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ABSTRACT: The availability of an increasingly large amount of public
proteomics data sets presents an opportunity for performing combined
analyses to generate comprehensive organism-wide protein expression maps
across different organisms and biological conditions. Sus scrofa, a domestic
pig, is a model organism relevant for food production and for human
biomedical research. Here, we reanalyzed 14 public proteomics data sets from
the PRIDE database coming from pig tissues to assess baseline (without any
biological perturbation) protein abundance in 14 organs, encompassing a
total of 20 healthy tissues from 128 samples. The analysis involved the
quantification of protein abundance in 599 mass spectrometry runs. We
compared protein expression patterns among different pig organs and
examined the distribution of proteins across these organs. Then, we studied
how protein abundances were compared across different data sets and studied
the tissue specificity of the detected proteins. Of particular interest, we conducted a comparative analysis of protein expression
between pig and human tissues, revealing a high degree of correlation in protein expression among orthologs, particularly in brain,
kidney, heart, and liver samples. We have integrated the protein expression results into the Expression Atlas resource for easy access
and visualization of the protein expression data individually or alongside gene expression data.
KEYWORDS: proteomics, meta-analysis study, protein abundance, pig organs, human−pig comparison, data integration

1. INTRODUCTION
In recent years, high-throughput mass spectrometry (MS)-
based proteomics methods have made significant advances and
have become essential tools in biological research.1 These
improvements are the result of significant developments in MS
instrumentation, chromatographic methods, sample prepara-
tion automation, and computational analysis.2 The dominant
experimental technique for MS-based proteomics has histor-
ically been data-dependent acquisition (DDA) bottom-up
proteomics.3 Among the quantitative techniques, label-free
DDA approaches are well accepted. However, data-independ-
ent acquisition (DIA) approaches are currently becoming
increasingly popular.
In parallel to the technical developments, in recent years, the

proteomics community has embraced open data practices,
leading to a substantial increase in the availability of shared
data sets in the public domain. The field has mirrored the
progress witnessed in genomics and transcriptomics. The
PRIDE database,4 as part of the ProteomeXchange con-
sortium,5 is the most used proteomics data repository
worldwide. The availability of extensive public proteomics
data sets has paved the way for various applications, including
meta-analysis studies involving the reanalysis and integration of
quantitative proteomics data sets.6−9 By systematically

reanalyzing these data sets, original findings can be updated,
confirmed, and/or strengthened. Moreover, novel insights
beyond the scope of the original studies can be obtained
through alternative reanalysis strategies to those used in the
original studies.10

To enable access to proteomics data by the wider scientific
community, PRIDE is developing data dissemination and
integration pipelines with existing popular resources at the
European Bioinformatics Institute (EBI). Expression Atlas11

(https://www.ebi.ac.uk/gxa/home) is a well-established data-
base for gene expression data and has more recently
incorporated protein expression information derived from
reanalyzed data sets into its ‘bulk’ section. As a result, the
integration of proteomics expression/protein abundance data
with transcriptomics information, primarily from RNA-Seq
experiments, enhances the comprehensive understanding of
molecular expression across various biological contexts. This
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approach ensures the long-term accessibility and integration of
proteomics data, benefiting researchers, including those
without expertise in proteomics, in their exploration of
multiomics information.
We have already performed combined analyses of baseline

(without any perturbation) protein expression for human,7

mouse, and rat tissues.6 Here, we are reporting an analogous
study of baseline protein expression in the model organism Sus
scrofa, the domestic pig. The study of pig proteomics data sets
is crucial for advancing food production, animal welfare, and
human biomedical research, as it offers insights into genetic
and environmental factors affecting farm animal production
and leverages the close genetic and proteomic similarities
between pigs and humans.12,13 The resource PeptideAtlas
provided a few years ago a build for pigs, including extensive
peptide and protein identification data, but is not providing
protein abundance information.8 Additionally, PaxDB recently
released a new version 5.0,14 providing expression data coming
from different vertebrates, including Sus scrofa, but quantitative
data is based on spectral counting, a semiquantitative
technique. Also, no tissue-specific information is provided
there, apart from the liver. To the best of our knowledge, we
are providing the first combined quantitative analysis of label-
free DDA data sets in pigs.
Here, we report the reanalysis and integration of 14 public

label-free pig baseline tissue data sets, including 14 organs and
a total of 20 healthy tissues from 128 samples. The results were
incorporated into Expression Atlas as baseline studies.
Additionally, we report a comparative analysis of protein
expression across pig and human tissues among other analyses.

