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Abstract

Many Gram- positive spore- forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that 
promise improved sustainability and ecological safety in agriculture. Here, we present a draft- quality genome sequence 
for Bacillus velezensis EU07, which shows growth- promotion in tomato plants and biocontrol against Fusarium head blight. 
We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 
single- nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will 
facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.

DATA SUMMARY
In this study, we generated genome sequence data, which has been deposited in public databases:

• National Center for Biotechnology Information (NCBI) BioProject accession number PRJNA743875 – https://www.ncbi.nlm. 
nih.gov/bioproject/743875

• Assembly NCBI GenBank accession number GCA_019997305.2 – https://www.ncbi.nlm.nih.gov/nuccore/JAIFZJ000000000
• NCBI RefSeq accession number GCF_019997305.2
• NCBI Sequence Read Archive (SRA) accession number SRR27184279.

INTRODUCTION
Many Gram- positive spore- forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that 
promise improved sustainability and ecological safety in agriculture [1–3]. Here, we present genomic sequencing data 
for Bacillus strain Egem- Utku 07, hereafter known as EU07. This strain was previously isolated from the rhizosphere of 
diseased tomato plants [4] in an effort to collect strains that could inhibit the soilborne pathogen Fusarium oxysporum f. 
sp. radicis- lycopersici [4], which causes crown rot in tomato. We demonstrated that EU07 inhibits this pathogen in vitro 
[4]. Furthermore, EU07 promotes growth and inhibits fusarium head blight in planta [5]. We previously established that 
EU07 is a member of the genus Bacillus, but its precise species identity was ambiguous. Furthermore, in the absence of 
sequence data, little was known about the potential molecular mechanisms for its beneficial properties. Here, we present 
a draft- quality genome sequence assembly and genomic sequence reads from strain EU07. This dataset will help in better 
understanding EU07’s phylogeny and taxonomy, and provide a resource to assist elucidation of the molecular mechanisms 
of EU07’s beneficial traits.
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METHODS
Bacterial strain and isolation of genomic DNA
We isolated genomic DNA from bacterial strain EU07 from fresh liquid culture grown for 24 h in nutrient broth pH 7.2. 
We note that this medium provides a laboratory environment quite different from the bacterium’s normal soil environment. 
The liquid culture was inoculated from a single colony and, therefore, was assumed to be clonal. We used the ISOLATE II 
genomic DNA kit (Bioline), following the manufacturer’s instructions. The quality and concentration of the genomic DNA 
were assessed using a NanoDrop 2000c spectrophotometer (ThermoFisher Scientific).

DNA sequencing
Genomic DNA was sent to the University of Exeter’s Sequencing Facility (https://biosciences.exeter.ac.uk/sequencing/) for 
Illumina Nextera XT library preparation and sequencing on the Illumina MiSeq platform to generate 748 528 pairs of 300 bp 
reads with a mean insert size of approximately 400 bp.

Genome sequence assembly
We performed adapter trimming and quality filtering on the MiSeq reads using Trim Galore version 0.6.7 [6], which incor-
porates Cutadapt version 3.5 [7]. The -q parameter was set to 30 and we used the --paired option. The resulting cleaned 
read- pairs served as input for de novo assembly using SPAdes version 3.13.1 [8] with the --careful option. The resulting 
scaffolds and contigs were re- ordered against the reference genome of strain FZB42 with the Mauve Contig Mover [9]. 
Annotation was added by the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation 
Pipeline version 6.6 [10] after submission of the genome assembly. The command lines are documented in GitHub at https:// 
github.com/davidjstudholme/bacillus_EU07/tree/main/assembly and in the Zenodo repository (https://doi.org/10.5281/ 
zenodo.10968102) [11].

Assessment of genome-assembly quality
We calculated assembly statistics using quast version 5.2.0 [12]. We checked read coverage of the genome assembly by 
aligning the EU07 reads against the EU07 assembly and calculating alignment statistics with Qualimap version 2.3 [13]. The 
alignment was performed using bwa- mem version 0.7.17 [14]; then, we reformatted and sorted the output using SAMtools 
version 1.13 [15]. The full details of the command lines are documented at https://github.com/davidjstudholme/bacillus_ 
EU07/blob/main/assemblyQC/README.md and in the Zenodo repository [11].

Average nucleotide identity (ANI)
We used fastANI [16] to calculate ANI between the genome of EU07 and each of the Bacillus amyloliquefaciens group 
(taxonomy ID: 1938374) genome assemblies retrieved from GenBank [17, 18]. The exact command lines are documented in 
GitHub at https://github.com/davidjstudholme/bacillus_EU07/ and in the Zenodo repository [11].

