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Abstract

Four-dimensional computed tomography (4D-CT) plays an important role in lung cancer treatment 

because of its capability in providing a comprehensive characterization of respiratory motion 

for high-precision radiation therapy. However, due to the inherent high-dose exposure associated 

with CT, dense sampling along superior–inferior direction is often not practical, thus resulting in 

an inter-slice thickness that is much greater than in-plane voxel resolutions. As a consequence, 

artifacts such as lung vessel discontinuity and partial volume effects are often observed in 4D-CT 

images, which may mislead dose administration in radiation therapy. In this paper, we present 

a novel patch-based technique for resolution enhancement of 4D-CT images along the superior–

inferior direction. Our working premise is that anatomical information that is missing in one 

particular phase can be recovered from other phases. Based on this assumption, we employ 

a hierarchical patch-based sparse representation mechanism to enhance the superior–inferior 

resolution of 4D-CT by reconstructing additional intermediate CT slices. Specifically, for each 
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spatial location on an intermediate CT slice that we intend to reconstruct, we first agglomerate 

a dictionary of patches from images of all other phases in the 4D-CT. We then employ a 

sparse combination of patches from this dictionary, with guidance from neighboring (upper and 

lower) slices, to reconstruct a series of patches, which we progressively refine in a hierarchical 

fashion to reconstruct the final intermediate slices with significantly enhanced anatomical details. 

Our method was extensively evaluated using a public dataset. In all experiments, our method 

outperforms the conventional linear and cubic-spline interpolation methods in preserving image 

details and also in suppressing misleading artifacts, indicating that our proposed method can 

potentially be applied to better image-guided radiation therapy of lung cancer in the future.

Keywords

Adaptive dictionary; four-dimensional computed tomography (4D-CT) lung data; hierarchical 
patch-based sparse representation; resolution enhancement

I. Introduction

For decades, determining the accurate radiation dose for a moving target in the lung, such 

as a tumor, has been an extremely challenging problem in cancer radiation therapy [1], [2]. 

Information used for guiding treatment planning and delivery typically comes from images 

acquired using free-breathing three-dimensional computed tomography, with no isolated 

respiratory phase information. This essentially implies the absence of motion information 

in aiding the estimation of volume and shape of the moving structures in the lung. Thus, 

to ensure sufficient tumor coverage, an estimated tumor region is generally expanded in all 

directions to account for target motion. This unnecessary enlargement of the treatment target 

volume can result in harm to the healthy tissue.

With four-dimensional computed tomography (4D-CT), additional phased images can help 

capture respiratory motion information that is crucial for target definition in radiation 

therapy. 4D-CT is usually obtained by sorting the multiple free-breathing CT segments 

in relation to the couch position and the tidal volume [3], [4]. Due to the risk of radiation 

[5], [6], only a limited number of CT segments are usually acquired, resulting in much lower 

inter-slice resolution when compared with the in-plane resolution. This lack of sufficient 

structural information along the superior–inferior direction introduces image artifacts such 

as vessel discontinuity and partial voluming. Consequently, correct assessment of tumor 

could be severely affected due to shape distortion. Fig. 1 shows the example coronal and 

sagittal views of 4D-CT lung data. Due to the lower superior–inferior resolution (5 mm), 

many structural details are not observable.

The main objective of this paper is to enhance the image quality of 4D-CT, in order to 

help treatment planning for radiation therapy. The respiratory phase information afforded 

by 4D-CT is important for the estimation of lung motion trajectory for more accurate 

administration of radiation therapy without incurring unnecessary radiation dose. However, 

due to the inherent high-dose exposure associated with CT, dense sampling along the 

superior–inferior direction is often not practical, thus resulting in an inter-slice thickness 

that is much greater than in-plane voxel resolutions. Many recent studies have attempted to 
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improve the resolution of lung 4D-CT data. For example, an optical flow based temporal 

interpolation technique [7], [8] has been proposed to reduce the motion artifact of 4D-CT 

data. To reduce the scan dose, a temporal nonlocal mean strategy was employed in [9] to 

regularize the reconstruction of 4D-CT with undersampled projections. In [10] and [11], 

a registration-based approach was also applied to interpolate intermediate phases based on 

a couple of reference phases (e.g., inhale and exhale phases). Although this increases the 

number of phases in the 4D-CT image sequence, it does not increase the actual inter-slice 

resolution.

A commonly used approach to increase inter-slice resolution is interpolation. Grevera et 
al. [12] summarized interpolation methods into two groups: scene-based and object-based 

methods. For scene-based approaches, interpolation is performed based on image intensity. 

Linear and spline-based interpolation methods are the commonly used scene-based methods 

due to their simplicity. However, scene-based approaches suffer from significant shift of 

anatomical patterns between neighboring slices, causing undesirable artifacts and blurred 

edges [13].

Object-based interpolation methods extract additional information to guide interpolation, 

which include shape-based [12], morphology-based [14], optical-flow-based [15], [16], 

and registration-based approaches [13], [17]. These methods are based on an important 

assumption: anatomical structures are similar between neighboring slices. While this 

assumption is generally true for the brain, abdomen, and teeth, the lung CT interpolation 

is a difficult problem where structural shapes vary rapidly and hence could be very different 

across slices.

