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Abstract 
Picking protein particles in cryo-electron microscopy (cryo-EM) micrographs is a crucial step in the cryo-EM-based structure determina-
tion. However, existing methods trained on a limited amount of cryo-EM data still cannot accurately pick protein particles from noisy 
cryo-EM images. The general foundational artificial intelligence–based image segmentation model such as Meta’s Segment Anything 
Model (SAM) cannot segment protein particles well because their training data do not include cryo-EM images. Here, we present a novel 
approach (CryoSegNet) of integrating an attention-gated U-shape network (U-Net) specially designed and trained for cryo-EM particle 
picking and the SAM. The U-Net is first trained on a large cryo-EM image dataset and then used to generate input from original cryo-EM 
images for SAM to make particle pickings. CryoSegNet shows both high precision and recall in segmenting protein particles from cryo-
EM micrographs, irrespective of protein type, shape and size. On several independent datasets of various protein types, CryoSegNet 
outperforms two top machine learning particle pickers crYOLO and Topaz as well as SAM itself. The average resolution of density maps 
reconstructed from the particles picked by CryoSegNet is 3.33 Å, 7% better than 3.58 Å of Topaz and 14% better than 3.87 Å of crYOLO. 
It is publicly available at https://github.com/jianlin-cheng/CryoSegNet 

Keywords: Cryo-EM; protein particle picking; image segmentation; machine learning; attention-gated U-Net; Segment Anything Model 
(SAM) 

Introduction 
Protein structure determination is a significant area of research 
in the field of structural biology and bioinformatics, enabling 
researchers to understand the roles of proteins in various biologi-
cal processes [1]. This structural insight is important for studying 
the interaction of proteins with other molecules in the cellular 
processes. It is useful for finding the potential binding sites for 
drug molecules to act on to modulate the function of proteins 
[2, 3]. Further, many diseases are the result of protein misfolding 
and aggregation. Thus, it is imperative to determine the protein 
structure for understanding protein function and interaction, 
studying their roles in the diseases and accelerating the design 
of drugs. 

X-ray crystallography, nuclear magnetic resonance (NMR) 
and cryo-EM [4, 5] are three main experimental techniques 
to determine protein structures. Among them, cryo-EM is the 

cutting-edge technique for solving the structure of large pro-
tein complexes. With advancements in electron microscope 
and detector devices, cryo-EM has revolutionized the field of 
structural biology and enabled the determination of very large 
protein complex structures at near atomic resolution that other 
experimental techniques cannot handle. 

The cryo-EM-based structure determination process [6, 7] 
involves sample preparation with vitreous ice, imaging them with 
electron dose from the microscope to generate two-dimensional 
(2D) projections of the samples at different orientations, followed 
by protein particle picking in cryo-EM micrographs (images). Once 
the particles are picked and extracted, the single particle analysis 
is employed to determine the three-dimensional (3D) structure of 
the specimen. 

Particle picking in cryo-EM micrographs has posed significant 
challenges due to the low contrast of micrographs with a low
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signal-to-noise ratio (SNR) caused by using limited electron dose 
during imaging process. Further, the prevalence of ice contami-
nation, carbon edges, protein aggregates and deformed particles 
have further complicated the particle picking. Reconstructing a 
3D protein structure from cryo-EM micrographs requires thou-
sands of extracted particles of good quality, and therefore, it is 
important to pick protein particles accurately and automatically, 
releasing the burden of human intervention and reducing the bias 
and inconsistency associated with manual particle picking. 

With advancements in hardware and software tools [8–12], 
numerous semi-automated or automated approaches varying 
from traditional computational methods to modern deep learning 
techniques have been proposed to streamline the cryo-EM 
processing and particle picking. Conventional computer vision 
methods like edge detection, blob detection and template match-
ing [4] are still widely used for particle picking. However, due to the 
low SNR of cryo-EM micrographs, these techniques are susceptible 
to picking ice patches, carbon areas and aggregated particles, 
resulting in a high number of false positives. RELION [11] leverages 
a regularized likelihood optimization technique and utilizes the 
template-based and blob-based picking [13] approaches. In the 
template-based approach, an initial set of 2D templates are 
generated from the manually picked particles, which are used 
to correlate with the different regions of micrographs to extract 
similar patches. This approach is highly sensitive to noise and may 
introduce significant bias. Similarly, in the blob-based picking, the 
regions of high intensity and local maxima are extracted from 
cryo-EM micrographs using Laplacian of Gaussian. This method 
is useful if the particles have significant contrast difference with 
the background of the micrographs and all the particles within 
the micrograph are of similar shape and size. If the particles are 
of different conformations and size, this method faces a lot of 
difficulty in picking the true protein particles. Other conventional 
tools like EMAN2 [10], SPIDER [14] and XMIPP [15] utilizing similar 
computer vision approaches require a lot of manual intervention, 
computational resources, memory and human time and face 
significant challenges of filtering out false positives. 