Phylogenomics
To generate a maximum- likelihood phylogenetic tree based on genome- wide SNPs, we used PhaME [19] with FastTree [20]. 
The exact command lines used are documented at https://github.com/davidjstudholme/bacillus_EU07/ and in the Zenodo 
repository [11]. The resulting tree was rendered using the Interactive Tree of Life (iTOL) 6.8.1 [21].

Whole-genome alignment
Genome sequences were aligned using progressiveMauve version 2.4.0 [22] after first re- ordering the contigs against the 
reference genome of strain KNU- 28 [23] with the Mauve Contig Mover [9]. The resulting alignment was visualized using 
Mauve snapshot_2015- 02- 25 [24]. The exact command lines used are documented at https://github.com/davidjstudholme/ 
bacillus_EU07/ and in the Zenodo repository [11].

Further whole-genome analyses
We used the Proksee web server [25] to perform several analyses of the assembled EU07 genome. This included blastn 
searches against 888 related genomes, annotation of horizontally acquired genomic regions with Alien Hunter [26], and 
identification of bacteriophage sequences using VirSorter [27, 28] and Phigaro [29]. Variant- calling was performed using 
the Parsnp tool in Harvest [30].

https://biosciences.exeter.ac.uk/sequencing/
https://github.com/davidjstudholme/bacillus_EU07/tree/main/assembly
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https://doi.org/10.5281/zenodo.10968102
https://github.com/davidjstudholme/bacillus_EU07/blob/main/assemblyQC/README.md
https://github.com/davidjstudholme/bacillus_EU07/blob/main/assemblyQC/README.md
https://github.com/davidjstudholme/bacillus_EU07/
https://github.com/davidjstudholme/bacillus_EU07/
https://github.com/davidjstudholme/bacillus_EU07/
https://github.com/davidjstudholme/bacillus_EU07/
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RESULTS AND DISCUSSION
Genome sequencing and assembly
We generated 748 528 pairs of 300 bp Illumina MiSeq sequencing reads from EU07 genomic DNA. This represents approxi-
mately 100× coverage of the 4.2 Mbp genome. Trimming and filtering with Trim Galore left 715 442 pairs of reads, with lengths 
ranging from 20 to 300 bp. De novo assembly with SPAdes yielded 266 contigs with a total length of 4.2 Mbp and N50 length 
of 52.8 kb. This was deposited in GenBank via the NCBI Submission Portal under accession number GCA_019997305.2. 
The NCBI’s contamination filtering removed 5 contigs, leaving 261. The NCBI PGAP annotation system predicted 4 273 
genes, of which 4 081 encode putative proteins. The results of NCBI’s quality check with CheckM v1.2.2 [31, 32] revealed a 
completeness of 98.16 % (85th percentile) and 0.47 % contamination.

Alignment of sequencing reads against the genome assembly and analysis with Qualimap revealed a mean coverage of 
93.25× and standard deviation of 89.87. Almost all of the genome assembly (99.96 %) had at least 1× coverage, and 97.59 % 
of the assembly had at least 10× coverage. The full Qualimap report and output files are available in the Zenodo repository 

Table 1. Genomes that share more than 99 % ANI with B. velezensis EU07

GenBank accession no. Reference Strain ANI (%)