An alternative approach is to reconstruct a high resolution image by combining low 

resolution images [18]. Several super-resolution methods have been proposed for generating 

high-resolution medical images [19]–[24]. In general, these methods take an image 

restoration approach by estimating the point spread function (PSF) associated with image 

blurring, down-sampling, and subject motion, and together with a regularization term (i.e., 

Tikhonov cost function, Total variation, Gibbs prior, etc.) optimize an appropriately defined 

energy function to recover the super-resolution image. For instance, Greenspan et al. [19], 

[21] proposed an approach for MRI image super-resolution reconstruction that is based 

on the Irani–Peleg back projection (BP) model [25], via estimation of the PSF associated 

with subject motion. Gholipour et al. [23] combined maximum likelihood estimation and 

robust M-estimation to build super-resolution volume data for fetal brain MRI. Wallach et al. 
[26] implemented maximum a posteriori (MAP) algorithm to reconstruct respiratory high-

resolution synchronized PET data, where the Huber regularization term was used to ensure 

convergence and also the B-spline registration was used for motion estimation. Recently, 

Rousseau [20] proposed a nonlocal approach for image super-resolution using inter-modality 

priors. The high-resolution brain image was generated from an input low-resolution image 

with the help of priors obtained from another high resolution brain image. For the above 

approaches, PSF estimation has direct influence on the super-resolution reconstruction, and 

yet it is nontrivial and often error-prone to estimate.
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In this work, we will develop a novel method to enhance the resolution of 4D-CT by 

taking into consideration the important fact that during the course of 4D-CT acquisition, 
complementary anatomical information is spread throughout different phases. By using this 

complementary information, our approach will reconstruct intermediate slices to increase the 

resolution of 4D-CT beyond the acquired resolution. Our method infers structural details 

in the intermediate slices in a patch-by-patch fashion by considering the dictionaries of 

patches generated adaptively from the images at other phases. Patches in these dictionaries 

are combined using a hierarchical sparse representation framework to form the most 

representative patches in relation to the neighborhood of the target patches. Note that Tian 

et al. have also used interphase information to improve 4D-CT reconstruction [9]. In their 

work, the interphase correlation between images at successive phases is captured via a 

nonlocal means mechanism for regularizing the reconstruction of 4D-CT from undersampled 

projection data. In other words, the interphase correlation is used only to constrain the 

4D-CT reconstruction so that the reconstruction results for the similar structures could be 

consistent across different phases. Our work solves a different problem with a fundamentally 

different approach. In our work, the interphase information is carried across phases for 

intermediate slice reconstruction, not merely for regularization.

A preliminary version of this work was presented in [27]. The preliminary framework is 

extended in this work to incorporate a hierarchical refinement mechanism where image 

structural details are recovered from a coarse-to-fine fashion. With this improvement, we 

are able to recover greater structural details and at the same time deal with blocking 

artifacts. Experimental validation is also substantially extended to evaluate performance of 

the proposed framework more comprehensively.

Patch-based sparse representation has recently attracted rapidly growing interest. This 

approach assumes that image patches can be represented by a sparse linear combination 

of an overcomplete dictionary of image patches. This strategy has been applied to a good 

deal of image processing problems, such as image denoising [28], [29], image in-painting 

[30], color image restoration [29], image recognition [31], [32], achieving state-of-the-art 

performance. Yang et al. [33] showed that the high-resolution images can be achieved 

by using sparse representation. Tosic et al. [34] enhanced the breast ultrasound image 

resolution based on the dictionary trained from the high-resolution MRI dataset. Chen et 
al. [35] employed the dictionary trained using prior information to improve the accuracy in 

MRI reconstruction, from significantly undersampled data. Ravishankar et al. [36] further 

proposed an MRI image reconstruction method from the highly undersampled k-space data, 

and then built high-resolution MRI images with the help of specific dictionary that was 

trained from the complete k-space data. These studies demonstrate the potential applications 

of sparse representation in improving the resolution of medical images.

The general formulation of sparse representation can be described as follows. Let 

D ∈ RP × M be an overcomplete dictionary of M prototype signal-atoms. A signal y can be 

represented by y = Dα or approximately as y ≈ Dα, satisfying ∥ Dα − y ∥2
2 ≤ L. The vector α, 

which has few nonzero values, is comprised of the sparse coefficients needed to reconstruct 

the signal y. To solve for α, both y and a dictionary D are needed. For the application such 
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as denoising and deblurring, y represents the observed degraded image, and D is a learned 

universal dictionary. In our case, y is not available and needs to be reconstructed. We use 

neighboring image information in place of y to help estimate α (see Section III for details). 

In addition, we note that building a “global” dictionary D that caters for the whole lung 

is computationally intractable. Thus, we resort to building individual dictionaries that will 

adapt to the structural patterns of local image patches.

The proposed approach can be divided into two steps. In the first step, a patch-based 

sparse-representation formulation is built to reconstruct the initial intermediate slices. In 

the second step, a hierarchical approach is used to iteratively refine the initial results. 

Compared with conventional linear and cubic spline interpolation methods, we will show 

that our method yields superior performance both qualitatively and quantitatively. We will 

present details of our method for enhancing the resolution of lung 4D-CT in Section II. 

