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Abstract

We present the Polygenic Score (PGS) Catalog (https://www.PGSCatalog.org), an open resource 

of published scores (including variants, alleles and weights) and consistently curated metadata 

required for reproducibility and independent applications. The PGS Catalog has capabilities for 

user deposition, expert curation and programmatic access, thus providing the community with a 

platform for PGS dissemination, research and translation.

By aggregating the effects of many genetic variants into a single number, PGSs have 

emerged as a method to predict an individual’s genetic predisposition to a phenotype[1, 2, 3, 

4]. Early studies indicated that combining allelic counts of genome-wide association study 

(GWAS)-significant variants in individuals is predictive of the phenotype[5, 6, 7, 8]. Owing 

to larger and more powerful GWAS, recent PGSs typically comprise hundreds to millions 

of trait-associated genetic variants, which are combined by using a weighted sum of allele 

doses multiplied by their corresponding effect sizes.

Many PGSs have been developed and demonstrated to be predictive of common 

complex traits (for example, body mass index (BMI)[9], blood lipids[10] and educational 

attainment[11]). Similarly, PGSs for various diseases have been shown to be predictive of 

disease incidence, defining marked increases in risk over the life course or at earlier ages 

for people with high PGSs (for example, coronary artery disease[12, 13], breast cancer[14] 

and schizophrenia[15]). Existing risk-prediction models using traditional risk factors can 

be improved by incorporating PGSs[12, 16, 17]. In some cases, PGSs may be the most 

informative risk factors in presymptomatic individuals[1, 18] and, for some diseases, may be 

independent of a family history of the condition[19, 20, 21, 22]. Other potential clinical uses 

of PGSs include prediction of prognosis, etiology and disease subtypes[23]; stratification of 

patients according to therapeutic benefit; and identification of new disease biomarkers and 

drug targets[24]. Given their multiple applications, many PGSs have been developed, and 

more than 1,000 related articles have been indexed in PubMed since 2009.

There is widespread variability in PGS research, even regarding nomenclature: the scores 

can be referred to as genetic or genomic scores, and as polygenic risk scores (PRSs) or 

genomic risk scores (GRS) if they predict a discrete phenotype (such as a disease)[25]. 

Many approaches also exist to derive PGSs by using individual-level genotype data or 

GWAS summary statistics[26]. The goals of most computational methods are to select the 

most predictive set of variants in the score, and to adjust their weights to maximize the 

predictive ability and account for linkage disequilibrium between variants.

The need for an open resource of polygenic scores

Multiple barriers hinder progress in PGS research and the translation of PGSs into 

healthcare settings. The lack of best practices and standards, particularly regarding PGS 

reporting, is a major issue identified by our group and others[25, 27]. Reproducibility has 

been hampered by underreporting of key PGS information: approximately 40% of 231 

publications developing new PGSs that we reviewed during our curation efforts did not 

include adequate variant information (for example, chromosomal location, effect allele and 
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weight) to calculate the PGSs for new samples, thus limiting the utility and reusability of the 

scores.

Beyond the information necessary for PGS calculation, a complete understanding of 

a score’s ability to accurately predict its target trait (also known as analytic validity) 

is necessary to help evaluate clinical utility and enable other applications of PGSs. 

However, the performance metrics reported for existing PGSs are conditional on study 

design, participant demographics, case definitions and the covariates adjusted for in the 

original studies’ models. Although few direct evaluations of PGSs have been conducted, 

benchmarking of multiple PGSs for the same trait in external data provides directly 

comparable performance metrics[28] needed to decide which PGS has the best performance 

for a particular task and how its predictive ability varies in response to changes in important 

factors, such as ancestry[29]. Because PGSs are based on data and cohorts composed of 

largely European ancestry individuals, there is a well-characterized underperformance of 

PGSs when they are applied to non-European ancestry individuals; thus, the transferability 

of PGS performance is a particularly important challenge that could lead to health 

disparities[30, 31, 32].

