other 
tools for alternative splicing detection or other event types, 
such as splicing junctions between exons and transposable 
elements (Burbage et al. 2023, Merlotti et al. 2023). The pro
posed approach works with data from single patients, which 

Figure 4. Experimental confirmation of target splice junction from ES. (a) Sashimi plot for the experimentally confirmed splice junction chr20:62606885– 
62608324:- from an ES event that was predicted as a target. The target splice junctions may be caused by a SNV that changes C to A on the negative 
strand, resulting in a disruption of an acceptor motif in the cDNA. (b) The RNA expression of 21 splice junctions from ES events were analyzed with qRT- 
PCR. Heatmap showing MMSplice and SpliceAI score, the number of junction reads, whether a junction was found by an RNA-seq tool (Leafcutter/ 
Spladder) and whether junctions were predicted as targets.
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is relevant in the context of neoantigen prediction for individ
ualized cancer vaccines but splice2neo might also be used to 
analyze larger cohorts of tumor samples to identify shared 
tumor-associated targets.

Besides splice2neo, we developed a novel method called 
EasyQuant to requantify splice junctions in RNA-seq in a tar
geted manner. Several specialized tools with a requantifica
tion steps exists, such as the STAR in 2-pass mode (Dobin 
et al. 2012), Toblerone (Lonsdale et al. 2023) for ES events, 
or TrinityFusion (Haas et al. 2019) and EasyFuse (Weber 
et al. 2022) for gene fusions. In contrast to these tools, 
requantification by EasyQuant is not restricted to junctions 
or context sequences retrieved by the respective tool and also 
not limited to a specific splicing type or mutation type.

Using our novel tools splice2neo and EasyQuant, we ini
tially retrieved novel mutation-retrieved splice junctions that 
were supported by RNA-seq without any cut-off on splice ef
fect scores. Only if we applied a stringent detection rule on 
the mutation effect scores and RNA-seq support, we were 
able to decrease the FDR and enrich for expressed splice junc
tions that could indeed be associated with somatic mutations. 

Depending on the somatic mutation burden, on average 1.7 
neoantigen candidates from alternative splicing could be pre
dicted per patient with an estimated FDR of 0.04. We assume 
that the number of neoantigen candidates from somatic 
mutation-derived splicing is not many magnitudes higher but 
still can be increased by technical advances. In the future, the 
computational analysis of larger tumor cohorts from more di
verse entities and using personalized reference genomes may 
allow more sensitive detection rules, e.g. by a machine learn
ing approach.

Studies predicting splicing-derived neoantigen candidates 
from tumor RNA-seq alone or in combination with matched 
normal RNA-seq reported markedly higher numbers of non- 
canonical splice junctions per patient in several tumor entities 
(Kahles et al. 2018, Chai et al. 2022, Merlotti et al. 2023). 
However, it remains unclear whether those splice junctions 
identified from RNA-seq alone are truly tumor-specific and 
qualify as safe and effective targets in individualized can
cer vaccines.

We were not able to show that candidate splice junctions 
from IR events are potentially tumor-specific. IR detection 

Figure 5. Target splice junctions generate neoantigen candidates. (a) The number of neoantigen candidates per sample in the verification dataset. Inlet: 
Correlation of the neoantigen candidate count with the tumor mutation burden. (b) The fraction of neoantigen candidates from A3SS, A5SS, and ES 
events. (c) The fraction of frameshift and in-frame neoantigen candidates. (d) The length distribution of frameshift and in-frame neoantigen candidates. (e) 
The fraction of strong or weak binding MHC-I and MHC-II neoantigen candidates.(strong: MHC-I binding rank < 0.5, MHC-II binding rank < 2, weak: 
0.5 ≤ MHC-I binding rank < 2, 2 ≤ MHC-II binding rank < 10, no: MHC-I binding rank ≥ 2, MHC-II binding rank ≥ 10). (f, g) (f) MHC-I and (g) MHC-II binding 
rank of the best predicted neoepitope per neoantigen candidate for those from alternative splicing (AS) and SNVs. SNV-derived neoantigen candidates 
were retrieved as described in (Lang et al. 2023). (h) Self-similarity (Bjerregaard et al. 2017) of the best predicted neoepitope per neoantigen candidate for 
those from alternative splicing and those from SNVs.
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can be generally challenging as RNA-seq reads might derive 
from unspliced pre-mRNA, repeat regions, or other tran
scripts (Middleton et al. 2017, Broseus and Ritchie 2020). 
However, it was shown that somatic mutations indeed can 
cause IR events (Jung et al. 2015), that IRs can generate 
MHC-I binding epitopes (Smart et al. 2018) and that the load 
of non-canonical peptides derived from IRs correlated with 
favorable prognosis in pancreatic cancer (Dong et al. 2022). 
These observations suggest that also IRs could contribute to 
the neoantigen repertoire. Improved computational tools for 
IR detection and long read sequencing might allow to better 
investigate splice junctions from IRs in the future (Middleton 
et al. 2017, Broseus and Ritchie 2020, Lorenzi et al. 2021, 
Oka et al. 2021).