Results on extensive evaluation of the proposed method in comparison with the conventional 

interpolation methods will be provided in Section III. Section IV concludes this paper.

II. Method

A. Basic Idea

Our key assumption is that image information lost in one respiratory phase will appear 

in other phases. This is illustrated in Fig. 2. The blue solid horizontal lines indicate the 

scanned slices. The blue dashed horizontal line indicates the intermediate slice that needs to 

be reconstructed. During different respiratory phases, the lung moves in the superior–inferior 

direction and information pertaining to the intermediate slice might be captured in the scans 

of other phases.

B. Method Overview

Given the acquired 4D-CT images I = Ii s ∣ i = 1, …, N, s = 1, …, S , where N is the 

number of phases and S is the total number of slices in each phase image Ii, the goal is 

to reconstruct an intermediate high-resolution slice between two consecutive slices Ii s  and 

Ii s + 1  in image Ii. The major concepts involved in our method are illustrated in Fig. 3. 

The blue solid and dashed lines in the figure denote the existing slices and the intermediate 

slices to be reconstructed, respectively. Since the scanning time for each slice is relatively 

fast (< 0.1 sec), we regard each slice Ii s  to be free of motion artifacts. For capturing local 

anatomical nuances, we further divide the intermediate slice into a number of overlapping 

patches. For each patch (red box in Fig. 3), we assume that the missing structural details 

that are to be recovered can be found in other phases (purple boxes in Fig. 3). Thus, 

the estimation of patches on the intermediate slice can be formulated as the problem of 

finding linear combinations of patches from a patch dictionary gathered from complimentary 

respiratory phases. To achieve this, two problems have to be solved. 1) How should the 

dictionary for each patch be constructed? 2) How do we find the best representation based 

on the dictionary? Our proposed solutions to these problems will be discussed next. A 

summary of the mathematical notations involved in this paper is provided in Table I.
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C. Construction of Motion Adaptive Dictionaries

Patch-based dictionary learning is widely used in computer vision for image denoising and 

super-resolution [28], [29], [33], [37]. The key requirement in constructing an effective 

dictionary is that the dictionary should be universal enough to represent every possible 

patch with sufficient accuracy. To achieve this, typically hundreds of thousands of patches 

are required to learn a “global” dictionary [33]. This approach will, however, require a 

significantly larger amount of computation to reconstruct each patch since all patches in 

this large global dictionary will have to be consulted during the reconstruction process. 

Moreover, not all patches in this global dictionary are necessary for the reconstruction of the 

patch of interest. Due to these reasons, we have opted to construct smaller dictionaries that 

can better adapt to each local patch.

Assuming that the space of an intermediate slice Y  has been divided into overlapping 

patches, we use yi, a column vector (red box in Fig. 4), to denote the intensity values of an 

arbitrary patch at phase i. The search for patches to be included in the dictionary is based on 

adaptive bounding boxes for images at phases j j ≠ i , using patches immediately superior 

and inferior to yi, denoted as yi
u and yi

d, as references (see two purple boxes in phase i of Fig. 

4). Since lung motion is predominantly along the superior–inferior direction, patch searching 

in the left-right and anterior–posterior directions is restricted. The search range is adjusted 

in the superior–inferior direction based on the fact that lung motion near the diaphragm is 

significantly larger than locations that are far away. For each image at phase j, we extract 

with respect to yi a P × Mj dictionary matrix Dj = [yj
1, …, yj

Mj] (see purple boxes in phase j ≠ i
of Fig. 4), where P  is the length of yi, and Mj is the number of voxels within the bounding 

box set for the image at phase j. We repeat this for all phases j j = 1, …, N, j ≠ i  to construct 

the final P × M dictionary matrix D = D1, …, Di − 1, Di + 1, …, DN , where M = ∑j = 1, j ≠ i
N Mj.

D. Hierarchical Patch-Based Intermediate Slice Reconstruction by Sparse Representation

First Step: Reconstructing Initial Intermediate Slices:

a) General Formulation:  Upon obtaining the relevant dictionary D for patch yi, the 

next task is to find a suitable reconstruction strategy using the dictionary. In this work, 

the estimation of yi is formulated as the linear combination of patches in the dictionary, 

i.e., yi = Dα, where α is a M × 1 weight vector (column vector). The patches yi
u and yi

d, 

immediately superior and inferior to yi, are used as constraints for the initial reconstruction 

of yi. This is discussed with more detail in the following.

First, the reconstructed patch yi should resemble both yi
u and yi

d

∥ Dα − yi
u ∥2

2 ≤ L, ∥ Dα − yi
d ∥2

2 ≤ L

(1)

where L is a threshold for controlling patch discrepancy. In addition, we require that 

the reconstructed patch is not biased towards any of these two consecutive patches, i.e., 

∥ Dα − yi
u ∥2

2 and ∥ Dα − yi
d ∥2

2 should be balanced
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1
ε ≤ ∥ Dα − yi

u ∥2
2

∥ Dα − yi
d ∥2

2 ≤ ε

(2)

where ε is a tolerance factor, with value ranged from 1.1 to 2.3.

