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Abstract

Boolean networks provide an effective mechanism for describing interactions and dynamics

of gene regulatory networks (GRNs). Deriving accurate Boolean descriptions of GRNs is a

challenging task. The number of experiments is usually much smaller than the number of

genes. In addition, binarization leads to a loss of information and inconsistencies arise in

binarized time-series data. The inference of Boolean networks from binarized time-series

data alone often leads to complex and overfitted models. To obtain relevant Boolean models

of gene regulatory networks, inference methods could incorporate data from multiple

sources and prior knowledge in terms of general network structure and/or exact interactions.

We propose the Boolean network inference method SAILoR (Structure-Aware Inference of

Logic Rules). SAILoR incorporates time-series gene expression data in combination with

provided reference networks to infer accurate Boolean models. SAILoR automatically

extracts topological properties from reference networks. These can describe a more general

structure of the GRN or can be more precise and describe specific interactions. SAILoR

infers a Boolean network by learning from both continuous and binarized time-series data. It

navigates between two main objectives, topological similarity to reference networks and cor-

respondence with gene expression data. By incorporating the NSGA-II multi-objective

genetic algorithm, SAILoR relies on the wisdom of crowds. Our results indicate that SAILoR

can infer accurate and biologically relevant Boolean descriptions of GRNs from both a static

and a dynamic perspective. We show that SAILoR improves the static accuracy of the

inferred network compared to the network inference method dynGENIE3. Furthermore, we

compared the performance of SAILoR with other Boolean network inference approaches

including Best-Fit, REVEAL, MIBNI, GABNI, ATEN, and LogBTF. We have shown that by

incorporating prior knowledge about the overall network structure, SAILoR can improve the

structural correctness of the inferred Boolean networks while maintaining dynamic accu-

racy. To demonstrate the applicability of SAILoR, we inferred context-specific Boolean sub-

networks of female Drosophila melanogaster before and after mating.

Introduction

Gene regulatory networks (GRNs) are part of a robust fundamental underlying system that

controls the development, adaptability, and primary cellular processes in organisms [1]. The
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representation of GRNs with a set of binary variables and logical rules offers a simple and effec-

tive method to describe and characterize such systems and their dynamics with basic building

blocks and modular substructures [2]. In a Boolean network, each gene is represented as a

binary variable that is regulated by a set of regulators via logical rules. As a result, each gene

can either be completely expressed, representing the ON state, or completely silenced, repre-

senting the OFF state. The description of GRNs with Boolean models offers several advantages.

Simulating the dynamics of GRNs with a Boolean network does not require additional infor-

mation, such as values of kinetic parameters, other than logical rules and an initial state. More-

over, by describing gene dynamics with logical rules we can interpret the dynamics of the

system and straightforwardly uncover regulatory interactions. Kauffman demonstrated that

randomly constructed Boolean networks, in which each gene is regulated by two or three Bool-

ean variables form short stable cycles that are found in regulatory systems of biological organ-

isms [3].

Many computational methods for inference of Boolean networks from time-series data

have been proposed. These utilize either heuristic algorithms [4–6], entropy and mutual infor-

mation [7, 8], or machine learning approaches [9, 10]. For example, Li et al. [10] developed

LogBTF, which utilizes regularized logistic regression to obtain regression coefficients, which

act as weights in the Boolean threshold network model. The utilization of Boolean threshold

functions for the description of GRNs is supported by recent analyses [11, 12] of expert-

curated Boolean network models, which revealed a high prevalence of nested canalizing func-

tions, where specific values of single inputs with different priorities determine the function

value. Other tools have been developed for detailed investigation of Boolean network models.

For example, Weidner et al. [13] developed the GatekeepR application, which identifies nodes

in a Boolean network, whose perturbations will likely have a large effect on the system’s

dynamics.

The majority of Boolean inference approaches infer logical rules from binarized time-series

data. Inconsistencies in the training dataset can occur due to the loss of information in the pro-

cess of binarization [14]. Consequently, the main underlying problem almost all Boolean infer-

ence approaches tackle is solving inconsistency problems, where the goal is to find a Boolean

network with minimal dynamical error for the binarized time-series data (e.g. see [15]). While

in general, these approaches perform decently in terms of inferring systems’ dynamics with

logical rules, their ability to uncover accurate underlying influence graphs, i.e. static networks,

is limited [16].

A recent review and benchmarking of approaches for Boolean inference of gene regulatory

networks indicated that Boolean inference approaches tend to perform well in terms of

dynamic accuracy and poorly in terms of static accuracy, i.e. structural correctness [16]. To

alleviate these problems we suggested learning from continuous and binarized data in addition

to incorporating prior knowledge in terms of the known general structure of gene regulatory

networks.