2. METHODS

2.1. Data Sets
The PRIDE database hosted 165 publicly available MS
proteomics data sets of Sus scrofa as of October 2022. For
this study, we manually selected data sets based on several
predefined criteria, which included (i) label-free DDA studies
from baseline tissues (without any perturbation) and without
enrichment for post-translational modifications; (ii) data sets
generated using Thermo Fisher Scientific instruments to avoid
the heterogeneity introduced by data generated by other
platforms; and (iii) data sets with sufficient sample metadata,
manually curated from the original publication. This resulted
in the identification of 14 pig data sets for further analysis.
Sample and experimental metadata were manually curated

using Annotare,15 and adhering to the Investigation
Description Format (IDF) and Sample-Data Relationship
Format (SDRF) files,16 which are needed for integration of the
data into Expression Atlas. The IDF file contains an overview
of the experimental design, including details on experimental
factors, protocols, publication information, and contact
information. The SDRF file contains complementary informa-
tion: the sample metadata that describes the relationships
between various sample characteristics and the associated data
files within the data set.
2.2. Proteomics Raw Data Processing
All data sets underwent analysis using MaxQuant version
2.0.3.017 in multithreaded mode on a Linux high-performance
computing cluster for peptide/protein identification and
protein quantification. Input parameters for each data set,
including MS1 and MS2 tolerances, digesting enzymes, and
fixed and variable modifications, were set according to the

specifications provided in their respective publications and
accounting for two missed cleavage sites. The false discovery
rate (FDR) at both the peptide spectrum match (PSM) and
protein levels was set to 1%. The remaining parameters of
MaxQuant were set to the default values: a maximum of 5
modifications per peptide, a minimum peptide length of 7
amino acids, and a maximum peptide mass of 4600 Da. For the
“match between runs” option, a minimum match time window
of 0.7 s and a minimum retention time alignment window of
20 s were applied. MaxQuant parameter files can be
downloaded from the Expression Atlas. The Sus scrofa
UniProt18 Reference proteome release-2021_04 (including
isoforms, 49,865 sequences) was used as the target sequence
database for the pig data sets. MaxQuant uses a built-in
database of contaminants, and a decoy database was generated
by reversing the input database sequences following the
respective enzymatic digestion.
2.3. Postprocessing

The postprocessing of MaxQuant results followed the
methodology detailed in previous publications.6 In short,
after removing the protein groups labeled as potential
contaminants, decoys, and those with less than 2 PSMs, the
protein intensities in each sample were normalized by scaling
the iBAQ intensity values with the total signal in each MS run
and converting to parts per billion (ppb).

_ = ×=( )Q i n i Qppb iBA BAQ / BA 1, 000, 000

, 000

i i i i1

UniProt protein accessions, from the MaxQuant output-
proteinGroups.txt file, were mapped to their Ensembl gene
identifiers (ENSSSCG) using the ID mapping data set
(Release 2022/03) at the UniProt Web site (https://www.
uniprot.org/id-mapping).19 The resulting id mapping data file
(idmapping_selected.tab), by default, maps UniProt protein
accessions to Ensembl gene identifiers of all pig breeds (i.e.,
Landrace, Pietrain, etc.) rather than to the reference breed,
thus leading to multiple Ensembl gene identifiers being
returned per UniProt protein identifier. To resolve this, we
downloaded the Sus scrofa model Ensembl fasta peptide dump
(Release 11.1 gene set, https://ftp.ensembl.org/pub/release-
110/fasta/sus_scrofa/pep/Sus_scrofa.Sscrofa11.1.pep.all.fa.gz)
and used this as a filter to keep only gene-mappings specific to
the reference pig breed. We used the reference pig Ensembl
gene identifiers for further downstream analysis.
During downstream postprocessing, we removed protein

groups which mapped to more than one gene identifier, and for
cases where two or more protein groups mapped to the same
gene identifier, protein intensities were aggregated using the
median value. The parent genes to which the different protein
groups were mapped to are equivalent to “canonical proteins”
in UniProt (https://www.uniprot.org/help/canonical_and_
isoforms), and therefore the term protein abundance is used
to describe the protein abundance of the canonical protein
throughout the article.
2.4. Integration into Expression Atlas