For better characterization of structural patterns in the patches, we use both the original 

intensity values and the derived features to represent each patch. Thus, (1) and (2) can be 

modified to

∥ D‾ α − y‾i
u ∥2

2 ≤ L, ∥ D‾ α − y‾i
d ∥2

2 ≤ L

(3)

and

1
ε ≤ ∥ D‾ α − y‾i

u ∥2
2

∥ D‾ α − y‾i
d ∥2

2 ≤ ε

(4)

where D‾  and y‾i are the new dictionary and new patch, as defined by 

D‾ = D
λFD , y‾i

u =
yi

u

λFyi
u , y‾i

d =
yi

d

λFyi
d . F  is the feature operator, which in our case computes 

the gradients based on the intensity values. λ is a tuning parameter that controls the balance 

between the contributions of image intensity and image feature. The augmented distance 

conditions then become

∥ Dα − yi
u ∥2

2 + λ∥ FDα − Fyi
u ∥2

2 ≤ L
∥ Dα − yi

d ∥2
2 + λ∥ FDα − Fyi

d ∥2
2 ≤ L .

(5)

Second, the weight vector α should be sparse. Including more than necessary patches from 

the dictionary will only marginally reduce the fitting error in (5) at the expense of adding 

noise and blur to the reconstructed lung anatomy. We, therefore, penalize the weight vector 

using the l0-norm, ∥ α ∥0, and reformulate the optimization problem to become

min
α

∥ α ∥0

s.t. E(α) =
∥ Dα − yi

u ∥2
2 + λ∥ FDα − Fyi

u ∥2
2 ≤ L

∥ Dα − yi
d ∥2

2 + λ∥ FDα − Fyi
d ∥2

2 ≤ L

(6)

and
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1
ε ≤ ∥ Dα − yi

u ∥2
2 + λ∥ FDα − Fyi

u ∥2
2

∥ Dα − yi
d ∥2

2 + λ∥ FDα − Fyi
d ∥2

2 ≤ ε .

b) Numerical Solution for Sparse Representation:  We use an efficient algorithm to find 

the sparse representation Dα (or FDα) in a greedy fashion. Similar to the matching pursuit 

algorithm [38], [39], we sequentially select nonzero-weighted atoms from the dictionary D. 

Let v denote element/atom in dictionary D. We denote the set of selected atoms at iteration k
as V k = vχ(q) ∣ vχ(q) ∈ D, q = 1, …, k , where χ(q) indicates the index of the atom selected at the 

q th iteration. The weight vector αk at iteration k is a function of V k, i.e., αk V k , all elements 

in αk = α1
k, α2

k, …, αM
k  are zero except αχ(q)

k (q = 1, …k). The estimate of yi at iteration k is then 

∑q = 1
k αχ(q)

k vχ(q). The next atom vχ(k + 1) ∈ D − V k  is selected so that we have (7), as shown at 

bottom of page, and

q = 1

k + 1
αχ(q)

k + 1 = 1 .

As explained in the Appendix, the optimization problem associated with (7) can be solved 

using an approach that is similar to locally linear embedding (LLE) [40]. The process above 

is iterated until E(α) falls below a certain threshold [see (6)] or when it starts to increase.

Fig. 5 shows an example reconstructed slice. From left to right, the ground truth, the 

results given by linear interpolation, cubic-spline interpolation, and our proposed method are 

shown, respectively. It can be seen that our method achieves the best result with the least 

amount of artifacts and the greatest similarity with the ground truth. More results will be 

reported in the experiment section.

c) Parameter Determination:  To achieve the best reconstruction for the initial 

resolution-enhanced images, several critical parameters need to be fine-tuned: patch size, 

patch overlap, parameter λ, and parameter ε. We use three typical cases (case3, case4, and 

case7 from the DIR-lab [41]) to test the influence of each parameter. The details of the 

experiment data, software, and hardware platform will be described in Section III-A.

Local Patch Size and Overlap Degree: Fig. 6 shows the average peak signal-to-noise 

ratio (PSNR) for intermediate slice reconstruction with respect to the use of different patch 

size and overlap degree. Although speeding up computation (see Table II), the low overlap 

degree between two patches introduces significant blocking artifacts. Given the same patch 

size, the reconstruction with larger patch overlap always gives better results along with 

less artifacts. We note, however, large overlap increases computation time dramatically (e.g. 

16/12 and 32/28). The patch size also has significant influence on the results. As shown in 

Fig. 6, the average PSNR increases with the increase of patch size from 8 × 8 to 32 × 32. 

This is not surprising since large local patches can capture more anatomical information for 

robust matching. Based on these analyses, as a tradeoff between the computational speed 
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and accuracy, we set patch size to 32 with 24 pixels overlap for the first step of our approach 

throughout all the experiments presented in Sections III-C and III-D.

Parameter λ: Recall that the balance between image intensities and image features is 

controlled by the parameter λ. Fig. 7 shows the average PSNR values with λ changing from 

0 to 1.2 for three different cases. It is clear that λ = 0.2 provides the best reconstruction 

result in terms of PSNR. We, therefore, set λ = 0.2 throughout all experiments presented in 

Sections III-C and III-D.