Recent advancements in machine learning, particularly deep 
learning, have shown great potential for particle picking. Several 
machine learning approaches have been put forth to automate 
the particle picking process and reduce the number of false 
positives. Notable approaches include APPLE picker [16], crYOLO 
[17], PIXER [18], WARP [19], Topaz [20], CASSPER [21], Deep Picker 
[22], AutoCryoPicker [23], DeepCryoPicker [24], DRPnet [25] and  
CryoTransformer [26]. They utilize either convolutional neural 
networks or unsupervised learning algorithms like clustering. 
Nevertheless, these methods typically underwent training with 
a limited set of micrographs. For instance, crYOLO was trained 
with only 840 micrographs. Consequently, they may struggle to 
generalize effectively to diverse protein types characterized by 
irregular and complex shapes, as well as heterogenous confor-
mations. They often overlook the diversity of the proteins and 
are usually evaluated on one or a few simple datasets like Apo-
ferritin and Keyhole Limpet Hemocyanin (KLH) due to lack of 
manually annotated particle data. Among these methods, crYOLO 
and Topaz are most widely used. CrYOLO utilizes the You Only 
Look Once (YOLO), an object detection algorithm [27] trained on 
cryo-EM micrographs, and Topaz employs positive-unlabeled con-
volutional neural networks [20] for particle picking. While both 
approaches have demonstrated significant potential in automat-
ing particle picking, their training has been based on a relatively 
small number of micrographs. CrYOLO often misses many true 
protein particles while Topaz picks too many particles including 

false positives and duplicates. The large number of particles 
picked by Topaz also causes difficulty in storing and processing 
the extracted particles required for the down-stream processing 
steps. As a result, the potential of deep learning for particle picking 
has not yet been fully harnessed, and the cryo-EM community 
still needs to mostly rely on traditional semi-automated methods 
like template-based picking in tools like RELION and CryoSPARC 
to perform particle picking, which are time consuming and error-
prone. 

Two recent developments provide good opportunities to fur-
ther improve automated particle picking. The first is the recent 
creation of a large, labeled protein particle dataset—CryoPPP [4] 
from the Electron Microscopy Public Image Archive (EMPIAR) [28], 
which enables the development and training of sophisticated 
deep learning methods for particle picking. The second one is the 
availability of large foundational artificial intelligence (AI) image 
segmentation models such as Meta’s Segment Anything Model 
(SAM) [29] that may be used to segment objects in images. How-
ever, a direct application of SAM to cryo-EM images can segment 
few particles because cryo-EM images are very different from the 
image data used to train SAM. Moreover, a simple retraining of 
SAM on cryo-EM images only yielded somewhat improved but still 
unsatisfactory results. 

To leverage the opportunities and address the challenges above, 
we first designed a specialized U-Net architecture [30] with the  
inclusion of attention gates in each decoder block and trained it 
on the CryoPPP dataset to pick protein particles. After training, 
the attention-gated U-Net is applied to any cryo-EM micrograph to 
generate a segmentation map as input for SAM’s automatic mask 
generator [29] for accurately localizing protein particles in the 
cryo-EM micrograph. This segmentation network of integrating 
the specialized U-Net architecture and SAM for particle picking 
(called CryoSegNet) performs better than the two most popular 
AI-based pickers crYOLO and Topaz, the recently developed Cry-
oTransformer and other AI pickers like CASSPER and Deep Picker 
in terms of both the accuracy of particle picking and the resolution 
of 3D protein density maps reconstructed from picked particles. 
Particularly, CryoSegNet substantially increases the resolution 
of density maps constructed from picked particles over crYOLO 
and Topaz, making it a useful tool for generating more accurate 
protein structures from both existing and new cryo-EM image 
data. 

Results and discussion 
Combining the specialized attention-gated U-Net 
trained on cryo-EM images with the general 
foundational Segment Anything Model for 
particle picking 
Figure 1 illustrates the process of particle picking from cryo-EM 
micrographs using CryoSegNet. A cryo-EM micrograph is first 
denoised by the image processing techniques [23, 31, 32]. The 
denoised micrograph is then used as input for an attention-
gated U-Net trained on a comprehensive and diverse dataset 
consisting of thousands of manually labeled cryo-EM micrographs 
of 22 diverse protein types to pick particles to generate a seg-
mentation map, which is used as input for Segment Anything 
Model (SAM) to generate a mask map with identified particles. 
The particles in the mask map are further post-processed (e.g. 
combined or filtered) by a post-processing module to generate 
the final output containing the picked particles. The final output 
includes the protein particle coordinates in the form of .star files, 
which are compatible with widely used tools like RELION [11] and
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Figure 1. The process of particle picking with CryoSegNet. (A) An input micrograph is first denoised and then sent to the U-net model. (B) U-Net model 
outputs a segmentation mask for each micrograph that is fed to SAM automatic mask generator for predicting the bounding boxes of protein particles. 
(C) The output generated by SAM is further processed based on thresholding the prediction confidence scores to filter out some false particles to generate 
the final output of picked particles stored in .star files. 

CryoSPARC [ 12] and can be directly used by them to generate 3D 
protein density maps. 