The inference of biologically viable and accurate GRN models is still a challenging task. In

addition to methods for the inference of Boolean networks, several GRN inference approaches

have been proposed, including fuzzy logic-based approaches [17, 18], regression and machine

learning-based approaches [19, 20], information theory-based approaches [21, 22], correla-

tion-based approaches [23], and probabilistic approaches [24, 25]. Gene expression is a prod-

uct guided by multiple processes and factors. The balance of transcripts and proteins is

achieved with a complex transcriptional, post-transcriptional, translational, and post-transla-

tional regulation [26]. Therefore, the inference of regulatory relationships from transcriptomic

data alone offers a rudimentary view of a system. Recently an effort has been made to incorpo-

rate multiple data sources while inferring regulatory interactions [27]. For example, somatic
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mutations [24] and other multi-omics data, e.g. copy number variations and DNA methyla-

tions [28], were integrated into the process of inferring gene regulatory networks. Seçilmiş
et al. showed that the knowledge of the perturbation design matrix increases network inference

accuracy [29, 30].

In the context of inferring Boolean rules, prior knowledge has already been applied, either

in terms of partial network structure, dynamical constraints, or prior logic rules [31–33].

These methods, however, do not incorporate prior knowledge about a general network struc-

ture, e.g. motifs, network densities, and shallow network structure, GRNs ubiquitously have in

common [34].

Here, we introduce SAILoR (Structure-Aware Inference of Logic Rules), an inference

method of gene regulatory systems described by Boolean networks. SAILoR utilizes prior

knowledge in terms of provided reference networks from which topological properties are

extracted. In contrast, to the majority of Boolean inference approaches that infer logic rules

from binarized data, SAILoR infers logical rules from binarized as well as from continuous

time-series data and by incorporating prior knowledge in terms of general network structure.

SAILoR is structure-aware in terms that it generates a set of directed networks, which repre-

sent candidates for the influence graph of the final Boolean network. By utilizing the genetic

algorithm NSGA-II [35], SAILoR generates network candidates that maximize the similarity

to expected networks’ properties and compliance with the initial regulatory ranking, which are

obtained with the inference method dynGENIE3 [20]. SAILoR automatically extracts expected

network density, in-degree distribution, out-degree distribution, and triadic census (count of

all connected triplets) from reference networks (see Fig 1).

Integration of prior knowledge in the form of context-aware reference networks and con-

text-specific gene expression time-series data, allows SAILoR to infer accurate context-specific

Boolean descriptions of GRNs. With context-aware Boolean GRN models, we can better pre-

dict the response of biological systems under different circumstances. Certain frameworks for

sex-specific or disease-specific inference of static networks and Boolean models have already

been proposed [33, 36, 37]. However, SAILoR is unique in the regard that the topological prop-

erties of reference networks combined with binarized time-series data directly influence the

inference of Boolean models.

We assess the performance of SAILoR in different scenarios. First, we assess the ability of

SAILoR to apply and utilize prior knowledge information to infer accurate static networks. We

evaluate SAILoR on networks extracted from the E. coli gene regulatory network with Gene-

NetWeaver [38]. We then compare the predicted static network with the method dynGENIE3.

Our results indicate a significant improvement in static accuracy for most cases (see section

Structural properties of inferred networks). Further, we evaluate the ability of SAILoR to infer

accurate Boolean networks. We compare the performance of SAILoR with other Boolean net-

work inference approaches some of which were recently assessed in [16]. Our results indicate

that the incorporation of prior knowledge in terms of general network structure allows

SAILoR to improve the structural correctness of inferred Boolean networks while maintaining

dynamic accuracy (see section Dynamic properties of inferred networks). Finally, we apply

SAILoR to infer the context-specific Boolean subnetworks of Drosophila melanogaster before

and after mating (see [39]).

In Background, we provide additional motivation for the utilization of prior knowledge

information in terms of expected topological properties (section Topologies of gene regulatory

networks), and provide a background for the genetic algorithm with non-dominated sorting

(section Non-dominated sorting genetic algorithm NSGA-II). In section Materials and Meth-

ods, we describe SAILoR in detail, its crossover and mutation operators (section Crossover

and mutation), and its optimization objectives (section Optimization objectives). In section
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Triadic census and dynamic update procedure we explain the algorithm for computing the tri-

adic census and its dynamic update scheme, which significantly reduces time complexity. The

procedure for the selection of the final Boolean network and the inference of Boolean rules is

explained in section Selection of the optimal Boolean network. In addition, we describe our

Fig 1. SAILoR flowchart. The figure represents a sequence of steps conducted in SAILoR.

https://doi.org/10.1371/journal.pone.0304102.g001
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dataset and a benchmarking procedure in section Hyperparameter tuning and assessment of

SAILoR. In section Structural properties of inferred networks, we demonstrate the applicabil-

ity of SAILoR for the inference of static networks. The ability of SAILoR to infer accurate Bool-

ean networks is demonstrated in section Dynamic properties of inferred networks.