Parameter ε: Now we turn to ε, a tolerance factor for controlling the bias of selected 

patches towards the two consecutive patches. Similar to the analysis for parameter λ, we also 

select three cases to test the impact of ε. The PSNR values with different ε ranging from 1.1 

to 2.3 are shown in Fig. 8. It is clear that for the low ε values (≤1.3), the higher PSNR values 

are achieved since the strict constraint is helpful to reject the unfit patches. We, therefore, set 

ε = 1.1 throughout all experiments presented in Sections III-C and III-D.

Second Step: Hierarchical Patch-Based Sparse Representation: We have 
mentioned previously that, in order to reduce blocking artifacts, the image patches are 

allowed to overlap as much as 2/3 of the patch size. This will however blur the reconstructed 

intermediate slices. To overcome this problem, we hierarchically decrease the patch size and 

overlap area, and repeatedly update the reconstructed slice to reduce image blurring.

vχ(k + 1) = arg min
v ∈ D − V k

E αk + 1 V k + v

s.t. 1
ε ≤

∥ Dαk + 1 V k + v − yi
u ∥

2

2
+ ∥ FDαk + 1 V k + v − Fyi

u ∥
2

2

∥ Dαk + 1 V k + v − yi
d ∥

2

2
+ ∥ FDαk + 1 V k + v − Fyi

d ∥
2

2 ≤ ε

(7)

Let Y r denote the initial reconstructed image and yi
r denote a local patch of Y r. We solve 

yi
′ = Dα, where yi

′ is the current estimated patch, subject to the following condition:

∥ Dα − yi
r ∥2

2 + λ∥ FDα − Fyi
r ∥2

2 ≤ L .

(8)

Note that this equation is similar to (5). The difference is that now we use the initial 

image Y r as the constraint, instead of yi
u and yi

d. The dictionary D is also adaptively built as 

described in Section II-C, and the solution is the same as described in Section II-D.

To ensure the consistency between iterations, we further propose a penalty function in the 

following form:

Ŷ = argmin
Y

∥ Y − Y r ∥2
2

+ β∥ Y − Y ′ ∥2
2 .
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(9)

The first term is the fidelity term, where Y r is the slice reconstructed in the previous 

iteration. The second term is the penalty term constraining the difference between the 

updated image Y  and the current image Y ′, which is reconstructed using patches yi
′. The 

parameter β controls the tradeoff between the two terms. This is actually a quadratic problem 

that has a closed-form solution

Ŷ = Y r + βY ′
1 + β

(10)

where Ŷ  is used to replace Y r in the next iteration. We progressively reduce the patch size 

and pixel overlap and then perform the previous procedure iteratively to obtain the final 

result. The effectiveness of this hierarchical scheme is demonstrated in Figs. 10 and 11, 

which will be explained as follows. Also, further details are provided in Section III-C.

E. Method Summary

To summarize, two major steps are involved in our proposed intermediate slice 

reconstruction algorithm. The first step is the reconstruction of initial slices based on 

neighborhood constraints. The second step is the hierarchical refinement of the initial 

results. A step-by-step summary of this fully automatic algorithm is given as follows.

1. Input: 4D-CT images with all phases.

2. First step: Reconstruct the initial intermediate slice.

a. For a patch of a particular size yi of Y , perform a raster-scan with 

overlap in each direction.

b. Build adaptive dictionary D for yi.

c. Solve the optimization problem defined in (6) with yi
u and yi

d as 

constraints, then output the result yi
r = Dα.

d. Assemble the output yi
r into image Y r as output.

3. Second step: Iterative refinement—perform the following steps for each iteration.

a. For each patch yi
r of Y r with a smaller size, build D.

b. Solve the optimization problem defined in (8) and output yi
′.

c. Assemble the output yi
′ into Y ′.

d. Find the closest image Ŷ  to Y r, which satisfies the global constraint in 

(9).

e. Output Ŷ  as the new Y r
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4. Output: Output Y r as the final result Y .

5. Go through all the intermediate slices by repeating Steps 2–4 to obtain the final 

resolution-enhanced 4D-CT lung data.

III. Results

A. Data and Preprocessing

Evaluation of the proposed method was performed based on a publicly available dataset that 

was provided by the DIR-lab [41]. The dataset consists of ten cases of 4D-CT. Each case 

was acquired at 2.5 mm slice spacing in ten phases, employing a General Electric Discovery 

DT PET/CT scanner. The 4D-CT images covered the entire thorax and upper abdomen. For 

case1 to case5, the in-plane grid size is 256 × 256, and the in-plane voxel dimensions range 

from (0.97 × 0.97) to (1.16 × 1.16) mm2. For case6 to case10, the in-plane grid size is 512 

× 512, and the in-plane voxel dimensions are all (0.97 × 0.97) mm2. Detailed information 

regarding the dataset is shown in Table III.

Images with dimensions 512 × 512 are cropped to 320 × 224 to reduce computational cost. 

To do this, for all the cases, we first segment each phase image into bone, soft tissue (muscle 

and fat), and lung [42]. The lung regions are used as the mask to extract the lung, as shown 

in Fig. 9. Quantitative evaluation will be all focused on the lung regions only.

B. Experiment Settings

We simulate the 4D-CT with 5-mm slice thickness by removing every other slice from 

the data with 2.5-mm slice thickness. This gives us the ground truth to evaluate the 

effectiveness of our method in increasing the resolution from 5 to 2.5 mm. The algorithm 

was implemented using C++ and all the following evaluations are performed using a 

computer with a 2.4 GHz processor and 3 GB of memory.