Here, we showed that the predicted target splice junctions 
from somatic mutations can generate neoantigen candidates. 
By association with somatic mutations, the number of these 
neoantigen candidates depends on the tumor mutation bur
den. Therefore, neoantigen candidates from mutation- 
derived splicing might be in particularly rare in tumor entities 
with low tumor mutation burden which still could be suffi
cient for anti-tumor response as long as they are of high qual
ity as shown in pancreatic cancer (Balachandran et al. 2017, 
Levink et al. 2021). Indeed, those targets frequently cause fra
meshifts and lead to longer novel peptide sequences, leading 
to strong MHC binding neoepitope candidates that are dis
similar to the wild-type proteome. These features may char
acterize splicing-derived neoantigen candidates as promising 
targets for individualized cancer vaccines (Lang et al. 2022). 
Future studies are required to examine if the identified neoan
tigen candidates indeed mount functional T-cell responses 
upon individualized cancer vaccines.

Acknowledgements
We thank the RB_T002 research program (DRKS-ID: 
DRKS00011790) patients, from whom analyzed samples 
were obtained, and we thank the involved study site teams 
for their support and collaboration. We thank O. Akilli- 
Oeztuerk for support with biosampling. This work was sup
ported by an ERC Advanced Grant to U.S. (ERC-AdG 
789256). The authors further acknowledge the authors and 
generators of datasets used in this work and the grants that 
supported the studies.

Supplementary data
Supplementary data are available at Bioinformatics 
Advances online.

Conflict of interest
U.S. is co-founder, chief executive officer and stock owner of 
BioNTech SE. The remaining authors declare no compet
ing interests.

Funding
This work was supported by an ERC Advanced Grant to U.S. 
(ERC-AdG 789256).

Data availability
RNA-seq data for the FFPE cohort (Weber et al. 2022) is 
available in European Genome-phenome Archive (EGA) un
der accession number EGAS00001004877 and WES was 
uploaded as EGAS00001007589. Data for the Hugo cohort 
(Hugo et al. 2016) is available in the Sequence Read Archive 
(SRA) under accession numbers SRP067938, SRP090294 
(WES-seq) and SRP070710 (RNA-seq). Data for the Riaz co
hort (Riaz et al. 2017) is available under accession numbers 
SRP095809 (WES-seq) and SRP094781 (RNA-seq). Data for 
the Van Allen cohort (Van Allen et al. 2015) is available in 
dbGap under accession number phs000452.v2.p1. RNA-seq 
for the cohort of healthy tissue is available under is in SRA 
under NCBI BioProject ID PRJNA764684. The source code 
and documentation of the tools splice2neo (https://github. 
com/TRON-Bioinformatics/splice2neo) and EasyQuant (https:// 
github.com/TRON-Bioinformatics/easyquant) are available 
under open source licenses on GitHub. The scripts for the analy
sis of the sequencing data are provided in a separate repository 
(https://github.com/TRON-Bioinformatics/splicing_manuscript_ 
scripts).