After CryoSegNet was trained and validated on the training/ 
validation, we blindly benchmarked it on a test dataset consisting 
of thousands of labeled cryo-EM micrographs of seven different 
protein types from the CryoPPP [4] dataset. The particles picked 
by CryoSegNet were compared with the ground truth coordinates 
of the expert-labeled particles. The standard image segmentation 
metrics including precision, recall, F1-score (i.e. precision×recall 

(precsion+recall)/2 ) 
and Dice score [33] of particle picking made by CryoSegNet were 
calculated to evaluate its performance. Dice score is used to 
evaluate the similarity between predicted segmentation masks 
and ground truth masks. It ranges from 0 (zero overlap) to 1 
(perfect overlap). Furthermore, as an ultimate test, we constructed 
3D density maps for each protein from the particles picked by 
CryoSegNet, Deep Picker, crYOLO, Topaz, CASSPER and CryoTrans-
former, respectively, and compared the resolution of the recon-
structed density maps. The detailed results are reported in the 
subsections below. 

The performance of particle picking on the 
CryoPPP test dataset in terms of image 
segmentation metrics 
The number of cryo-EM micrographs and labeled particles for 
each of the seven different types of proteins in the CryoPPP test 
dataset is reported in Table 1. There are 1,879 labeled cryo-EM 
images and 401,263 labeled particles in total, which form the 
largest test dataset for evaluating particle picking methods to 
date. To fairly compare the six AI methods: Deep Picker, CrYOLO, 
Topaz, CASSPER, CryoTransformer and CryoSegNet, we trained 
and tested all these methods with the same set of training, 
validation and test data. 

Deep Picker was trained with default parameters in CryoSPARC, 
CrYOLO with ‘PhosaurusNet’ architecture and Topaz with 
‘ResNet16’ architecture. CASSPER and CryoTransformer were 
trained with their default parameters. The details of param-
eters used in training of CrYOLO and Topaz can be found in 
Supplementary Note S1. The per-protein and average precision, 
recall, F1-score and Dice score of all the AI methods and the 
template-based picking on the dataset are summarized in 
Table 1. The average precision, recall, F1-score and Dice score 
of CryoSegNet are 0.792, 0.747, 0.761 and 0.719, respectively, while 
for CrYOLO, they are 0.744, 0.768, 0.751 and 0.698. Topaz has an 
average precision, recall, F1-score and Dice score of 0.704, 0.802, 
0.729 and 0.683, respectively. For CryoTransformer, the average 
precision, recall, F1-score and Dice score are 0.761, 0.744, 0.747 
and 0.693, respectively. Among these methods, CryoSegNet has 
the highest F1-score, precision and Dice score, while Topaz has 
the highest recall. The higher F1-score of 0.761 for CryoSegNet, in 
contrast to 0.729 for Topaz, 0.747 for CryoTransformer and 0.751 
for CrYOLO, indicates that CryoSegNet is a more balanced particle 
picker than Topaz, CryoTransformer and CrYOLO, considering 
both sensitivity (recall) and specificity (precision). The template-
based picking also shows relatively good performance, while 
Deep Picker and CASSPER performs substantially worse than 
CryoSegNet in terms of F1-score and Dice score. 

Moreover, we compared the predictions made by the crYOLO, 
Topaz and CryoSegNet for some individual micrographs to study 
their characteristics. Figure 2 illustrates the typical disparities in 
particle picking among crYOLO, Topaz and CryoSegNet on three 
individual cryo-EM micrographs of two protein types (EMPIAR 
ID 10345 and EMPIAR ID 11056). CrYOLO tends to pick fewer 
protein particles, thereby discarding many true particles. Topaz, 
when using with default parameters, picks an excessive number 
of true particles with a lot of overlaps (redundancy) as well as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Figure 2. Comparison of particle picking by crYOLO, Topaz and CryoSegNet on three cryo-EM micrographs of two protein types (EMPIAR ID 10345 and 
EMPIAR ID 11056). (A) Topaz picks ice patches and more particles in the contaminated regions than CryoSegNet while crYOLO picks few particles 
(EMPIAR ID 10345). (B) Topaz picks more false positives (particularly the ones on the black ice patch) compared to CryoSegNet (EMPIAR ID 10345). 
(C) CryoSegNet picks a zero to small number of particles in undesired (carbon or ice) regions (black holes) of the micrograph (EMPIAR ID 11056), while 
Topaz picks some false particles in the regions. 

false particles within carbon edges and ice patches that can cause 
a serious difficulty for the 3D reconstruction of density maps 
from the picked particles. The storage requirement for processing 
the redundant particles from Topaz for 3D reconstruction is sub-
stantial. In contrast, CryoSegNet usually picks most true protein 
particles while selecting only a small number of false positives, 
minimizing the number of redundant/duplicated/overlapped par-
ticles and largely excluding false particles in the carbon edges and 
ice patches. 