Throughout the experiments, in the first step, we reconstruct initial images using a 32 × 

32 patch size with a 24-pixel overlap. Then, in the second step, we hierarchically reduce 

the patch size and overlap pixels using two iterations. Specifically, we used a patch size of 

16 × 16 with a 4-pixel overlap for the first iteration and 8 8 with 2-pixel overlap for the 

second iteration. As mentioned previously, parameter ε is set to 1.1, and parameter λ is set 

to 0.2, while parameter β is set to 0.2, which will be explained as follows. Both visual and 

quantitative results are provided to demonstrate the performance of our proposed method. 

Linear and cubic-spline interpolation methods are also used as comparison methods.

C. Visual Inspection

Performance of Hierarchical Approach: Fig. 10 shows an example of how the 

reconstructed image is progressively refined using the proposed hierarchical strategy. From 

left to right, results for decreasing patch sizes are shown. The enlarged views of the area 

marked by red squares are shown in the second row for better visual comparison. It is 

clear that the image becomes increasingly clearer in each step. Results for three different 

reconstructed slices are also shown in Fig. 11, where we can observe a similar progression 

to sharpness in these images. We note that β is an important parameter for controlling the 
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variation between images of two consecutive iterations. For a large β, the penalty term in 

(9) will have a greater influence on the final estimation, and vice versa. We tested several 

values for this parameter and found that β = 0.2 gave the best results both qualitatively and 

quantitatively. Thus, β = 0.2 was selected for all experiments in this paper.

Comparison of Color-Coded Difference Maps: For each of the three cases shown 

in Fig. 12, the ground truth is shown in the left column. The results given by linear 

interpolation, cubic spline interpolation, and the proposed method are shown in the second, 

third, and fourth columns, respectively. The color-coded difference maps computed with 

respect to the ground truth are also shown to aid comparison. It is apparent that our proposed 

method outperforms the conventional interpolation methods, which often cause undesirable 

artifacts. The proposed method makes principled use of information gathered from all other 

phase images to make up for the missing information and hence expectedly yields better 

results.

Different views: Fig. 13 shows typical axial, sagittal, and coronal views of another case 

by our proposed method. These results again show the best performance achieved by the 

proposed method. The corresponding difference maps in Fig. 14 and the enlarged views in 

Fig. 15 further confirm the best performance by our proposed method. In Fig. 15, regions in 

the red boxes are enlarged in the fourth, fifth and sixth rows, respectively. It can be observed 

that our method yields results with greater vessel continuity.

Pathological case: Fig. 16 shows the reconstruction results in a slice with tumor. As 

demonstrated in the figure, both linear and cubic-spline interpolation yield tumors that are 

larger in size than the ground truth. This result will potentially increase risk of hurting 

normal tissue during radiotherapy. On the other hand, the proposed method is capable 

of reconstructing the tumor with greater accuracy, hence potentially better for protecting 

normal tissues and treating lung tumors during radiotherapy.

D. Quantitative Comparison With Other Interpolation Methods

Two quality measures were employed for the purpose of evaluation. The first is the peak 

signal-to-noise ratio (PSNR), which is widely used in signal and image processing to 

measure reconstruction error. The other is the structural similarity (SSIM) index [43], which 

is a metric that is motivated by the human visual system. PSNR is defined as the ratio 

between the maximum intensity value of the ground truth image and the power of corrupting 

noise (the average sum of squared differences between the ground truth and reconstructed 

images). PSNR values are expressed in the logarithmic decibel scale. SSIM calculation is 

based on the average, variance, and covariance of intensity values between the ground truth 

and the reconstructed images. Average PSNR and SSIM values for each 4D-CT case are 

reported in Table IV. It is clear that our method achieves the highest PSNR values (typically 

2 ~ 3 dB higher) and also the highest SSIM values for all cases.
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IV. Discussion and Conclusion

The resolution enhancement technology can be used to overcome the resolution limitations 

caused by constraints such as acquisition time and radiation dose. In this paper, we have 

proposed a novel patch-based resolution enhancement method to improve the superior–

inferior resolution of lung 4D-CT. We take advantage of complementary image information 

across all phases to recover the missing structural information in the intermediate slides 

of each phase. This is particularly achieved by using a hierarchical patch-based sparse 

representation approach with locally adaptive patch dictionaries. The key advantages of our 

work can be summarized as follows: 1) capable of integrating complementary information 

from different phases for reconstructing high-resolution 4D-CT data; 2) fully automatic and 

data-driven; 3) requires only data from each patient; and 4) requires no construction of a 

global dictionary. All these are the attractive properties that will also benefit the resolution 

enhancement of other 4-D imaging data (e.g., 4-D cardiac ultrasonic data).

An alternative approach for resolution enhancement is registration-based interpolation [17]. 

This approach, however, is not effective for the current application. The main reason is that 

the performance of registration-based interpolation approaches relies heavily on the accurate 

anatomical alignment. However, due to low-resolution of the lung 4D-CT data along the 

inferior–superior direction, the structural shapes vary rapidly and could be significantly 

different across even the neighboring slices. This poses a challenge to the registration-based 

interpolation approaches. Fig. 17 shows the example results for registration between two 

neighboring lung CT slices using a B-spline-based registration method [44]. It can be 

observed that accurate registration cannot be satisfactorily achieved within the lung area, 

since structures are vastly dissimilar between consecutive slices.