Furthermore, we analyze the computational complexity of SAILoR in section Computational

complexity. In section Inference of context-specific gene regulatory subnetworks of Drosophila
melanogaster we utilize SAILoR to infer the context-specific Boolean networks of D. melanoga-
ster. We discuss the results, limitations, and advantages of SAILoR in section Conclusions.

Background

Topologies of gene regulatory networks

Gene regulatory networks are composed of frequently occurring regulation patterns named

motifs, that guide the overall structure of gene regulatory networks [40]. Motifs in gene regula-

tory networks occur significantly more frequently than expected in randomly constructed net-

works. Two examples of frequently occurring motifs in gene regulation are feed-forward loop

and bi-fan [34, 40, 41]. The same patterns occur in different kingdoms of taxonomic rank due

to their universal capability to process information and optimally perform various functions

[40]. For example, the feed-forward loop can act as a sign-sensitive delay [42], while regulated

genes in bi-fan have a shared global function.

Nonetheless, the representation and occurrence of network motifs, do not include less fre-

quent and average network patterns and can be thus ineffective for network analysis and fea-

ture extraction tasks [43]. Instead, small connected non-isomorphic induced subgraphs are

often considered. For example, Pržulj [43] introduced network similarity metric based on

graphlet degree distribution, by measuring the number of nodes touching each of the 73 possi-

ble orbits for 2, 3, 4, and 5 node graphlets. Pržulj showed, that many protein-protein interac-

tion networks have high similarity with geometric random graphs. Metrics based on graphlets

capture additional network properties that motifs might miss. More often graphlets are utilized

in network embedding algorithms to learn feature representation (e.g., see gl2vec [44]) or to

produce graphlet-based graph kernels [45, 46].

In addition, gene regulatory networks have similar general properties including a shallow

structure, small average path length, and in-degree and out-degree distributions [47]. Large

and complex networks occurring in nature are often termed scale-free networks due to the

scale-free property of node degree distributions. In scale-free networks node degree distribu-

tion follows a power law, where the fraction of nodes with k edges decreases by p(k)� k−γ [41],

where γ is some constant. This means, that a small fraction of nodes will act as hubs with many

connections, while the majority of nodes will have few connections. Gene regulatory networks

tend to have scale-free out-degree distribution, while the in-degree distribution is more

restricted. This indicates that the regulation of multiple targets is more common than the regu-

lation by many transcription factors [47].

Non-dominated sorting genetic algorithm NSGA-II

Metaheuristic-based approaches are commonly used to find suboptimal solutions to difficult

problems in a reasonable time [48]. Metaheuristics based on evolutionary strategies, such as

genetic algorithms, are often considered. Many real-world problems require the identification

of suboptimal points, where the tradeoff between multiple objectives is explored [49]. For

these subproblems, multi-objective genetic algorithms based on non-dominated sorting

(NSGA) have been shown to be very effective given a reasonable number of objectives [35, 50].
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The use of multiple optimization objectives often leads to conflicting scenarios where the

improvement of one objective leads to a reduction of other objectives. For this reason, the set

of nondominated solutions is considered, where optimal solutions lie on a hypersurface

known as the first Pareto frontier [51]. One solution dominates the other if it is better in at

least one of the objectives and/or equal in others. Otherwise, two solutions are said to be non-

dominated. Non-dominated sorting genetic algorithms are based on sorting solutions into

separated non-dominated sets of solutions. In each iteration, only the best non-dominated

solutions are selected. When a single non-dominated set is split to keep the predefined popula-

tion size, the diversity measure is considered to maintain a diverse population. Srinivas and

Deb [50] proposed NSGA with a diversity measure based on the shared fitness function, where

the corresponding fitness value is reduced for subjects that lie in densely populated areas and

vice versa. Deb et al. later in NSGA-II [35] introduced the diversity measure crowding-dis-

tance based on the cuboid defined by the subject’s neighboring solutions. In addition, Deb

et al. improved the computational complexity of NSGA-II with fast non-dominated sorting.