We also compare the precision, recall, F1-score and Dice score 
of the output of each of the three prediction modules of CryoSeg-
Net: (1) the attention-gated U-Net, (2) the SAM and (3) the post-
processing module (Supplementary Table S1). At the end of each 
subsequent module, the F1-scores are computed, revealing higher 
values for SAM (0.768) and the postprocessing module (0.761) 
in comparison to U-Net (0.71). This indicates that the perfor-
mance is improved by incorporating SAM into the output of U-
Net. Interestingly, applying the SAM module to the output of 
the U-Net substantially increases the recall from 0.739 to 0.820, 
while decreasing the precision from 0.747 to 0.729. Adding the 
post-processing on top of the SAM output increases the precision 
from 0.729 to 0.792, while decreasing the recall from 0.820 to 
0.747. At the end, the precision of the final output of CryoSegNet 
(e.g. the output of the post-processing module) is substantially 

higher than the U-Net (0.792 versus 0.747), while its recall is 
slightly higher than the U-Net (0.747 versus 0.739), resulting in a 
higher F1-score (0.761 versus 0.71). The results show that the three 
prediction steps of CryoSegNet complement each other, leading to 
the balanced performance. 

The performance of particle picking in terms of 
the resolution of 3D density maps reconstructed 
from picked particles 
The F1-score, precision and recall of particle picking can measure 
the accuracy of a machine learning method discriminating parti-
cles from non-particles, but they do not directly measure the qual-
ity of the density maps of proteins reconstructed from the picked 
particles, which are the end products concerning users most. 
Reconstructing 3D density maps from picked particles involves 
very complex algorithms of converting 2D particle images to 3D 
density maps, whose performance depends on many factors such 
as the number of true particles, the uniqueness of true particles 
capturing different orientations (views) of protein structure and 
the severity of false particles that cannot be simply measured by 
a single score such as F-measure, precision and recall. Therefore, 
as an ultimate test, we compare CryoSegNet, Topaz and crYOLO 
in terms of the resolution of 3D density maps reconstructed from 
picked particles on CryoPPP test dataset.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Table 2. Comparison of CryoSegNet with the template-based picking, Deep Picker, crYOLO, topaz, CASSPER and CryoTransformer in 
terms of the resolution of 3D density maps on CryoPPP test dataset. Bold font denotes the highest resolution 
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10028 32,183 30,242 31,699 35,514 15,637 40,488 45,218 4.12 4.09 4.11 3.97 4.43 3.86 2.72 
10081 41,569 28,209 36,821 37,808 27,299 88,632 44,819 5.26 6.05 5.38 5.10 5.79 5.47 4.18 
10345 14,353 2,470 11,369 21,343 9,876 105,739 15,209 4.07 9.13 3.94 3.66 5.14 6.43 2.89 
11056 53,190 17,124 43,599 66,651 34,860 98,193 53,073 8.12 9.65 8.54 8.06 8.47 7.42 7.17 
10532 43,662 28,711 29,434 38,372 29,290 148,345 30,155 3.93 4.92 4.10 4.27 3.96 3.92 3.92 
10093 42,986 2,360 33,183 61,698 32,383 151,545 27,745 5.85 7.50 6.93 6.15 7.27 6.86 7.06 
10017 49,770 23,462 47,704 45,511 38,460 43,735 10,026 5.00 5.63 4.87 5.09 5.33 5.61 6.91 
Average 39,673 18,940 33,401 43,842 26,829 96,668 32,321 5.19 6.71 5.41 5.19 5.77 5.65 4.98 

The comparison of the resolution of the density maps 
reconstructed from the particles picked by six AI methods 
and the template-based picking on CryoPPP test dataset 
For each protein type in the test dataset, we generate star files 
containing particles picked by a method, which are then imported 
into CryoSPARC for 3D ab initio reconstruction of density maps 
and homogenous refinement [12]. In the context of ab initio recon-
struction, we reconstruct a 3D density map from only a set of 
particles without using any initial structural model or starting 
structure as input. Homogeneous refinement is employed to rec-
tify higher-order aberrations and to refine particle defocus caused 
by factors such as beam tilt, spherical aberration and other opti-
cal issues. We compare the 3D resolution of the density maps 
reconstructed from the particles picked by the template-based 
picking, Deep Picker, crYOLO, Topaz, CASSPER, CryoTransformer 
and CryoSegNet. Results are computed both with and without 
considering the best 2D templates from the Select2D job [12] in  
CryoSPARC. Select2D is a process used by CryoSPARC internally to 
filter out low-quality/false particles provided by users before the 
density map reconstruction. 