The normalized protein abundances along with the validated
SDRF files, summary files detailing the postprocessing quality
assessment, and MaxQuant parameter files (mqpar.xml) are
available to download from Expression Atlas. Table 1 describes
the data sets and their corresponding E-PROT identifiers.
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2.5. Protein Abundance Comparison across Data Sets
The normalized protein abundances (in ppb values) within
each data set were transformed into ranked bins as described
in.7 Briefly, the normalized protein abundance (ppb) of each
MS run was sorted from lowest to highest and binned into 5
equal length bins. Proteins ranked in the lowest bin (bin 1)
represent the lowest abundance, and correspondingly, proteins
ranked in bin 5 have the highest abundance. To analyze and
compare the data effectively, protein abundances from ‘tissues’
were grouped into ‘organs’. For example, the Ileum and
jejunum “tissues” were grouped as “small intestine”. Similarly,
triceps, biceps femoris, diaphragm, and skeletal muscle were
grouped as “muscle”. When tissues were combined into organs,
median bin values were used.
Proteins of all the samples were selected for uniform

manifold approximation and projection (UMAP)20 represen-
tation and analyzed for binned abundance values using the R
programming language (https://www.R-project.org/). Pearson
correlation coefficients (rp) were calculated for all samples
based on paired complete observations and used to generate a
heatmap. Missing values were marked as NA (not available).
For each organ, the median rp was calculated from all paired rp
values of the respective sample. Columns and rows of the
samples were clustered hierarchically by using Euclidean
distances.
2.6. Organ-Specific Expression Profile Analysis
To make comparisons of protein expression across organs
based on organ specificity, we grouped the proteins into three
categories based on the classification scheme of Uhlen et al.21:
(1) “Organ-enriched”: present in one unique organ with bin
values 2-fold higher than the mean bin value across all organs;
(2) “group-enriched”: present in at least 7 organs, with bin
values 2-fold higher than the mean bin value across all organs;
and (3) “mixed”: the remaining canonical proteins that are not
part of the above two categories.
We then performed Gene Ontology (GO) term enrichment

analysis through an over-representation test on the “organ-
enriched” and “group-enriched” using the mapped gene lists
for each organ. The computational analysis was carried out in
the R programming language with the package clusterProfiler22

version 3.16.1 by using the function enrichGO() for the GO
term over-representation test. The p value cutoff was set to
0.05, and the q value cutoff was set to 0.05.
2.7. Comparison of Protein Expression Values between Pig
and Human Tissues
The orthologous genes for pigs and humans were obtained
following the procedure described in the Ensembl BioMart.23

Briefly, we first selected the “Ensembl genes 110″, then chose
“Human genes (GRCh38.p14)”, clicked on “Filters” in the left
menu, then unfolded the “MULTI SPECIES COMPAR-
ISONS” box, ticked the “Homolog filters” option, and chose
“Orthologous Pig Genes” from the drop-down menu. Then, we
clicked on “Attributes” in the left menu, unfolded the “Pig
ORTHOLOGS” box, and selected the pig gene ID and pig
gene name. Finally, we clicked on the “Results” button (top
left) to download the list of orthologous genes between
humans and pigs. The orthologous gene list was filtered to
include only parent gene identifiers from pig samples in this
study and the parent genes of human samples described in our
previous study using human baseline tissue samples.7

We used the calculation of “edit distance”7 of a protein,
which was computed as the difference between two pairs of

protein abundance bins in pigs and humans. The following
categories were used to classify their groups of protein
expression samples: (1) “Group A″: protein abundance is
similar between human and pig tissues; (2) “Group B″: protein
abundance is higher in human tissues when compared to pig
tissues; and (3) “Group C ″: protein abundance is higher in pig
tissues compared to human tissues.
A GO term enrichment analysis was performed using the

mapped gene lists for each organ in each group (“Group A″,
“Group B″, or “Group C″) as the foreground and the gene list
of all three groups as the background. The settings were the
same as those used for organ-specific expression profile analysis
in the previous section.
The one-to-one mapped orthologue identifiers were used to

compare pig and human protein intensities. Additionally, their
normalized protein abundance (using parts per billion values)
in 10 organs (adipose tissue, brain, colon, heart, kidney, liver,
lung, pancreas, small intestine, and spleen) was used to assess
pairwise correlations. Linear regression was calculated using
the linear fit “lm” method in the R programming language.
2.8. Correlation between Gene (RNA-seq) and Protein
Expression