GCA_004421045.1 [47] ‘B. amyloliquefaciens’ FS1092 99.99

GCA_021228895.1 [48] B. velezensis A4P130 99.99

GCA_003986895.1 – B. velezensis BE2 99.99

GCA_007678125.1 [49] B. velezensis DE0189 99.99

GCA_003073255.1 [37] B. velezensis QST713 99.99

GCA_026156445.1 [50] B. velezensis CHBv2 99.98

GCA_001709055.1 – B. velezensis CFSAN034339 99.98

GCA_019093835.1 – ‘B. amyloliquefaciens’ BK 99.98

GCA_014791945.1 – ‘B. amyloliquefaciens’ INH2- 4b 99.98

GCA_028609625.1 [42] B. velezensis DMW1 99.98

GCA_003149795.1 [40] ‘B. amyloliquefaciens’ ALB79 99.95

GCA_024300805.1 [23] ‘B. amyloliquefaciens’ KNU- 28 99.95

GCA_001278635.1 [39] ‘B. amyloliquefaciens’ BS006 99.94

GCA_024134605.1 – B. velezensis 2987tsa1 99.12

GCA_000817575.1 [51] ‘B. amyloliquefaciens’ TF28 99.10

GCA_034060585.1 – B. velezensis Y- 4 99.07

GCA_010671715.1 [52] B. velezensis HU- 91 99.07

GCA_009193045.1 [53] B. velezensis BPC6 99.07

GCA_034061945.1 – B. velezensis YN- 2A 99.05

GCA_026786545.1 – B. velezensis NRRL B- 59289 99.04

GCA_024138555.1 [54] ‘B. amyloliquefaciens’ TPS17 99.04

GCA_029866505.1 [55] ‘B. amyloliquefaciens’ MN- 13 99.03

GCA_000341875.1 [56] B. velezensis UCMB5036 99.02

GCA_009789615.1 [57] B. velezensis BA- 26 99.02

GCA_029910295.1 – B. velezensis PT4 99.01

GCA_009738165.1 [58] B. velezensis HN- Q- 8 99.01

GCA_021559715.1 [59] B. velezensis CF57 99.01

GCA_012647845.1 [60] B. velezensis UCMB5140 99.01
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(https://doi.org/10.5281/zenodo.10968102) [11], allowing users of this data to take coverage into account when performing 
analyses. We note that the contig with least coverage is JAIFZJ020000237.1, having only 1.04× coverage. Nevertheless, blast 
searches reveal that this contig shows very high levels of sequence similarity to genomes of other Bacillus velezensis strains, 
increasing confidence in its validity.

Fig. 1. Phylogenetic position of B. velezensis EU07 within the B. amyloliquefaciens group. The phylogenomic maximum- likelihood tree was generated 
using PhaME and FastTree. The black star highlights the position of strain EU07, whose genome sequence is presented in this study. The configuration 
file and the tree files are deposited in GitHub at https://github.com/davidjstudholme/bacillus_EU07. Accession numbers for the genome assemblies 
can be found in Table 3. The tree can be viewed interactively at https://itol.embl.de/tree/14417323152242691702474608.

Fig. 2. Whole- genome- sequence alignment between B. velezensis EU07 and closely related strains. Genome sequences were re- ordered, aligned and 
visualized using Mauve. Accession numbers for the genome assemblies can be found in Table 3. Green blocks in each genome are homologous to 
green blocks in all the other genomes. Blue blocks are homologous to the blue blocks in all the other genomes.

https://doi.org/10.5281/zenodo.10968102
https://github.com/davidjstudholme/bacillus_EU07
https://itol.embl.de/tree/14417323152242691702474608
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EU07 belongs to the species B. velezensis
Previously, the phylogenetic and taxonomic position of strain EU07 had been ambiguous and we previously referred to it as 
‘B. sp.’ and ‘B. subtilis’ [4, 5]. To identify the species to which strain EU07 belongs, we uploaded the genome assembly to the 
Type Strain Genome Server (TYGS) [33]. This classified EU07 to the species B. amyloliquefaciens. Among the sequenced type 
strains in TYGS, the most similar to EU07 was FZB42 [34], which is the type strain of B. amyloliquefaciens subsp. plantarum 
[35]. However, this taxon is now considered to be synonymous with B. velezensis and distinct from B. amyloliquefaciens [36]. 
Hereafter, we refer to our strain as B. velezensis EU07.

EU07 belongs to a clade of plant-associated strains of B. velezensis
To identify previously sequenced similar genomes, we calculated ANI between B. velezensis EU07 and all 888 genome 
assemblies available in GenBank for the B. amyloliquefaciens group. This revealed that EU07 shares more than 99.9 % ANI 
with 13 previously sequenced genomes. Table 1 lists the genomes showing the highest levels of ANI to that of B. velezensis 
EU07. This includes strains that previously have been classified variously as B. amyloliquefaciens or B. velezensis. However, 
they all fall within the B. velezensis clade [36–38] and should be considered as belonging to that species. To further elucidate 
the evolutionary relationships of EU07, we generated a phylogenomic tree including these closely related strains and the 
relevant type strains; this is presented in Fig. 1. Consistent with the ANI results, strain EU07 falls within a clade that includes 
the same 13 strains that showed greatest ANI with EU07. Alignment of these genomes with Mauve (Fig. 2) reveals extensive 
conservation and co- linearity of the chromosome sequence among these strains. Comparison of the EU07 chromosome versus 
the genome sequences of related strains, as shown in Fig. 3, revealed that most of the presence–absence polymorphism was 
associated with loci predicted to originate from bacteriophage genomes.