The experiments were conducted across three trials with 
random seed initialization, and the average resolution was 
considered for comparison. The summary results of these 
methods on the micrographs in CryoPPP test dataset are 
presented in Table 2, while the detailed trial results can be found 
in Supplementary Table S2. The resolution of both CryoSegNet 
and Topaz is higher than crYOLO on six out of seven protein types. 
CryoSegNet has a higher resolution than all the other methods on 
four out of seven protein types and the same best performance 
on one protein (EMPIAR ID 10532) with CryoTransformer. CrYOLO 
yields the highest resolution for EMPIAR 10017 and the template-
based picking provides the best resolution for EMPIAR ID 10093. 
The average resolution of CryoSegNet with Select 2D is 4.98 Å, 
better than 5.19 Å of the template-based picking, 6.71 Å of Deep 
Picker, 5.41 Å of CrYOLO, 5.19 Å of Topaz, 5.77 Å of CASSPER 
and 5.65 Å of CryoTransformer. Also, on all seven protein types, 
CryoTransformer picked most particles (96,668 on average) 
followed by Topaz (43,842 on average) and template-based picking 
(39,673 on average) while CryoSegNet (32,321 on average) and 
crYOLO (33,401 on average) picked a similar number of particles, 
indicating that the quality of density maps does not fully depend 
on the number of picked particles. Further, Deep Picker (18,940 

on average) and CASSPER (26,829 on average) picked a fewer 
number of particles. This result can be largely explained by 
the observation that Topaz identifies many particles with some 
redundancy/overlap, Deep Picker and CASSPER miss many true 
particles and CryoSegNet picks most true particles with little 
redundancy. 

Moreover, applying Select 2D to the density map reconstruction 
improves the resolution of all these methods. It is worth noting 
that, even though the results in Table 2 were obtained from parti-
cles picked from at most 305 micrographs for each protein type 
in CryoPPP test dataset, the resolution of CryoSegNet for some 
protein types is high. For instance, on two protein types (EMPIAR 
ID 10028 and 10345), the resolution of CryoSegNet, after removing 
some false positives by Select 2D, is below 3 Å. 

The comparison of resolution of 3D density maps 
reconstructed from all cryo-EM micrographs of five protein 
types in EMPIAR 
In addition to evaluating the on the test dataset from CryoPPP 
that has only approximately 300 micrographs for each protein 
type (see Table 1), we extended the assessment of the methods to 
the complete set of micrographs available on the EMPIAR website 
for five different protein types in CryoPPP test dataset (Table 3) 
to gauge the resolution that they can achieve in a real-world 
setting. CryoSegNet substantially outperform other methods on 
most protein types and on average. 

Moreover, CryoSegNet performs better than Topaz for all the 
protein types except EMPIAR ID 10093. The average resolution of 
CryoSegNet with Select 2D is 3.33 Å, about 7% better than 3.58 Å 
of Topaz and 14% better than 3.87 Å of crYOLO. Remarkably, for 
EMPIAR ID 10345, the resolution of the density map reconstructed 
from CryoSegNet is 2.69 Å, which is much higher than all the 
other methods. Moreover, the average resolution across all test 
sets resulting from CryoSegNet picked particles (3.33 Å) is com-
parable to the average 3.33 Å of the density maps built by their 
original authors possibly with some manual particle picking, and 
CryoSegNet has a better resolution than the original ones for three 
out of five proteins, indicating that it can be applied to the existing 
cryo-EM micrographs in EMPIAR to generate high-quality density 
maps. 

Comparing the results on all the micrographs of the five 
protein types (Table 3) and the results on a smaller number of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Table 3. Comparison of 3D resolution of on the full set of micrographs of five protein types. The last column lists the resolution of the 
density maps built by their original authors as a reference 

EMPIAR ID Number of particles Average resolution (Å) Original EMPIAR 
Resolution (Å) 
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10028 60,901 43,027 63,562 96,352 29,906 81,172 92,532 3.97 4.09 3.96 2.72 4.17 3.74 2.72 3.2 
10345 78,835 8,399 40,047 87,472 56,728 111,375 73,377 3.51 4.21 3.54 3.46 4.03 3.48 2.69 3.51 
10081 134,603 96,322 123,963 130,941 115,297 147,662 153,333 4.13 4.33 4.18 4.08 4.19 4.18 3.48 3.5 
10532 234,512 95,469 161,497 206,460 146,022 259,757 90,477 3.27 3.45 3.23 3.23 3.31 3.26 3.21 2.9 
10093 391,973 15,725 192,337 437,235 156,945 204,355 169,330 4.13 7.74 4.43 4.42 5.13 4.90 4.58 3.55 
Average 180,165 51,788 116,281 191,692 100,980 160,864 115,810 3.80 4.77 3.87 3.58 4.17 3.91 3.33 3.33 

micrographs of the same five protein types ( Table 1), the average 
performance of all three methods on the five protein types is 
improved, indicating that using more micrographs generally 
improve the quality of reconstructed density maps as expected. 
Moreover, applying Select 2D to the density map reconstruction 
improves the resolution of all the three methods on this dataset, 
even though Select 2D filters out a substantial number of particles 
including some true ones picked by each method, indicating 
that other factors such as the quality and representativeness of 
picked particles are important. This explains why a single particle 
picking metric such as recall (sensitivity) does not fully correlate 
with the resolution of reconstructed density maps. The detailed 
results of the three methods in all the trials can be found in 
Supplementary Table S3. 