One pig RNA-seq experimental tissue baseline data set (the
only one available) was obtained from Expression Atlas (data
set E-MTAB-5895). The data set was composed of pig samples
from a Duroc breed.24 Transcriptomics data had been
previously collated in Expression Atlas, and FPKMS (Frag-
ments per Kilobase of transcript per Million mapped reads)
data were computed by iRAP (https://github.com/
nunofonseca/irap) based on the raw data, which were first
averaged based on technical replicates, then quantile
normalized within each set of biological replicates using
limma25 and finally averaged again over all biological replicates.
Biological metadata were collected in the SDRF format,
consistent with the proteomics data.
2.9. Comparison of Protein Abundance with Spectral
Counting Values from PaxDB

We compared the protein abundances generated in our study
with the protein abundance data from PaxDB version 5.0
(https://www.pax-db.org/)26 available for Sus scrofa. Normal-
ized iBAQ abundances were compared with the spectral
counting abundances for the liver, the only matching organ
available. This comparison was not possible for other pig
organs as other data in PaxDB are labeled as “whole organism”.
Ensembl gene ids (ENSSSCG) were mapped to protein ids
(ENSSSCP) in PaxDB using the Ensembl BioMart, as
described in this tutorial.23

3. RESULTS

3.1. Pig Proteomics Data Sets

In summary, we obtained protein expression data from 20
healthy tissues in 14 organs, coming from 14 public data sets.
The analyses covered a total of 599 MS runs from 128 samples
that were annotated as healthy/control/nontreated samples,
thus representing baseline protein expression. Noncontrol/
disease samples associated with these data sets were also
analyzed but are not discussed here. Normalized protein
abundance values (as ppb) from both control/healthy/
nontreated and disease/treated tissue samples are available to
view as heatmaps in Expression Atlas. The protein abundances
along with sample annotations, the sample quality assessment
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summary, and experimental parameter inputs for MaxQuant
can be downloaded from Expression Atlas as text files. The
total number of proteins and peptides identified in these data
sets is shown in Table 1.
3.2. Protein Coverage across Organs and Data Sets

A total of 7,767 protein groups were identified from the
reanalysis of the 14 pig data sets, among which 2,164 protein
groups (27.9%) were uniquely present in only one organ and
523 protein groups (6.7%) were ubiquitously observed (Table
S1 in Supporting File 2). However, it should be emphasized
that a specific list of typical proteins detected in only one organ
should be treated with caution, as the FDR of this list will be

amplified due to the accumulation of false positives when the
data sets were analyzed individually. For proteins detected in
four or more data sets, this should not be a problem, as from
the common number of decoy protein hits across data sets, a
protein FDR of less than 1% could be inferred for those
proteins (Figure S1 in Supporting File 1).
Protein groups were mapped to 7780 genes (which are

equivalent to canonical proteins, the term that we will be using
from now on in the article). The largest number of canonical
proteins was detected in samples from the heart (6264, 80.5%
of the total) and the lowest number in samples from adipose
tissue (1913, 24.6%) and from the biliary system (1983,

Figure 1. Distribution of canonical proteins detected per organ and data set. (A) Number of canonical proteins identified across different pig
organs. The number in parentheses denotes the number of samples. (B) Number of canonical proteins identified in different data sets. The number
in the brackets indicates the number of unique tissues in the data set. (C) Range of normalized iBAQ protein abundances across different organs.
The number in brackets indicates the number of samples. (D) Range of normalized iBAQ protein abundances across different data sets. The
number in brackets indicates the number of unique tissues in the data set. (E) Distribution of canonical proteins identified across different organs.
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Figure 2. (A) Heatmap of pairwise Pearson correlation coefficients across all pig samples among data sets and organs. The colors on the heatmap
represent the correlation coefficients calculated using the bin transformed values. Hierarchical clustering of the columns and rows of the samples
was performed by using Euclidean distances. (B) UMAP representation among different data sets and organs. Groups of data sets coming from the
same organ are highlighted.
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25.5%) (Figure 1A). The lower number of proteins identified
in the biliary system could be attributed to the smallest sample
size (only one sample out of 128, 0.08%). Data set
PXD012636, a data set containing pig heart samples, which
was fractionated, provided the highest number of detected
canonical proteins (6062, 77.9%), whereas the smallest
number of proteins were detected in data set PXD002918
(biceps femoris, 789, 10.1%, nonfractionated data set) (Figure
1B).
We studied the normalized protein abundance distribution