Ethics approval and consent to participate
The patient material of the FFPE cohort was collected as 
part of the RB_T002 research program (DRKS-ID: 
DRKS00011790). The studies were carried out in accordance 
with the Declaration of Helsinki and good clinical practice 
guidelines and with approval by the institutional review 
board or independent ethics committee of each participating 
site and the competent regulatory authorities. All patients 
provided written informed consent.

References
Balachandran VP, Łuksza M, Zhao JN, et al. Identification of unique 

neoantigen qualities in long-term survivors of pancreatic cancer. 
Nature 2017;551:512–6.

Baralle FE, Giudice J. Alternative splicing as a regulator of development 
and tissue identity. Nat Rev Mol Cell Biol 2017;18:437–51.

Bigot J, Lalanne AI, Lucibello F et al. Splicing patterns in SF3B1 mu
tated uveal melanoma generate shared immunogenic tumor-specific 
neo-epitopes. Cancer Discov 2021;11:1938–51.

Bjerregaard A-M, Nielsen M, Jurtz V et al. An analysis of natural T cell 
responses to predicted tumor neoepitopes. Front Immunol 2017; 
8:1566.

Broseus L, Ritchie W. Challenges in detecting and quantifying intron re
tention from next generation sequencing data. Comput Struct 
Biotechnol J 2020;18:501–8.

Burbage M, Roca~n�ın-Arj�o A, Baudon B et al. Epigenetically controlled 
tumor antigens derived from splice junctions between exons and 
transposable elements. Sci Immunol 2023;8:eabm6360.

Chai S, Smith CC, Kochar TK et al. NeoSplice. A bioinformatics 
method for prediction of splice variant neoantigens. Bioinform Adv 
2022;2:vbac032.

Cheng J, Nguyen TYD, Cygan KJ et al. MMSplice: modular modeling 
improves the predictions of genetic variant effects on splicing. 
Genome Biol 2019;20:48.

Climente-Gonz�alez H, Porta-Pardo E, Godzik A et al. The functional 
impact of alternative splicing in cancer. Cell Rep 2017;20:2215–26.

Cotto KC, Feng Y-Y, Ramu A et al. Integrated analysis of genomic and 
transcriptomic data for the discovery of splice-associated variants in 
cancer. Nat Commun 2023;14:1589.

David JK, Maden SK, Weeder BR et al. Putatively cancer-specific exon- 
exon junctions are shared across patients and present in develop
mental and other non-cancer cells. NAR Cancer 2020;2:zcaa001.

Prediction of tumor-specific splicing from somatic mutations                                                                                                                                       11 

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae080#supplementary-data
https://github.com/TRON-Bioinformatics/splice2neo
https://github.com/TRON-Bioinformatics/splice2neo
https://github.com/TRON-Bioinformatics/easyquant
https://github.com/TRON-Bioinformatics/easyquant
https://github.com/TRON-Bioinformatics/splicing_manuscript_scripts
https://github.com/TRON-Bioinformatics/splicing_manuscript_scripts


Dobin A, Davis CA, Schlesinger F et al. STAR. Ultrafast universal 
RNA-seq aligner. Bioinformatics 2012;29:15–21.

Dong C, Reiter JL, Dong E et al. Intron-Retention neoantigen load pre
dicts favorable prognosis in pancreatic cancer. JCO Clin Cancer 
Inform 2022;6:e2100124.

Ehx G, Larouche J-D, Durette C et al. Atypical acute myeloid leukemia- 
specific transcripts generate shared and immunogenic MHC class-I- 
associated epitopes. Immunity 2021;54:737–52.e10.

Escobar-Hoyos L, Knorr K, Abdel-Wahab O et al. Aberrant RNA splic
ing in cancer. Annu Rev Cancer Biol 2019;3:167–85.

Fenn A, Tsoy O, Faro T et al. Alternative splicing analysis benchmark 
with DICAST. NAR Genom Bioinform 2023;5:lqad044.

Frankiw L, Baltimore D, Li G. Alternative mRNA splicing in cancer im
munotherapy. Nat Rev Immunol 2019;19:675–87.

Gentleman RC, Carey VJ, Bates DM et al. Bioconductor. Open soft
ware development for computational biology and bioinformatics. 
Genome Biol 2004;5:R80.