The superiority of CryoSegNet is not only evident in terms 
of resolution but also in the quality of viewing direction and 
the representation of various orientations of picked particles. 
Supplementary Figure S1 showcases the best 2D classes for the 
five protein types obtained from CryoSegNet, which clearly shows 
that CryoSegNet picked particles representing many different 
orientations/views of proteins, which is an important factor of 
obtaining high-resolution reconstruction of 3D density maps. 
Further, Fig. 3 illustrates the resolution comparison, Fig. 4 shows 
the density maps and local resolution estimation of the particles 
picked by CryoSegNet and the other methods, visually showing 
that CryoSegNet performs better in four out of five protein 
types compared to other methods. A detailed illustration of 
viewing direction comparison, resolution comparison, density 
maps and local resolution estimation results for all of the 
protein types is presented in Supplementary Figures S2–S5, 
respectively. 

Impact of number of micrographs in the 
resolution of density maps 
The resolution of density maps changes with respect to the 
number of micrographs. For most protein types, the resolution 
improves. The detailed study is presented in Supplementary 
Note S2 and Supplementary Table S4. 

Generalization capability of the CryoSegNet 
To evaluate the generalization performance of CryoSegNet during 
testing, we utilized the MMseqs2 tool [41] to calculate the 
sequence identity between proteins in the training and test 

datasets. According to the stringent threshold of 25% sequence 
identity, as utilized by DeepMainmast [42], six (EMPIAR IDs 10081, 
10345, 11056, 10532, 10093 and 10017) out of the seven test 
EMPIAR IDs are dissimilar to the training proteins (less than or 
equal to 25% sequence identity), while only EMPIAR ID 10028 has 
35% sequence identity with some training proteins. On the six 
dissimilar test proteins (EMPIAR IDs 10081, 10345, 11056, 10532, 
10093 and 10017), the average F1-Score of CryoSegNet is 0.74 
(see per-protein F1-Score in Table 1), higher than 0.638 of Deep 
Picker, 0.732 of CrYOLO, 0.718 of Topaz, 0.647 of CASSPER, 0.739 
of CryoTransformer and 0.723 of the template-based picking. 
Further, in terms of the resolution of the 3D density maps 
reconstructed from the particles picked by the different methods 
for four dissimilar proteins: EMPIAR IDs 10081, 10345, 10532 and 
10093 (see the resolution of the individual proteins in Table 3), 
the average resolution of CryoSegNet is 4.65 Å, better than 6.58 Å 
of Deep Picker, 5.13 Å of CrYOLO, 5.06 Å of Topaz, 5.55 Å of 
CASSPER, 5.27 Å of CryoTransformer and 5.01 Å of the template-
based picking, respectively. This demonstrates the CryoSegNet’s 
capability to generalize effectively over unseen and independent 
test datasets. 

Enhancing CryoSegNet performance through 
adaptive weight adjustment (fine-tuning) with 
predicted labels 
In cases where the model performs poorly in predicting protein 
particles, we can fine-tune the model’s weights by utilizing pre-
dicted labels from the pre-trained CryoSegNet and retraining it 
with a small set of micrographs. We conducted experiments by 
employing predicted labels from the pre-trained CryoSegNet on 
20 sets of micrographs for EMPIAR IDs 11056 and 10017 from 
the CryoPPP dataset to retrain CryoSegNet starting with the pre-
trained weights. The two EMPIAR IDs have sequence identity less 
than the threshold (25%) with the data used in the training set. 
For EMPIAR ID 11056, the resolution was improved from 7.17 to 
6.13 Å by the fine-tuning, with the number of picked particles 
increasing from 53,072 to 75,303. Similarly, for EMPIAR ID 10017, 
the resolution was enhanced from 6.91 to 5.27 Å, with the number 
of picked particles rising from 10,026 to 33,572. These improved 
results indicate that the generalization capability of CryoSegNet 
for new proteins can be further improved by fine-tuning, using 
the predicted labels. The detailed improved results can be found 
in Supplementary Table S5.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Figure 3. Comparison results for resolution of the 3D density maps of particles picked by the template-based picking, Deep Picker, crYOLO, Topaz, 
CASSPER, CryoTransformer and CryoSegNet. 

Carbon-alpha match score comparison for the 3D 
structures 
We determined the 3D structures from the density maps gener-
ated by all methods using the ‘Map to Model’ feature of the Phenix 

tool [43] and calculated the carbon alpha (Ca) match score [44] 
by comparing the generated structures with the original ground 
truth structures. The average Ca match score of the structures 
built from the CryoSegNet density maps is 19.58%, higher than
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Figure 4. (A) Reconstructed 3D density maps and (B) local resolution estimation (in Å) of the reconstructed density maps. CryoSegNet has better resolution 
and local resolution estimation compared to the template-based picking, Deep Picker, CrYOLO, Topaz, CASSPER and CryoTransformer for EMPIAR 10345, 
EMPIAR 10081 and EMPIAR 10532. 

all the other methods. The detailed results can be found in 
Supplementary Table S6. 