in organs (Figure 1C) and found that all organs had similar
median abundances. However, one cannot attribute biological
meaning to these observations, since the method of normal-
ization by definition fixes each sample to have the same “total
abundance”, which then gets shared out among all proteins.
The normalized protein abundance distribution in data sets
indicated a lower than median abundance detected in the data
set PXD012636 (heart), as a direct result of more proteins
being detected overall in this data set (Figure 1D). In terms of
the distribution of proteins detected per organ, most proteins
were found in just one organ (Figure 1E).
3.3. Protein Abundance Comparison across Organs and
Data Sets

Next, we studied how protein abundances compared across
different data sets and organs. To make protein abundance
values more comparable between data sets, we transformed the
normalized iBAQ intensities into ranked bins as explained in
Section 2, i.e., proteins included in bin 5 are highly abundant,
whereas proteins included in bin 1 are expressed in the lowest
abundances (among the detected proteins). We found that 494
(6.3%) proteins were expressed in at least 3 organs, with a
median bin value greater than 4 (not including 4). At the other
end of the scale, 337 (4.3%) canonical proteins were expressed
in at least 3 organs at a median bin value less than 2 (not
including 2). The bin transformed abundances in all organs
and in all data sets are provided in Tables S2 and S3 in
Supporting File 2.
To compare protein expression across all pig organs, we

calculated pairwise Pearson correlation coefficients (rp) for the
128 samples (Figure 2A). We observed a good correlation of
protein expression within the liver (median rp = 0.77) and

muscle (median rp = 0.65) samples. We then performed a
cluster analysis using UMAP20 on all samples to test the
effectiveness of the bin-transformed method in reducing batch
effects (Figure 2B). We observed that samples from different
data sets belonging to the same organ were generally clustered
together. For example, liver samples from data sets
PXD003204, PXD011536, and PXD017671 clustered together
(color blue in Figure 2B). Additionally, muscle samples from
PXD002918 (tissue biceps femoris), PXD003204 (tissue
diaphragm), PXD014893 (tissue biceps femoris and triceps
muscle), and PXD016003 (tissue biceps femoris and triceps
muscle) clustered together too (color purple). Similarly, heart
samples from data sets PXD003204, PXD009577,
PXD012636, and PXD019852 clustered together as well
(color dark green).
3.4. Organ Elevated Proteome and the
Over-Representative Biological Processes

To get more insights about organ expression specificity,
proteins were classified into three different groups: “group-
enriched”, “organ-enriched” and “mixed” (see Section 2 for
details, Table S4 in Supporting File 2). The analysis (Figure S2
in Supporting File 1) showed that on average 26.8% of the
total elevated canonical proteins were organ group-specific in
pig. In addition, 4.2% were unique organ-enriched in pig. The
highest ratio of group-specific proteins was found in the
pancreas (36.8%), and the highest ratio of organ-enriched
proteins was found in the heart (23.9%).
A GO enrichment analysis (see Section 2) was performed on

those proteins that were “organ-enriched” and “group-
enriched”. Overall, 310 GO terms were found to be statistically
significant in all organs. The two most significant GO terms
were the ‘organic acid metabolic process’ (GO:0006082) and
the ‘small molecule catabolic process’ (GO:0044282), both in
the liver and in the biliary system. These terms were followed
by “RNA processing” (GO:0006396) in the pancreas. For the
whole list of GO terms enriched for each organ, see Table S5
in Supporting File 2.

Figure 3. Organ specificity of canonical proteins based on edit distances between pig and human. The canonical proteins detected both in pig and
human samples were classified into three groups: “Group A” (similar protein expression levels between human and pig), “Group B” (higher protein
expression in human tissues), and “Group C” (higher protein expression in pig tissues).
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3.5. Comparative Analysis of Pig and Human Protein
Expression