We have demonstrated that the hierarchical scheme improves reconstruction results 

significantly. Since the initial estimate provides only a coarse estimation of the structures 

with the use of relatively larger-scale patches, the estimation at this scale is predominantly 

driven by large-scale structures, where smaller scale structures are neglected. Thus, in 

the second step, the hierarchical approach is necessary to refine the details of small-scale 

structures and at the same time reduce imaging artifacts, as discussed in Section III-C.

In our current implementation, we partition the intermediate slice into same-sized patches 

at each iteration. This does not take into account the fact that anatomical structures are 

manifested in different scales. In the future, we will extend the current framework by 

dividing the slice into structurally adaptive patches, i.e., using a quadtree-based strategy 

[52], for adaptive reconstruction of intermediate slices.

Patch estimates are currently combined by simple averaging, mainly to reduce 

computational time. Since reconstruction is performed in a hierarchical fashion from large 

patches to small patches, blocking artifacts that normally result from simple averaging could 

be minimized. But, more elaborate means of patch aggregation are expected to further 

improve the reconstruction results.

The current framework can be further improved by incorporating better distance constraints 

in (1), such as manifold motivated metrics [40], [45], [46]. Actually, a manifold-based 
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interpolation method has been proven more effective for interpolation of heart MR data 

[47]. Also, the choice of image features will influence the final reconstruction results. In 

this work, we have simply utilized gradient features as popularly used in super-resolution 

reconstruction of natural images [33], [48] for guiding patch representation. In the future 

work, we will investigate how the proposed approach can be improved by using other 

features, such as the features derived from Haar wavelets [49], histograms of gradients 

(HOG) [50], and local binary patterns (LBP) [51].

In summary, we have presented in this paper a novel technique for enhancing the superior–

inferior resolution of 4D-CT. Evaluation based on 4D-CT data from a public dataset 

indicates that the proposed method consistently outperforms the conventional interpolation-

based approaches, for both normal and pathological cases. Our future work will be directed 

to further improvement of the propose method as outlined above, as well as the evaluation of 

feasibility of applying our method to facilitate accurate dose planning in radiation therapy.

Acknowledgments

This work was supported in part by the Major State Basic Research Development Program of China under Grant 
2010CB732500, in part by the National Natural Science Foundation of China under Grant 31271067, in part by 
the Science and Technology Planning Project of Guangzhou under Grant 2010J-E471, and in part by the National 
Institutes of Health under Grant CA140413.

Appendix

Given V k = vχ(q) ∣ vχ(q) ∈ D, q = 1, …, K , the optimization of weighting vector α V k  in (7) 

consists of three steps.

1. Calculate the k × k correlation matrix A, with Aij defined as the inner production 

of vχ(i) and vχ(j) . A−1 is the inverse of matrix A.

2. If the constraints is fitted on (7), compute the Lagrange multiplier w = α/b, 

where α = 1 − ∑ij Aij
−1 ŷi ⋅ vχ(j) , b = ∑ij Aij

−1, and ŷi = yi
u, λFyi

u, yi
d, λFyi

d T . T  denotes 

the transpose.

3. The weight αχ(j)
k  for reconstruction is computed as αi = ∑j Aij

−1 ŷi ⋅ vχ(j) + w .
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Fig. 1. 
Example coronal and sagittal views of 4D-CT lung data.
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Fig. 2. 
Recovering image information from scans of different respiratory phases. Blue solid 

horizontal lines indicate actual scanned CT slices. Blue dashed line indicates intermediate 

slice that needs to be reconstructed. Due to respiratory motion, information needed to 

reconstruct intermediate slice in Phase 1 may be captured in Phase 2, i.e., slice pointed by 

the red arrow.
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Fig. 3. 
Overview of our patch-based method for enhancing resolution of 4D-CT. Patch of interest 

(red box) on an intermediate slice (blue dashed line) is estimated by seeking a sparse 

combination of anatomically similar patches from other phases (purple boxes).
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Fig. 4. 
Construction of an adaptive dictionary for a particular patch yi (red box) in intermediate slice 

at phase i. Search bounding box is adaptively determined at each phase j(j ≠ i) by using 

immediate superior and inferior patches (purple box) as references. After determining the 

bounding box at each phase, all possible patches (purple boxes) across different phases are 

included into the dictionary D.
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Fig. 5. 
Example of reconstructed slice. Ground truth and results given by linear interpolation, 

cubic-spline interpolation, and our method are shown from left to right, respectively. Our 

method shows the best result, especially in circled areas.
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Fig. 6. 
Influence of patch size and patch overlap. For x-axis, 8/4 denotes a patch size of 8 × 8 with 

four overlapping pixels in each dimension, and so forth. Computation times for three highest 

PSNR values are provided. See Table II for the rest of the computation times.
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Fig. 7. 
Influence of parameter λ.
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Fig. 8. 
Influence of parameter ε.
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Fig. 9. 
From left to right: original image, mask for the lung, and extracted lung.
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Fig. 10. 
Hierarchical structural refinement. From left to right: reconstruction results from the first 

step via 32 × 32 patches with 24-pixel overlap, first iteration of the second step via 16 × 16 

patches with 4-pixel overlap, and second iteration of the second step via 8 × 8 patches with 