Training and test time 
We compared the training and test (inference) time of the AI 
methods with the same number of CPU cores and GPU (Fig. 5). 
While CryoSegNet requires less training time than other methods, 
it needs more time for inference than most other methods due to 
the incorporation of post-processing steps. However, this increase 
in the inference time is compensated by its improved accuracy. 

Discussion 
Unlike the other AI methods, CryoSegNet employs a symmet-
ric encoder–decoder architecture interconnected by skip con-
nections, optimizing object localization and facilitating effective 

feature fusion between low-level and high-level features. By elim-
inating the need for components like non-maximum suppres-
sion and anchor generation, CryoSegNet streamlines the particle-
picking process, enhancing efficiency. Moreover, the integration 
of the SAM and a post-processing module further refines parti-
cle picking by minimizing false positives. Additionally, its inte-
gration techniques such as denoising and attention-gated U-
Net, customized loss function along with the SAM model and 
post-processing, significantly boosts performance compared to 
their individual application. The ablation study to elucidating 
the contributions of the different components of CryoSegNet is 
presented in Supplementary Note S3 and Supplementary Tables 
S7–S11. 

While CryoSegNet demonstrates notable strengths in particle 
picking, it has weaknesses in picking particles for small proteins,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Figure 5. Average training and testing time per micrograph of all methods. 

like those in EMPIAR IDs 11056 and 10017. To tackle this limita-
tion, we fine-tuned the CryoSegNet model using predicted labels 
from a pre-trained model, which significantly enhanced particle 
picking for these proteins (see two examples in section Enhanc-
ing CryoSegNet performance through adaptive weight adjust-
ment (fine-tuning) with predicted labels). These findings under-
score the effectiveness of augmenting the training dataset with 
predicted labels micrographs of small proteins, as detailed in 
Supplementary Table S5. Further strengths and weaknesses of 
different metrics used in evaluation of particle picking and lim-
itations of CryoSegNet are discussed in Supplementary Note S4. 

Materials and methods 
Dataset 
We employed an extensive and diverse dataset (CryoPPP) to train, 
validate and test CryoSegNet. Specifically, we utilized the micro-
graphs of 22 EMPIAR IDs (protein types) from the CryoPPP for 
training and validation. We allocated 80% of the micrographs 
from each of the 22 protein types for training and the remain-
ing 20% for validation. The training dataset consisted of 4,948 
micrographs, while our validation set was comprised of 1,244 
micrographs. The details of the training and validation datasets 
are presented in Supplementary Table S12. For the independent 
test, we selected a separate set of seven different EMPIAR IDs from 
the CryoPPP dataset. The details of the dataset are described in 
Supplementary Table S13. 

Prediction methods 
Attention-gated U-Net 
The advent of deep learning architectures like U-Net has greatly 
simplified segmentation tasks in biomedical images like localizing 
mitochondria cells and brain tumors. In this work, we designed 
a special U-Net architecture (Fig. 6) for cryo-EM protein particle 
picking by making it deeper and introducing an attention mech-
anism into it, considering the large size of the cryo-EM micro-
graphs and the nature of protein particles in the micrographs. 
Cryo-EM micrographs often contain objects that are not actual 
single protein particles, such as ice patches, protein aggregates 
and false particles along the carbon edges. These false positives 
can negatively degrade the resolution of the final 3D structures 
reconstructed from the particles. Therefore, it is important to 
prioritize the picking of true protein particles for an accurate 
segmentation. Thus, we added attention gates in the expanding 
path of the U-Net architecture to put a significant emphasis on 

true protein particles. Our model consists of five encoder blocks 
in the contracting path, a bottleneck layer and five decoder blocks 
in the expanding path, each equipped with attention gates. This 
architecture modification can effectively handle the complexity 
of cryo-EM micrographs and achieve the precise segmentation of 
protein particles. 

The U-Net takes a cryo-EM micrograph of size 1024 × 1024 as 
input and outputs a segmentation mask of size 1024 × 1024. A 
loss function that combines both binary cross entropy loss and 
dice loss [33] is used to measure prediction error in training. The 
former allows for measuring individual pixel error independently, 
while the latter assesses the degree of dissimilarity between the 
predicted segmentation mask and the ground truth segmentation 
masks. By minimizing these two, the network is trained to achieve 
more accurate segmentation of protein particles. The output of 
the U-Net is used as input for SAM’s automatic mask generator 
for further segmentation. 

SAM automatic mask generator 
Meta’s SAM has achieved great success in segmenting objects in 
many images. However, directly applying the pretrained SAM to 
cryo-EM micrographs can only pick very few particles because 
cryo-EM images are very different from the images used to train 
SAM. Fine-tuning (retraining) the SAM’s mask decoder on cryo-EM 
micrographs for thousands of epochs improved results over the 
original SAM but still could not achieved satisfactory results and 
performed worse than the state-of-the-art deep learning particle 
pickers such as Topaz. After many trials, we finally devised a 
hybrid approach that combines the U-Net model with SAM’s 
automatic mask generator, which is proved to be highly effective 
for particle picking. 