We also performed a comparative analysis of protein
abundances (in bins) between the pig baseline tissue data
sets with the results obtained in our previous analogous study
involving human data sets coming from baseline tissues, which
was performed using the same overall methodology7 (Table S6
in Supporting File 2). Pig is often used as a model organism for
human biomedical research, and then it is interesting to
compare protein expression in both organisms. We calculated
metrics to study the differences between the protein
abundances for all organs found in the two studies (see
‘Material and Methods’ for full details), as shown in Figure 3
(also see Table S7 in Supporting File 2). Three groups of
proteins were found according to their protein expression
levels: (i) ″Group A″: protein expression is similar between
human and pig tissues; (ii) ″Group B″: protein expression is
higher in human tissues; and (iii) ″Group C ″: protein
expression is higher in pig tissues.
We found that for pig, protein expression levels were higher

in the pancreas, brain, and heart than in the corresponding
human tissues, whereas protein expression levels were higher in
the human’s small intestine and adipose tissue when compared
to the corresponding pig tissues. For other organs, the number
of proteins in “Group B” and “Group C” was quite similar.
Since different sizes and counts of data sets have been used for
the different organs in both species, the organ-level trends
reflect the results found in our studies. In our view, they are
not necessarily meaningful for understanding species level

differences. Instead, for individual proteins or groups of related
proteins, the comparison gives a potentially useful guide to
relative protein abundance between orthologous pairs in
individual organs.
We then performed a GO enrichment analysis41 per organ of

the proteins included in the three groups using GO terms
related to biological processes (see Section 2). We found 740
GO terms to be enriched in all organs overall (see all enriched
GO terms in Table S8 in Supporting File 2), and in particular
in the heart and kidney. For instance, in “Group A”, we found
enrichment for “intracellular transport” (GO:0046907) in 9
organs (brain, colon, heart, kidney, liver, lung, pancreas, small
intestine, and spleen). In “Group B”, we observed the
‘ribonucleoside monophosphate biosynthetic process’
(GO:0009156) enriched in adipose tissue and the ‘peptide
biosynthetic process’ (GO:0043043) in the small intestine.
Also, in “Group C”, we observed ‘vesicle-mediated transport’
(GO: 0016192) enriched in the brain and ‘carboxylic acid
metabolic process’ (GO:0019752) in the pancreas. For the
whole list, also including the GO terms enriched for other
organs, see Table S8 in Supporting File 2.
3.6. Comparison of Protein Abundances across Orthologs
between Pig and Human Data Sets

In a previous study, we compared the expression of canonical
proteins found in three different species: human, mouse, and
rat.6 Here, we used the same approach to compare canonical
protein expression between human7 and pig organs. Overall,
13,248 detected human canonical proteins were compared
with 7,800 detected pig canonical proteins (Table S9 in

Figure 4. Comparison of protein abundance between orthologues of pigs and humans in various organs.
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Supporting File 2). When comparing protein abundance (in
ppb), we only considered the corresponding orthologous genes
with unambiguous (one-to-one) mappings, which resulted in
6,811 common protein orthologs.
When comparing the protein expression of orthologues in

humans and pigs, we observed a relatively overall high
correlation in protein abundance in the heart (R2 = 0.62)
and liver (R2 = 0.53), medium correlation for the brain (R2 =
0.44), colon (R2 = 0.42), kidney (R2 = 0.40), and spleen (R2 =
0.39), and low correlation in the small intestine (R2 = 0.18),
lung (R2 = 0.21), pancreas (R2 = 0.26), and adipose tissue (R2

= 0.27) (Figure 4).
We also investigated the correlation of protein expression

across different organs in pigs across the data sets used in this
study (Figure 5). The data sometimes followed expected

distributions whereby tissues predicted to be more similar to
each other in terms of biological function have higher pairwise
correlations, e.g., small intestine and colon (R2 = 0.87) and
spleen and pancreas (R2 = 0.78). However, other high
correlations were found between lung and spleen (R2 =
0.83) and lung and pancreas (R2 = 0.71), likely due to these
data originating from a single study. The correlation between
the brain and the remaining organs was generally low, as would
be expected. A plotted representation of the abundance of all
sorted proteins for both species is provided in Figure S5 in
Supporting File 3.
3.7. Comparison between Gene (RNA-seq) and Protein
Expression, and Comparison with Protein Expression Data
in PaxDB
We also investigated the correlation between gene (RNA-seq
based) and protein expression in baseline tissue pig data sets.
For that, we used the only suitable data set available in
Expression Atlas (data set E-MTAB-5895).24 We compared
the normalized iBAQ protein abundances (ppb) with the