Here, we present the PGS Catalog, an open resource of published PGSs, including 

full scoring information annotated with expertly curated metadata required for accurate 

application and evaluation. The PGS Catalog promotes PGS reproducibility by providing a 

venue to annotate and distribute scores according to current exemplar reporting standards. 

As such, it allows users to reuse and evaluate PGSs, to firmly establish their predictive 

ability and facilitate further investigations of clinical utility.

Development of the PGS Catalog

The aim of the PGS Catalog is to index and distribute the key aspects of each PGS 

(underlying variants, results and experimental design) in a standardized representation, to 

facilitate evaluation of analytic validity. To maximize usability, the data representation 

and database were designed to be findable, accessible, interoperable and reusable (FAIR) 

according to established principles for scientific data management[33] (Supplementary Table 

1).

To define the key information that would need to be captured in the PGS Catalog, we 

undertook an initial literature review of publications that developed PGSs for the following 

traits and diseases, according to their potential clinical utility and public-health burden 

of disease: coronary artery disease, diabetes (types 1 and 2), obesity/BMI, breast cancer, 

prostate cancer and Alzheimer’s disease. During our review, we took note of how the PGSs 

were described, how they differed between studies and traits, and the most common study 

designs and PGS evaluation scenarios. To capture common aspects of PGS studies, we built 

upon the NHGRI-EBI GWAS Catalog’s established frameworks to catalog published data 

from genomic studies, by using accepted conventions for representing sample ancestry[34], 

variant and trait information[35]. Using our survey and established frameworks, we defined 

four major data objects: scores, samples, performance metrics and publications (Box 1 

and Supplementary Table 2). These objects describe the common PGS development and 
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evaluation processes (Fig. 1a), and can be used to capture the detailed data elements 

necessary to evaluate PGS development and performance. High consistency and accuracy 

across curated data were ensured by developing detailed curation guidelines, inclusion 

criteria and data acquisition methods (outlined in the Supplementary Note).

To ensure that the PGS Catalog contains the information necessary to describe and evaluate 

PGSs, we collaborated with the ClinGen Complex Disease working group, composed of 

experts in epidemiology, statistics, implementation science and the actionability of genetic 

results, as well as those with disease-domain-specific knowledge and interests in PRS 

application. Together, we developed the Polygenic Risk Score Reporting Standards (PRS-

RS)[25], a joint statement describing a set of reporting items that should be described in 

studies developing and evaluating PRSs. The PGS Catalog captures the data required by the 

PRS-RS to assess PGS validity while also being flexible enough to capture multiple different 

study designs and evaluation scenarios in a structured database. The PGS Catalog therefore 

provides a venue to index PGS analyses and maximize uptake of these reporting standards.

Scores (for example, PGSs, PRSs or GRSs) are the main data object type in the PGS 

Catalog, are linked to all other objects internally, and can be cited or externally linked to 

through a persistent identifier (for example, PGS000018). Each PGS has a PGS scoring 

file—a flat text file in a consistent format (Supplementary Note), which contains the variant-

level information necessary to calculate the score on new data (minimally the genome 

build, rsID or chromosomal positions, effect alleles and their weights). The PGS is also 

annotated with information about the phenotype that it predicts (reported trait) and is 

mapped to Experimental Factor Ontology terms[41, 42] to consistently annotate related 

scores and facilitate data linkage and searching. Information describing the computational 

algorithms (for example, independent GWAS variants, pruning/clumping and thresholding, 

or LDpred) and parameters (for example, P-value and linkage-disequilibrium (r2) thresholds) 

used during score development are also recorded for each score. The GWAS summary 

statistics used to derive the PGS, if any, are linked as sample objects and further linked to the 

GWAS Catalog if applicable[35], and any other datasets used for training are also linked as 

sample objects.