Among the strains closely related to EU07 are several that previously have been described as having growth- promoting and/
or pathogen- inhibitory properties. For example, strain BS006 was isolated from roots of Physalis peruviana in Colombia and 

Fig. 3. Overview of the genome of B. velezensis EU07 and comparison with closely related genomes. The circular plot of the EU07 chromosome was 
generated using Proksee. Data are arranged in nine concentric circular tracks as follows: (1) G+C skew, (2) EU07 contigs, (3) blastn hits against the 
QST713 genome, (4) blastn hits against the BS006 genome, (5) blastn hits against the ALB79 genome, (6) blastn hits against the FZB542 genome, 
(7) predicted horizontally acquired regions predicted by Alien Hunter, (8) phage loci predicted by VirSorter and (9) phage loci predicted by Phigaro.
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Table 2. Forty- six SNPs between B. velezensis strains EU07 and QST713

Position in CP025079.1 Nucleotide in QST713 Nucleotide in EU07 Amino acid change Predicted gene product

21 222 A G K→E BVQ_RS00080: serine- tRNA ligase

230 096 A C E→A BVQ_RS21890: non- ribosomal peptide 
synthetase

230 098 A C K→Q BVQ_RS21890: non- ribosomal peptide 
synthetase

230 111 C A A→E BVQ_RS21890: non- ribosomal peptide 
synthetase

530 737 T G Y→STOP BVQ_RS02595: hypothetical protein

530 789 T G L→V BVQ_RS02595: hypothetical protein

530 811 T G I→>S BVQ_RS02595: hypothetical protein

531 288 T G I→S BVQ_RS02595: hypothetical protein

705 298 A C F→V BVQ_RS03655: GNAT family N- 
acetyltransferase

855 165 A C Non- coding

1 168 486 A C Non- coding

1 215 136 A C F→C BVQ_RS06330: contact- dependent growth 
inhibition system immunity protein

1 851 920 T G F→L BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 923 A T G→G (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 925 C A T→K BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 929 G T K→N BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 932 A G E→E (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 935 A G Q→Q (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 938 C T D→D (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 941 T G T→T (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 944 T C Y→Y (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 950 A G K→K (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 953 T G V→V (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 954 T C L→L (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 956 A C L→F BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 959 T C A→A (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 962 A C G→G (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

Continued
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promotes growth in banana [39]. Strain KNU- 28 was isolated from peach leaves in Korea [23]. Strain ALB79 was isolated from 
grapes in northern California and shown to inhibit the growth of Listeria monocytogenes in vitro [40], while strain QST713 
is used commercially (Serenade; Bayer) to protect mushroom crops against green mould disease and promotes growth in 
banana [37, 41], among other applications. The endophytic Bacillus strain DMW1 was isolated from the inner tissues of 
potato tubers and exhibited strong biocontrol activity [42]. The near- identity of these genome sequences, independently 
isolated from plants in diverse geographical locations, suggests that EU07 is a member of a widely disseminated lineage of B. 
velezensis with biocontrol and growth- promoting properties. The molecular mechanisms and genetic determinants of these 
properties have been extensively reviewed elsewhere [43–45], and include gene clusters for secondary metabolites such as 
bacilysin, fengycin and macrolactin, which are conserved in the B. velezensis lineage that includes BS006 and EU07 [38].

Since our previous phenotypic comparisons between strains EU07 and QST713 revealed differences in their abilities to 
suppress fungal growth, we compared their genome sequences to identify possible genetic determinants of the observed 
differences. Their genomes are almost identical, with no detectable differences in their gene contents. However, we identi-
fied 46 single- nucleotide differences, which are listed in Table 2. These differences appear to be non- uniformly distributed 
across the genome. For example, 20 of the 46 SNPs occur within a single gene that encodes the beta subunit of a class- 1b 
ribonucleoside- diphosphate reductase [46] (RefSeq WP_108702400.1; locus tag BVQ_RS09140). This suggests that these 
differences might be explained by recombination events associated with horizontal genetic transfer rather than point muta-
tions. We also identified some sequence differences between EU07 and QST713 in the intergenic regions between several 

Position in CP025079.1 Nucleotide in QST713 Nucleotide in EU07 Amino acid change Predicted gene product

1 851 965 T G L→L (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 969 T C L→L (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 971 A G L→L (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 972 T C L→L (synonymous) BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 851 974 G T L→F BVQ_RS09140: class 1b ribonucleoside- 
diphosphate reductase subunit beta