baseline RNA-seq expression (FPKM). To compare expression
across different organs, we grouped the RNA-seq expression
from various tissues into their respective organs by using their
median values. We did not observe a strong correlation
between protein and RNA expression across various organs
(Figure S3 in Supporting File 1). The lowest correlation
between protein and RNA expression was observed in the lung
(R2 = 0.06) and the highest was observed in the heart (R2 =
0.20). In our view, these low correlations could be due to the
inherent limitations in this comparison, i.e., (i) samples are not
paired and (ii) the different pig breeds used (Duroc for the
RNA-seq study and several others for the protein expression
studies, see details in Table 1).
In addition, we compared the protein abundance of organ

liver generated in this study with data from the PaxDB
resource generated by using a spectral counting method. We
observed that protein abundance values (fraction of total
(FOT) normalized ppb values) calculated using iBAQ in this
study correlated until a limited extent (R2 = 0.47) with the
semiquantitative values available in PaxDB (Figure S4 in
Supporting File 1). Unfortunately, it was not possible to
perform this correlation for other organs (see details in Section
2).

4. DISCUSSION
We have previously performed three meta-analysis studies
involving the reanalysis and integration in Expression Atlas of
public quantitative proteomics data sets coming from cell lines
and human tumor samples,8 from human baseline tissues,7

from mouse and rat baseline tissues.6 Here, we have reanalyzed
14 public proteomics data sets coming from pig tissues in
baseline conditions. Our overall aim was to provide a system-
wide baseline protein expression catalogue across various pig
organs. We used the same methodology as in the study
involving baseline human tissues (and in the mouse/rat study),
which enabled a comparison of protein expression levels across
human and pig organs. To the best of our knowledge, this is
the first metanalysis study for pig at a protein expression level,
in this case using label-free DDA data. The resource PaxDB
version 5.014 includes pig data generated using spectral
counting, but its granularity is limited, providing only organ-
specific expression for the liver.
As done before, we reanalyzed each data set separately using

MaxQuant and the same protein sequence database. The
disadvantage of this approach is that the FDR statistical
thresholds are applied at a data set level and not to all data sets
together as a whole. However, as also explained before,6,7 using
a data set per data set analysis approach is in our view the only
sustainable manner to reanalyze and integrate quantitative
proteomics data sets in resources such as Expression Atlas,
where gene expression data sets are stored following the same
data set per data set approach. It is also important to highlight
that the number of commonly detected protein false positives
is reduced in parallel with the increase in the number of
common data sets where a given protein is detected. In this
case, for proteins detected in four or more data sets, a protein
FDR of less than 1% can be inferred (Figure S1 in Supporting
File 1).
This overall study of protein expression in pigs and its

comparison with human protein expression are relevant in
different contexts. First of all, systems biology research on the
domestic pig is of immediate relevance for food production
and animal welfare. Additionally, domestic pigs are a model

Figure 5. Protein expression correlation among all pig organs across
the data sets included in this study. The organs underlined all come
from a single data set (PXD003204).
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organism for human biomedical research. Furthermore, the
diversity of the available pig models is rapidly expanding. Some
possible applications of these models are research in nutrition,
inflammation, and host−microbial crosstalk. In this context,
pig models present great opportunities because the pig, like
humans, is an omnivore with very similar nutritional
requirements, digestive and immune systems, and gut micro-
bial components.12 It is also important to highlight that
minipig models are being increasingly used in drug develop-
ment. Animals are still requested in the safety testing of new
drug candidates, and minipigs are a potential nonrodent
alternative to the use of nonhuman primates (NHP) due to
ethical considerations.42 The use of alternative in vitro models
is still challenging due to complex biological responses in
various organ systems following drug treatment. Therefore, it is
important to have access to protein expression information in
pig organs (and also ideally in mini-pig; there are still very few
mini-pig proteomics studies in the public domain) so that
comparisons in protein abundance across different organs and
species (especially between pig, mini-pig, and human) can be
performed.
Future directions in analogous studies will involve (i) the

inclusion of additional species, e.g., other model organisms or
other species of economic importance; (ii) studies focused on
particular diseases or physiological states; (iii) the inclusion of
differential proteomics data sets in addition to baseline studies;
and (iv) reanalysis of DIA data sets (e.g., ref 43). In
conclusion, we present here a meta-analysis study of public
pig baseline proteomics data sets from the PRIDE database.
We also performed a comparative analysis across human and
pig protein abundances. The resulting protein expression data
has been made available via Expression Atlas.