Samples are described with detailed information to enable the interpretation and assessment 

of the validity of a PGS. Sample size (stratified by cases and controls if dichotomous) and 

participant ancestry are described by using frameworks identical to those in the GWAS 

Catalog[34] to enable the systematic tracking of participant diversity in PGSs[32]. To 

facilitate reproducible analyses, phenotyping descriptions (for example, case definition, 

International Classification of Diseases 9/10 codes, and measurement methods), the sex 

distribution, and the distributions of participant ages and follow-up times for prospective 

study designs can also be recorded. To ensure that PGSs are not evaluated on individuals 

who contributed to the original GWAS or PGS training cohorts, samples can be annotated 

with existing cohort names[43]. Groups of samples used to evaluate a PGS are given a 

Sample S et ID Sample Set is sort of like a proper noun, like a named object class.

Performance metrics assess the validity of a PGS in a Sample Set independently of the 

samples used for score development. Common metrics include standardized effect sizes 
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(odds ratios or hazard ratios, and regression coefficients (β)), classification accuracy metrics 

(for example, area under the receiver operating characteristic curve, C-index and area under 

the precision-recall curve), but other relevant metrics (for example, calibration (χ2)) can 

also be recorded. The covariates used in the model (most commonly age, sex and genetic 

principal components to account for the population structure) are also recorded for each set 

of metrics. Multiple PGSs can be evaluated on the same sample set and further indexed as 

directly comparable performance metrics.

Publications provide provenance information for scores and performance metrics (including 

those from external evaluations of existing PGSs). Both journal articles and preprints can be 

indexed through either the doi number or PubMed ID.

The PGS Catalog: data content, access and expansion

Any published or preprinted PGS can be added to the PGS Catalog, provided that it has 

(1) established analytic validity in external samples not used for score development and 

(2) the information necessary to calculate the score (additional details in Supplementary 

Note). To populate the PGS Catalog, we screened more than 275 publications for eligibility, 

162 of which presented sufficient data for curation and inclusion in the Catalog. As of 

December 2020, the PGS Catalog contains 657 consistently annotated PGSs curated from 

119 publications (with the earliest published in 2008). These PGSs predict a wide variety 

of diseases (for example, cardiovascular diseases, different types of cancer, schizophrenia, 

major depressive disorder), as well as anatomical (for example, BMI and bone density), 

cellular (for example, blood cell phenotypes and counts) and molecular (for example, 

serum urate, cholesterol and triglyceride levels) traits and measurements, encompassing 

156 unique mapped ontology terms. Currently, most PGSs included in the Catalog were 

developed in European ancestry individuals; however, 11 PGSs were both developed and 

evaluated in individuals of non-European ancestry. To assess external validity, the Catalog 

also indexes the results of evaluations of existing PGSs in new contexts (for example, direct 

comparisons of multiple PGSs on the same sample); 13 of these benchmarking publications 

evaluating 14 existing PGSs are also included in the current release of the PGS Catalog. 

Of the 119 publications, 105 developed at least one new PGS, of which 14 also included a 

benchmarking of the performance to existing PGSs.

The PGS Catalog can be accessed through an online user interface The main URL (https://

www.PGSCatalog.org) should remain/appear in this section. (https://www.PGSCatalog.org) 

in which indexed publications, scores and traits are browsable and searchable. Metadata 

describing PGS development and evaluation can be viewed on each score’s page (annotated 

example in Fig. 1b). Pages describing traits with available PGSs, and the scores developed 

and evaluated within each publication can also be viewed (Supplementary Fig. 1). Trait 

pages display any PGSs associated with subtraits by default (for example, scores for all 

breast cancer subtypes are displayed on the breast cancer trait page), and higher-level 

disease and trait categories are accessible via our ontology-enriched search (Supplementary 

Fig. 2). Links to relevant study pages in the GWAS Catalog are included for any score 

developed by using cataloged GWAS data. Navigation from the GWAS Catalog to relevant 
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data in the PGS Catalog is supported through links on the publication, study and trait pages 

in the GWAS Catalog.