Glinos DA, Garborcauskas G, Hoffman P et al. Transcriptome varia
tion in human tissues revealed by long-read sequencing. Nature 
2022;608:353–9.

Haas BJ, Dobin A, Li B et al. Accuracy assessment of fusion transcript 
detection via read-mapping and de novo fusion transcript assembly- 
based methods. Genome Biol 2019;20:213.

Hilf N, Kuttruff-Coqui S, Frenzel K et al. Actively personalized vaccina
tion trial for newly diagnosed glioblastoma. Nature 2019; 
565:240–5.

Huber W, Carey VJ, Gentleman R et al. Orchestrating high-throughput 
genomic analysis with bioconductor. Nat Methods 2015; 
12:115–21.

Hugo W, Zaretsky JM, Sun L et al. Genomic and transcriptomic fea
tures of response to anti-PD-1 therapy in metastatic melanoma. Cell 
2016;165:35–44.

Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF et al. 
Predicting splicing from primary sequence with deep learning. Cell 
2019;176:535–48.e24.

Jayasinghe RG, Cao S, Gao Q, et al. Systematic analysis of splice-site- 
Creating mutations in cancer. Cell Rep 2018;23:270–81.e3.

Jiang M, Zhang S, Yin H et al. A comprehensive benchmarking of dif
ferential splicing tools for RNA-seq analysis at the event level. Brief 
Bioinform 2023;24:bbad121.

Jung H, Lee D, Lee J et al. Intron retention is a widespread mechanism 
of tumor-suppressor inactivation. Nat Genet 2015;47:1242–8.

Kahles A, Lehmann K-V, Toussaint NC, et al. Comprehensive analysis 
of alternative splicing across tumors from 8,705 patients. Cancer 
Cell 2018;34:211–24.e6.

Kahles A, Ong CS, Zhong Y et al. SplAdder. Identification, quantifica
tion and testing of alternative splicing events from RNA-Seq data. 
Bioinformatics 2016;32:1840–7.

Kawaguchi S, Higasa K, Shimizu M et al. HLA-HD. An accurate HLA 
typing algorithm for next-generation sequencing data. Hum Mutat 
2017;38:788–97.

Keskin DB, Anandappa AJ, Sun J et al. Neoantigen vaccine generates 
intratumoral T cell responses in phase Ib glioblastoma trial. Nature 
2019;565:234–9.

Lang F, Sorn P, Schr€ors B et al. Multiple instance learning to predict im
mune checkpoint blockade efficacy using neoantigen candidates. 
iScience 2023;26:108014.

Lang F, Riesgo-Ferreiro P, L€ower M et al. NeoFox. Annotating neoanti
gen candidates with neoantigen features. Bioinformatics 2021; 
37:4246–7.

Lang F, Schr€ors B, L€ower M et al. Identification of neoantigens for indi
vidualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 
21:261–82.

Lawrence M, Huber W, Pag�es H et al. Software for computing and an
notating genomic ranges. PLoS Comput Biol 2013;9:e1003118.

Levink IJM, Brosens LAA, Rensen SS et al. Neoantigen quantity and 
quality in relation to pancreatic cancer survival. Front Med 
(Lausanne) 2021;8:751110.

Li YI, Knowles DA, Humphrey J et al. Annotation-free quantification 
of RNA splicing using LeafCutter. Nat Genet 2018;50:151–8.

Lonsdale A, Halman A, Brown L et al. Toblerone: detecting exon dele
tion events in cancer using RNA-seq. F1000Res 2023;12:130.

Lorenzi C, Barriere S, Arnold K et al. IRFinder-S: a comprehensive suite 
to discover and explore intron retention. Genome Biol 2021; 
22:307.

Mehmood A, Laiho A, Ven€al€ainen MS et al. Systematic evaluation of 
differential splicing tools for RNA-seq studies. Brief Bioinform 
2020;21:2052–65.

Mel�e M, Ferreira PG, Reverter F, et al. Human genomics. The human 
transcriptome across tissues and individuals. Science 2015; 
348:660–5.