2-pixel overlap, respectively.
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Fig. 11. 
Results for three different slices reconstructed using hierarchical strategy. From left to right: 

ground truth and reconstructed images from the first step, first iteration of second step, and 

second iteration of the second step, respectively.
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Fig. 12. 
Reconstruction results and their difference maps. Results given by linear interpolation, 

cubic-spline interpolation, and proposed method are shown in the second, third, and fourth 

columns, respectively. Their color-coded difference maps compared to the ground truth (first 

column) are shown in the bottom of each panel.
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Fig. 13. 
Axial, sagittal and coronal views of the resolution-enhanced images. From left to right: 

ground truth, and results given by linear interpolation, cubic-spline interpolation, and our 

method.
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Fig. 14. 
Axial, sagittal and coronal views of difference maps for results shown in Fig. 13. From left 

to right are the difference maps computed based on results given by linear interpolation, 

cubic-spline interpolation, and our method, respectively.
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Fig. 15. 
Enlarged views. Ground truth data is displayed on the left column. Results given by linear 

interpolation, cubic-spline interpolation, and our method are shown in second, third, fourth 

columns, respectively. Areas in red box are enlarged and shown in fourth, fifth, and sixth 

rows, respectively.
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Fig. 16. 
Results for a pathological case. Ground truth data is displayed on the left column. Results 

given by linear interpolation, cubic-spline interpolation, and our method are shown in 

second, third, and fourth columns, respectively. Tumor area in red box is enlarged and shown 

in the second row.
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Fig. 17. 
Registration of consecutive slices based on Myronenko and Song’s method [44]. (a) and 

(b) Consecutive slices, with (a) taken as target image and (b) as source image. (c) Warped 

source image, generated using deformation field shown in (d). (e) Difference map between 

(a) and (b). (f) Difference map between (a) and (c). Registration is very inaccurate within 

the lung area [compare (a) and (c), as well as (e) and (f)] due to large inter-slice structural 

differences.
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TABLE I

Summary of Notations

Notation Description

Y The intermediate slice that needs to be reconstructed

yi Composing patches of Y

yi
u, yi

d Patches immediately superior and inferior to yi

Y r The reconstructed intermediate slice at each iteration

yi
r

Composing patches of Y r

D Dictionary for sparse representation

L Threshold for sparse representation

λ Tuning parameter between the contributions of image intensity and image feature

β Parameter for controlling the global constraint
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TABLE II

Average Computation Time Per Slice

Patch size Patch Overlap Computation Time

8 × 8 4 pixels 187.86 sec/slice

8 × 8 6 pixels 877.84 sec/slice

16 × 16 8 pixels 50.19 sec/slice

16 × 16 12 pixels 263.16 sec/slice

32 × 32 16 pixels 17.72 sec/slice

32 × 32 24 pixels 67.99 sec/slice

32 × 32 28 pixels 224.36 sec/slice

48 × 48 40 pixels 98.80 sec/slice

48 × 48 44 pixels 394.92 sec/slice
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TABLE III

Imaging Parameters Associated With Each of Ten Cases Used for Evaluation

Original Data Set In-plane Grid Size In-plane Dimensions (mm) No. of Slices Phase Number Slice Spacing (mm)

Case1 256 × 256 0.97 × 0.97 94 10 2.5

Case2 256 × 256 1.16 × 1.16 112 10 2.5

Case3 256 × 256 1.15 × 1.15 104 10 2.5

Case4 256 × 256 1.13 × 1.13 99 10 2.5

Case5 256 × 256 1.10 × 1.10 106 10 2.5

Case6 512 × 512 0.97 × 0.97 128 10 2.5

Case7 512 × 512 0.97 × 0.97 136 10 2.5

Case8 512 × 512 0.97 × 0.97 128 10 2.5

Case9 512 × 512 0.97 × 0.97 128 10 2.5

Case 10 512 × 512 0.97 × 0.97 120 10 2.5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 June 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 38

TABLE IV

Average PSNR (Top) and SSIM (Bottom) Values Obtained by Linear Interpolation, Cubic Spline 

Interpolation, and Proposed Method in All Ten Cases

Case Linear interpolation Cubic-spline interpolation Proposed method

Case 1
29.92 30.02 33.01

0.8972 0.8968 0.9358

Case 2
30.02 30.22 33.25

0.8888 0.8884 0.9278

Case 3
30.81 31.05 34.55

0.9126 0.9133 0.9478

Case 4
29.62 29.78 32.67

0.9184 0.9194 0.9486

Case 5
29.85 29.91 32.52

0.9060 0.9052 0.9376

Case 6
28.60 28.57 30.72

0.8788 0.8786 0.9151

Case 7
27.40 27.51 30.78

0.8412 0.8417 0.9014

Case 8
27.17 27.23 29.42

0.7924 0.7819 0.8475

Case 9
29.08 29.28 32.22

0.9119 0.9129 0.9404

Case 10
27.72 27.81 30.13

0.8508 0.8520 0.8999
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