Each PGS in the Catalog is provided as a scoring file containing a header describing the 

provenance of the score, and consistently formatted columns describing the variants, alleles 

and weights. The scoring file can be used in conjunction with common tools to calculate the 

PGS (for example, PLINK[36]). The metadata and scoring files can be downloaded alone 

or in bulk from our website and FTP server; programmatic access to the database is also 

available through a RESTful API (complete implementation and scoring file details in the 

Supplementary Note). Importantly, the PGS Catalog provides users with a source of existing 

published PGSs that can be directly applied to their own data, thus making results obtained 

by using the same score comparable across users and use cases, and circumventing the need 

to develop a new PGS for every application.

The Catalog identifies new articles from a manual literature search and user submissions, 

which subsequently undergo curation before their inclusion (Supplementary Note). Data 

curation and submission have been designed around a flexible template that allows common 

PGS development and evaluation details and results to be described according to our 

reporting items, and the template and PGS can be submitted directly to the Catalog for 

inclusion after validation by curators. Authors of PGS studies are encouraged to submit 

new PGSs as well as the results of subsequent PGS validations for indexing (by e-mail to 

pgs-info@ebi.ac.uk; more information at https://www.PGSCatalog.org/submit), to grow the 

Catalog for the community, maximize the utility of their PGSs and support reproducibility.

Generating comparable PGS performance metrics

Where multiple PGSs have been cataloged for a trait of interest, a complete understanding 

of the predictive ability of each PGS would be useful for deciding which score is best for 

a user’s particular application. However, the performance metrics of PGSs are not directly 

comparable (owing to differences in samples or cohorts, covariates and study design) and 

have usually been measured in only a single ancestry group. To demonstrate how the 

PGS Catalog can be used to systematically compare PGS performance, we measured the 

performance of nine PGSs for colorectal cancer in people of European, South Asian and 

African ancestries in the UK Biobank (UKB)[37], a dataset external to the development of 

all scores (methods described in Supplementary Note; cohort described in Supplementary 

Table 3). For each ancestry group, each PGS was evaluated by using the standardized 

effect size of the PGS (odds ratio/hazard ratio per s.d. increase in PGS) and changes in 

classification accuracy (area under the receiver operating characteristic curve and C-index) 

as performance metrics (Fig. 2 and Supplementary Fig. 3). Eight of the nine scores were 

predictive of colorectal cancer in European ancestries in the UKB to varying degrees, and 

the magnitudes of the effect sizes for two PGSs were similar to that previously reported 

(Supplementary Fig. 3). The score not significantly predictive of colorectal cancer in 

European ancestry participants (PGS000151) comprised only 14 variants, and its predictive 

ability in Europeans had not previously been evaluated. Although the majority of scores 

were predictive of colorectal cancer in the 409,253 European ancestry participants, the PGSs 

were largely not predictive of disease risk in the 6,086 participants of South Asian ancestry 
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and 5,984 participants of African ancestry (together composing approximately 8% of all 

UKB participants; Supplementary Table 3); these data further illustrate that some PGSs 

developed by using European-biased GWAS data have lesser predictive ability and may not 

be valid in people of non-European ancestry[30, 32]. The PGS Catalog will continue to 

curate and generate PGS benchmarking data from participants with diverse ancestries to 

provide a more comprehensive understanding of PGS performance, which is necessary to 

prioritize the best PGS for a particular application.

Conclusions and future developments

The PGS Catalog is a publicly available resource of published PGSs. The Catalog makes 

PGSs for any heritable trait available for analysis in a standardized format along with 

consistent metadata, thereby enabling direct comparison between scores. In these ways, 

the Catalog differs from previous databases that are disease specific (for example, Cancer 

PRSweb[38]) or those that distribute phenome-wide PRS associations for bespoke scores 

[39], and it serves the community by providing a platform for PGS distribution and research.