5. DATA AVAILABILITY
Expression Atlas E-PROT identifiers and the PRIDE original
data set identifiers used for the reanalysis are included in Table
1.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00741.

Distribution of common reverse decoy hits across the
number of data sets; organ specificity of canonical
proteins in pig; correlation between gene (RNA-seq
based) and protein expression in baseline tissue pig data
sets; correlation of protein abundances across organ liver
compared between PaxDB and the results found in this
study; median protein abundances (in ppb) for each
protein group across various tissue samples included in
each organ; median binned protein abundances across
various tissue samples in each pig organ; median binned
protein abundances across various pig data sets; organ
distribution of canonical proteins in pig; gene ontology
enrichment analysis of “organ-enriched” and “group-
enriched” proteins; median binned protein abundances
of human and pig orthologs across all organs; elevated
proteomes of three different groups in various organs
after applying edit distance between human and pig
homologous genes; gene ontology enrichment analysis
of the three different groups of proteins considering their
level of expression in pig and human tissues; protein

abundances (ppb) considering only one-to-one mapping
between human and pig orthologs across all organs; and
the binned protein abundances of all one-to-one mapped
orthologs across ten common organs in human and pig
(ZIP)

■ AUTHOR INFORMATION
Corresponding Authors

Andrew R. Jones − Institute of Systems, Molecular and
Integrative Biology, University of Liverpool, Liverpool L69
7ZB, United Kingdom; orcid.org/0000-0001-6118-9327;
Email: Andrew.Jones@liverpool.ac.uk

Juan Antonio Vizcaíno − European Molecular Biology
Laboratory-European Bioinformatics Institute (EMBL-EBI),
Cambridge CB10 1SD, United Kingdom; Open Targets,
Cambridge CB10 1SD, United Kingdom; orcid.org/
0000-0002-3905-4335; Email: juan@ebi.ac.uk

Authors
Shengbo Wang − European Molecular Biology Laboratory-
European Bioinformatics Institute (EMBL-EBI), Cambridge
CB10 1SD, United Kingdom; orcid.org/0000-0001-
5034-6374

Andrew Collins − Institute of Systems, Molecular and
Integrative Biology, University of Liverpool, Liverpool L69
7ZB, United Kingdom

Ananth Prakash − European Molecular Biology Laboratory-
European Bioinformatics Institute (EMBL-EBI), Cambridge
CB10 1SD, United Kingdom; Open Targets, Cambridge
CB10 1SD, United Kingdom

Silvie Fexova − European Molecular Biology Laboratory-
European Bioinformatics Institute (EMBL-EBI), Cambridge
CB10 1SD, United Kingdom

Irene Papatheodorou − European Molecular Biology
Laboratory-European Bioinformatics Institute (EMBL-EBI),
Cambridge CB10 1SD, United Kingdom; Open Targets,
Cambridge CB10 1SD, United Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.3c00741

Author Contributions
#S.W., A.C., and A.P. have contributed equally, and they wish
to be considered as joint first authors.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We would like to thank all data submitters who made their
datasets available via PRIDE and ProteomeXchange. This work
has been funded by Open Targets, BBSRC [BB/T019670/1
and BB/T019557/1], and EMBL core funding. We would also
like to thank Andrew Leach and the rest of the team involved
in the Open Targets “Target Safety” project for helpful
discussions.

■ ABBREVIATIONS
DDA: data-dependent acquisition
DIA: data-independent acquisition
FDR: false discovery rate
GO: gene ontology
iBAQ: intensity-based absolute quantification

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00741
J. Proteome Res. 2024, 23, 1948−1959

1957

https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00741?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00741/suppl_file/pr3c00741_si_001.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+R.+Jones"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6118-9327
mailto:Andrew.Jones@liverpool.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Juan+Antonio+Vizcai%CC%81no"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3905-4335
https://orcid.org/0000-0002-3905-4335
mailto:juan@ebi.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shengbo+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5034-6374
https://orcid.org/0000-0001-5034-6374
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+Collins"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ananth+Prakash"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Silvie+Fexova"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irene+Papatheodorou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00741?ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00741?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


IDF: investigation description format
MS: mass spectrometry
NHP: non-human primate
ppb: parts per billion
PCA: principal component analysis
SDRF: sample and data relationship format
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