In the hybrid approach, the output of the attention-gated U-
Net is fed to the SAM’s automatic mask generator module. This 
module was tailored for automatic mask generation for input 
images and was trained on the SA-1B dataset. Firstly, it generates 
the masks from a grid of points, incorporating various scales of 
the original and zoomed images. Then, cropping is performed 
using a regular grid of points, and any masks intersecting crop 
boundaries are discarded. Redundant masks are then eliminated 
through non-maximum suppression with an intersection over 
union (IoU) threshold of 0.7, retaining only masks with confidence 
scores exceeding 88.0. Subsequent processing steps refine the 
masks by removing small artifacts and filling minor gaps, which 
are particularly important considering the high-noise and low-
contrast characteristics of cryo-EM micrographs. 

These refined masks as well as the IoU scores and bound-
ing box coordinates for each picked protein particle within the 
micrographs are then passed through our postprocessing modules 
below designed to filter out some false positives and improve the 
precision of particle picking. 

Postprocessing 
The output generated by SAM’s automatic mask generator 
undergoes the additional postprocessing to generate .star files, 
which contain coordinate information for protein particles. 
Supplementary Algorithm S1 outlines the complete steps of the 
postprocessing. 

Data preprocessing 
Denoising of micrographs 
The cryo-EM micrographs have low contrast and low SNR, 
necessitating the use of image denoising techniques before 
using them as input for the U-Net. Supplementary Figure S6

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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Figure 6. Architecture of the CryoSegNet model. (A) The attention-gated U-Net to predict segmentation mask for a micrograph. The numbers in the top 
of the rectangular slices indicate the number of channels and in the bottom indicate the size of the output. The U-Net has five encoders, one bottleneck 
component and five decoders. The skip connection from each encoder to its corresponding decoder goes through an attention gated block. Each attention 
block for a decoder also takes an input from its previous decoder or the bottleneck component. The details of the attention block are illustrated at the 
middle top. (B) The SAM mask generator takes input from the output of the U-Net model and outputs bounding box coordinates and intersection over 
union score for each predicted protein particle in the micrograph. (C) The postprocessing module outputs the star file containing picked particles and 
processed output micrographs based on the thresholding criterion for each protein type. 

illustrates the denoising techniques used for preprocessing cryo-
EM micrographs. The image preprocessing pipeline begins with 
reading the images in the mrc format and applying a Gaussian 
filter. Subsequently, the images are standard normalized and 
converted to grayscale, with pixel values ranging from 0 to 
255. To effectively reduce noise while preserving image details, 
the Fast Non-Local Means (FastNLMeans) denoising technique 
[ 23, 31] is applied, followed by noise mitigation through Weiner 
filtering [23, 32]. 

To enhance the contrast of cryo-EM micrographs and improve 
the visibility of protein particles, the contrast limited adaptive his-
togram equalization (CLAHE) technique is then incorporated. The 
CLAHE technique is widely used to enhance images with regions 
of non-uniform illumination and low contrast. Finally, the CLAHE-
equalized image is used as a guided image to the Weiner-filtered 
image to perform guided filtering, allowing selective smoothing 
and enhancement of the cryo-EM micrographs while preserving 
edges and fine details. 

Standardization of inputs and labels 
The CryoPPP dataset comprises diverse protein types, each with 
varying micrograph sizes. Image size ranges from as low as (3710, 
3710) to as high as (7676, 7420). For the uniformity in the train-
ing process, we resized all the micrographs to (1024, 1024) after 
denoising them and before feeding them to the U-Net model. From 
the ground truth coordinate files in the .csv format, containing 

information like centers of the particles and corresponding diam-
eters, we created a separate ground-truth segmentation mask for 
each micrograph. This mask was then resized to (1024, 1024). The 
input micrograph was fed to the network for training, while the 
ground-truth segmentation mask was utilized as a target and 
compared with the output segmentation mask for calculation of 
loss. Supplementary Figure S7 shows a sample denoised image 
and its corresponding ground-truth segmentation mask. 

Training 
The attention-gated U-Net of CryoSegNet was trained using 
denoised and resized micrographs of 22 different EMPIAR IDs 
from CryoPPP dataset. The training was done with a batch size 
of 6, learning rate of 0.0001 for 200 epochs with a combined loss 
function of the dice loss and binary cross entropy on NVIDIA A100 
80GB GPU. 

Key Points 
• A deep learning method (CryoSegNet) integrating an 

attention-gated U-Net and the foundational Segment 
Anything Model was developed to pick protein particles 
in cryo-EM images. 

• CryoSegNet has both high precision and recall for pick-
ing protein particles. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae282#supplementary-data
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• The average resolution of cryo-EM density maps built 
from CryoSegNet picked particles on a dataset is 7–14% 
better than two widely used deep learning methods for 
particle picking. 

• CryoSegNet can be used to automate the laborious cryo-
EM particle picking process and improve the quality of 
the cryo-EM density maps built from cryo-EM image 
data. 

Supplementary data 
Supplementary data is available online at Briefings in Bioinformatics 
online. 
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