We hope to facilitate reproducible PGS analyses by working with others toward developing 

standard formats and content of scoring files, and providing new tools (such as for validation 

and scoring) to support this aim. For instance, to address a common user request, we 

will harmonize variants in PGS scoring files to frequently used genome builds (GRCh37 

and 38). PGS reproducibility must also ensure that calculations are valid and consistent, 

with minimal variability across users. According to community need, we intend to provide 

reference-sample calculations and population distributions similar to those for clinical tests. 

These enhancements will facilitate systematic and external PGS benchmarking studies, 

which are key in evaluating the validity of existing PGSs.

As PGSs increase in number, and the diversity of the phenotypes that they predict increases, 

we will continue to grow the Catalog. We will be developing an interface to support author 

submission of developed and evaluated PGSs, providing an accession ID at the point of 

submission to enable citation. We are also working toward an improved literature search to 

reliably identify published PGSs. This search will be used to provide a regularly updated 

comprehensive index of PGS publications in the Catalog, with a page for each publication 

regardless of data availability; a more systematic resource will better highlight gaps in 

the field (for example, a lack of PGSs developed for participants of non-European ancestry)

[32]. Our evaluation of PGS performance across ancestries further underscores the need 

to develop, share and evaluate PGSs in diverse populations to avoid subsequent health 

disparities and inaccurate interpretations from studies using PGSs to evaluate differences 

among populations [30, 40]. Methodological improvements and more diverse participation 

in biobanks are likely to overcome these limitations and ideally empower future applications 

of PGSs in research and clinical settings.

While curating publications for the Catalog, we encountered numerous barriers to making 

PGS data available. These included restrictions on sharing the variants and weights in a 

PGS, owing to commercial interests, the need to accept terms and conditions to access the 

underlying GWAS summary statistics, or researchers not sharing the PGS and indicating 
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that the full summary statistics were sufficient even if the PGS was based on filtered or 

reweighted variants. We hope that researchers developing PGSs in the future will consider 

the need to share their data and PGSs, and adopt reporting standards (PRS-RS[25]) to enable 

reproducibility as well as subsequent applications and translation of the scores that they have 

developed. We encourage all researchers, funders and publishers to promote data sharing 

and submission so that the PGS Catalog can provide a comprehensive resource for the 

community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Descriptions of PGS Catalog objects and metadata

Individual reporting items are described field by field in Supplementary Table 2. Could 

this be displayed in a subtitle style of text (perhaps in italics)? It currently looks 

like regular text but it’s meant to be a subtitle/pointer to relevant information in the 

supplement.
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Fig. 1. Common aspects of PGS analyses that are captured and displayed in the PGS Catalog.
a, PGS analyses can broadly be described in two stages: determining the set of variants and 

weights that will predict a trait of interest (score development) and an evaluation of how 

predictive the PGS is in an external set of samples (PGS evaluation). Major data items (Box 

1) that can be queried and browsed in the PGS Catalog are highlighted as colored boxes 

and linked to metadata items that are recorded. b,c, Examples of how PGS metadata are 

displayed for each score on https://www.PGSCatalog.org (example score PGS000013; ref. 

[13]), including score details, contributing samples and score development/training (b) and 
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performance metrics and evaluated samples (c). Sections are highlighted with colored bars 

corresponding to the data objects that they display in a.
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Fig. 2. Benchmarking the association of nine colorectal cancer PGSs in UKB.
Each PGS was evaluated with a Cox proportional hazards regression model (age as 

timescale) to predict colorectal cancer status. Each model was fitted separately for 

each ancestry group. The standardized effect size (hazard ratio), together with the 95% 

confidence interval (CI), describes the increase in hazard per s.d. increase in each PGS. 

Models were adjusted for sex, age at recruitment, recruitment country, genotyping array and 

the first ten genetic principal components within each ancestry group.
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