By increasing the number of objectives non-dominated sorting algorithms face numerous

challenges. The evaluation of multiple objectives and the diversity measure can become com-

putationally expensive, visualization of the Pareto frontier in higher dimensions is difficult and

impractical, and the fraction of non-dominated solutions in the first Pareto frontier increases

with the number of objectives, rendering sorting based on non-dominated levels inefficient

[52]. NSGA-III [52] alleviates these problems to some extent by performing selection in the

last Pareto frontier based on well-spread reference points, which can either be provided by the

user or automatically generated and then updated in each generation. Automatically generated

reference points are placed on a normalized hyperplane. The selection depends on the number

of solutions associated with each reference point.

Materials and methods

SAILoR automatically extracts expected in-degree and out-degree distributions, the expected

count of connected triplets, i.e. triadic census, and the expected network density from refer-

ence networks. The method utilizes prior knowledge to generate a set of candidate networks,

from which the best Boolean network is inferred. In a sense, SAILoR first performs an exten-

sive feature selection procedure to infer potential gene regulators. Several Boolean methods

already perform feature selection before the inference of logic rules (e.g. see [8, 9, 53]). How-

ever, instead of learning from binarized data, SAILoR performs inference of Boolean networks

from continuous time-series data by applying the inference method dynGENIE3 [20], which

produces a ranking of potential regulators. dynGENIE3 produces a matrix composed of regu-

latory weights from time-series data by regarding each time point as a separate steady-state

condition. Regulation of each gene is modeled with a set of separate differential equations and

the whole dynamics are estimated with a Random forest model. Finally, the weight of regula-

tion of each gene is estimated from variable importance scores. Since regulatory weights

obtained with dynGENIE3 do not have any statistical meaning, SAILoR operates with regula-

tory ranks. Given this ranking and/or expected in-degree distribution, the initial set of directed

networks is constructed. SAILoR constructs the initial set of candidate networks by either

selecting top regulations given the expected network density or by selecting top k regulators of

each gene following the in-degree distribution, where the maximal value of k is limited to 10.

When we have high confidence in the provided reference networks, SAILoR can generate ini-

tial subjects directly from such networks. However, in this case, the number of genes and their

names must exactly match. The generated set of candidate networks represents the initial pop-

ulation of subjects in the genetic algorithm, which explores a set of Pareto optimal candidate
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networks. Through the use of NSGA-II SAILoR optimizes two main objectives, the topological

similarity of candidate networks to reference networks and the compliance with the produced

ranking based on the provided time-series data.

In the final step, SAILoR infers Boolean networks from optimal Pareto solutions, binarizing

time-series gene expression data and generating generalized truth tables from which final logic

rules are inferred with the Quine–McCluskey minimization method. While the Quine–

McCluskey method has exponential computational complexity concerning the number of reg-

ulators, SAILoR limits the number of regulators. This constraint can be justified by the scale-

free property of biological networks. The out-degree distribution of gene regulatory networks

follows scale-free distribution, while the in-degree distribution follows a more restricted expo-

nential function [47]. Recent reviews and analyses of biological Boolean network models have

shown that only a small fraction of logic functions consists of 10 or more regulators (see [11,

12]). For example, Mitra et al. analyzed three datasets of curated Boolean models in which

only 60 out of 8, 871 Boolean functions have more than 10 inputs [12]. Furthermore, in our

case, the means of in-degree distributions of inferred Boolean functions are far below the pre-

defined maximum number of regulators (see section Dynamic properties of inferred net-

works). The Boolean network that best matches binarized time-series data is selected as final.

In the case, where multiple candidate networks have the same dynamic accuracy, one with the

smallest Euclidean distance to the ideal solution in the normalized objective space is preferred.

The data flow of SAILoR depicting primary steps is displayed in Fig 1. SAILoR is implemented

in Python using the evolutionary computation framework DEAP [54]. SAILoR is available

under the open-source MIT license on a GitHub repository https://github.com/zigapusnik/

SAILoR and as a Docker image available on Docker Hub https://hub.docker.com/r/

zigapusnik/sailor.

Crossover and mutation

NSGA-II describes the selection operator defined by elitism, crowding distance, and multiple

objectives. The user can define other additional operators. To generate a diverse population,

SAILoR uses custom crossover and mutation.

We have implemented the derivation of n-point crossover, where two new subjects are gen-

erated by exchanging regulators for a random number of genes, which is achieved by exchang-

ing columns of the adjacency matrices of the subjects (see Fig 2). In contrast to the exchange of

regulation targets, i.e. rows in adjacency matrices, crossover with the exchange of regulators

can gradually produce hub genes with high out-degree.