Merlotti A, Sadacca B, Arribas YA et al. Noncanonical splicing junc
tions between exons and transposable elements represent a source 
of immunogenic recurrent neo-antigens in patients with lung cancer. 
Sci Immunol 2023;8:eabm6359.

Middleton R, Gao D, Thomas A et al. IRFinder. Assessing the impact of 
intron retention on mammalian gene expression. Genome Biol 
2017;18:51.

Oka M, Xu L, Suzuki T et al. Aberrant splicing isoforms detected by 
full-length transcriptome sequencing as transcripts of potential neo
antigens in non-small cell lung cancer. Genome Biol 2021;22:9.

€Other-Gee Pohl S, Myant KB. Alternative RNA splicing in tumour het
erogeneity, plasticity and therapy. Dis Model Mech 2022; 
15:dmm049233.

Ott PA, Hu Z, Keskin DB et al. An immunogenic personal neoantigen 
vaccine for patients with melanoma. Nature 2017;547:217–21.

Pag�es H, Aboyoun P, Gentleman R et al. Biostrings: Efficient 
Manipulation of Biological Strings. R package version 2.62.0. 2021. 
https://bioconductor.org/packages/Biostrings.

Pan Y, Phillips JW, Zhang BD et al. IRIS. Discovery of cancer immuno
therapy targets arising from pre-mRNA alternative splicing. Proc 
Natl Acad Sci USA 2023;120:e2221116120.

PCAWG Transcriptome Core Group, Calabrese C, Davidson NR, et 
al. Genomic basis for RNA alterations in cancer. Nature 2020; 
578:129–36.

Riaz N, Havel JJ, Makarov V et al. Tumor and microenvironment evo
lution during immunotherapy with nivolumab. Cell 2017;171: 
934–49.e16.

Riepe TV, Khan M, Roosing S et al. Benchmarking deep learning splice 
prediction tools using functional splice assays. Hum Mutat 2021; 
42:799–810.

Rogalska ME, Vivori C, Valc�arcel J et al. Regulation of pre-mRNA 
splicing. Roles in physiology and disease, and therapeutic prospects. 
Nat Rev Genet 2023;24:251–69.

Sahin U, Derhovanessian E, Miller M et al. Personalized RNA muta
nome vaccines mobilize poly-specific therapeutic immunity against 
cancer. Nature 2017;547:222–6.

Signal B, Kahlke T. How_are_we_stranded_here. Quick determination 
of RNA-Seq strandedness. BMC Bioinformatics 2022;23:49.

Smart AC, Margolis CA, Pimentel H et al. Intron retention is a source 
of neoepitopes in cancer. Nat Biotechnol 2018;36:1056–8.

Smith CC, Selitsky SR, Chai S et al. Alternative tumour-specific anti
gens. Nat Rev Cancer 2019;19:465–78.

The GTEx Consortium. Human genomics. The Genotype-Tissue ex
pression (GTEx) pilot analysis. Multitissue gene regulation in 
humans. Science 2015;348:648–60.

Van Allen EM, Miao D, Schilling B et al. Genomic correlates of re
sponse to CTLA-4 blockade in metastatic melanoma. Science 2015; 
350:207–11.

Wai HA, Lord J, Lyon M et al. Blood RNA analysis can increase clinical 
diagnostic rate and resolve variants of uncertain significance. Genet 
Med 2020;22:1005–14.

Wang ET, Sandberg R, Luo S et al. Alternative isoform regulation in hu
man tissue transcriptomes. Nature 2008;456:470–6.

Weber D, Ibn-Salem J, Sorn P et al. Accurate detection of tumor-specific 
gene fusions reveals strongly immunogenic personal neo-antigens. 
Nat Biotechnol 2022;40:1276–84.

Zhang Z, Zhou C, Tang L et al. ASNEO. Identification of personalized 
alternative splicing based neoantigens with RNA-seq. Aging 
(Albany NY) 2020;12:14633–48.

12                                                                                                                                                                                                                                     Lang et al. 

https://bioconductor.org/packages/Biostrings


# The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics Advances, 2024, 00, 1–12
https://doi.org/10.1093/bioadv/vbae080
Original Article


	Active Content List
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	Ethics approval and consent to participate
	References