1 878 004 T G Non- coding

2 191 740 T C D→G BVQ_RS10680: cysteine hydrolase family 
protein

2 415 378 C A Non- coding

2 415 381 C A Non- coding

2 415 440 C A Non- coding

2 722 225 G T Non- coding

2 722 243 T G Non- coding

3 268 938 G T A→E BVQ_RS16510: class 1 isoprenoid biosynthesis 
enzyme

3 269 022 T G N→T BVQ_RS16510: class 1 isoprenoid 
biosynthesis enzyme

3 467 035 A C Non- coding

3 489 562 A G F→F (synonymous) BVQ_RS17685: lantibiotic immunity ABC 
transporter MutG family permease subunit

3 490 697 T A I→I (synonymous) BVQ_RS17690: lantibiotic immunity ABC 
transporter MutE/EpiE family permease 

subunit

3 573 178 T A Non- coding

4 000 822 T G Non- coding

Table 2. Continued
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Table 3. Genome sequences included in the phylogenomic analysis

GenBank accession no. Taxon Reference

GCA_003149795.1 ‘B. amyloliquefaciens’ ALB79 [40]

GCA_019093835.1 ‘B. amyloliquefaciens’ BK –

GCA_001278635.1 ‘B. amyloliquefaciens’ BS006 [39]

GCA_000196735.1 B. amyloliquefaciens DSM7T [34]

GCA_004421045.1 ‘B. amyloliquefaciens’ FS1092 [47]

GCA_014791945.1 ‘B. amyloliquefaciens’ INH2- 4b –

GCA_024300805.1 ‘B. amyloliquefaciens’ KNU- 28 [23]

GCA_029866505.1 ‘B. amyloliquefaciens’ MN- 13 [55]

GCA_000817575.1 ‘B. amyloliquefaciens’ TF28 [51]

GCA_024138555.1 ‘B. amyloliquefaciens’ TPS17 [54]

GCA_000262045.1 B. siamensis KCTC 13613T [61]

GCA_024134605.1 B. velezensis 2987tsa1 –

GCA_021228895.1 B. velezensis A4P130 [48]

GCA_001647965.1 B. velezensis AP194 [62]

GCA_009789615.1 B. velezensis BA- 26 [57]

GCA_003986895.1 B. velezensis BE2 –

GCA_009193045.1 B. velezensis BPC6 [53]

GCA_003431885.1 B. velezensis (B. methylotrophicus) CBMB205T [63]

GCA_021559715.1 B. velezensis CF57 [59]

GCA_001709055.1 B. velezensis CFSAN034339 –

GCA_026156445.1 B. velezensis CHBv2 [50]

GCA_007678125.1 B. velezensis DE0189 [49]

GCA_028609625.1 B. velezensis DMW1 [42]

GCA_000015785.2 B. velezensis (B. amyloliquefaciens subsp. plantarum) 
FZB42T

[34]

GCA_009738165.1 B. velezensis HN- Q- 8 [58]

GCA_010671715.1 B. velezensis HU- 91 [52]

GCA_001461835.1 B. velezensis (='B. oryzicola') KACC 18228T [64]

GCA_001267695.1 B. velezensis KCTC 13012 [65]

GCA_001461825.1 B. velezensis NRRL B- 41580T [36]

GCA_026786545.1 B. velezensis NRRL B- 59289 –

GCA_026787705.1 B. velezensis NRRL BD- 154 –

GCA_029910295.1 B. velezensis PT4 –

GCA_003073255.1 B. velezensis QST713 [37]

GCA_000341875.1 B. velezensis UCMB5036 [56]

GCA_012647845.1 B. velezensis UCMB5140 [60]

GCA_034060585.1 B. velezensis Y- 4 –

GCA_034061945.1 B. velezensis YN- 2A –

GCA_019997305.1 B. velezensis EU07 This study
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tRNA genes (GenBank accession no. JAIFZJ010000168.1). These genetic differences may explain the previously observed 
differences observed between the DNA fingerprints of these two strains when previously assayed using RAPDs [4].

Conclusion
Genome sequencing of potential biocontrol strain EU07 revealed that it belongs to the species B. velezensis, a species often closely 
associated with plant roots, and well known for promoting plant growth and biocontrol. The EU07 strain is genetically almost 
identical to the commercially used strain QST713 (Serenade) and several other previously sequenced and characterized strains; 
however, we identified several genes containing single- nucleotide differences that can distinguish between EU07 and QST713. 
Strain EU07 is more distantly related to the commercially used B. velezensis strain FZB24 (TAEGRO), previously known as the 
type- strain of B. amyloliquefaciens subsp. plantarum. The availability of this genome sequence will facilitate future efforts to 
unravel the genetic and molecular basis for the strains beneficial properties.
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