While the use of crossover can lead to large jumps in search space, the use of mutation typi-

cally promotes fine-grained exploration in local areas. In SAILoR, each individual is mutated

by either adding or removing a single random edge in a network (see Fig 2). The probability of

adding or removing an edge is the same. If the number of regulators after mutation exceeds

the predefined maximum number, the effect of mutation is reversed. An advantage of mutat-

ing a single edge is that all topological properties can be upon mutation updated dynamically

rather than calculated from scratch (see section Triadic census and dynamic update

procedure).

In addition, mutation by adding or removing a single edge preserves the network densities,

while mutation of multiple edges may not. For example, consider the mutation operator where

the probability of flipping each element is p. The sequential use of this operation will produce

subjects with approximate network densities of 1/2, regardless of the number of edges in initial

networks and the value of p. Consider the adjacency matrix of a network with n × n elements

and a0 ones. The number of ones in k-th iteration of mutation is then defined by (Eq 1). Let
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the term 1 − 2p be q and pn2 be d. Considering that |q|< 1 the limit when k goes to infinity is

then equal 1/2 (see Eq 2).

ak ¼ ak� 1ð1 � 2pÞ þ pn2 ð1Þ

lim
k!1

a0q
k þ dðqk� 1 þ qk� 2 þ . . .þ 1Þ ¼

d
1 � q

¼
n2

2
ð2Þ

A simplified example portraying crossover and mutation operators employed by SAILoR is

depicted in Fig 2. Offspring networks are produced by swapping regulators for random target

genes. In the second step, each child network is additionally mutated.

Optimization objectives

SAILoR applies the rank-based loss function (Eq 3) to measure how well a candidate network

aligns with the regulatory ranks obtained with the base inference method dynGENIE3

z1ðx̂Þ ¼ Lðx̂; xÞ ¼
2
P

c2ErankðeÞ
jEj þ jEj2

�
2
P

m2ECrankðmÞ
jECj þ jECjjVj2 þ jECj2

; ð3Þ

where E is a set of all connections, i.e. regulations and EC is a set of all missing connections, i.e.

non-regulations. The set V contains the vertices of the network. The above equation is divided

into two parts. The first part minimizes the sum of the ranks of regulations (rank(e)), while the

second part maximizes the sum of the ranks of non-regulations (rank(m)). Both terms are

Fig 2. Depiction of crossover and mutation operators for two four node networks. Two distinct child networks are

produced by exchanging regulators of the second node. In the next step, each offspring network is mutated. Fig a)

illustrates the topology of given networks. Fig b) illustrates corresponding adjacency matrices. Blue edges are modified

by crossover. Edges marked with green and red are modified by mutation.

https://doi.org/10.1371/journal.pone.0304102.g002
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divided by the sum of the top best ranks for regulations and the sum of the worst ranks for

non-regulations.

SAILoR evaluates the topological similarity between reference and candidate networks

based on multiple topological properties. Properties described with frequency distribution are

assessed based on the histogram similarity with an overlap-based loss function. Utilization of

overlap-based loss function is inspired by the Sørensen–Dice coefficient defined as 2jx̂ \
xj=ðjx̂j þ jxjÞ and Jaccard index similarly described as jx̂ \ xj=jx̂ [ xj [55]. Both metrics are

frequently used in machine vision to evaluate segmentation performance [55].

We observed the sparsity of inferred networks, in-degree distribution, out-degree distribu-

tion, and induced subgraphs with three connected nodes, i.e. triadic census with connected tri-

ads (see section Triadic census and dynamic update procedure). All topological properties are

dynamically updated after mutation, rather than recalculated every time. Loss functions

derived from the observed (x̂) and expected distribution (x) are defined as an overlap between

the histograms of the two

L1;2;3ðx̂; xÞ ¼ 1 �
X

i

minðx̂i; xiÞ; ð4Þ

where L1 represents the loss based on the out-degree distribution, L2 is the loss function based

on the in-degree distribution and L3 represents the loss function of the normalized triadic cen-

sus. The in-degree is constrained by a predefined value of 10 regulators in different steps of

our implementation. The out-degree in SAILoR is not limited, while it is evaluated for at most

10 connections. All nodes with a higher out-degree are thus considered to be nodes with an

out-degree 10. We normalized the histogram of the triadic census with the sum of all triad

counts. An example of expected and actual normalized triad frequencies is displayed in Fig 3.

Fig 3. Example of expected and actual normalized triad frequencies. Example of possible triad frequencies obtained

from the tenth generation of NSGA-II for a network with 16 nodes.

https://doi.org/10.1371/journal.pone.0304102.g003
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The loss function describing the difference between the observed (x̂) and expected edge

probability (x) is a V-shaped piecewise function with different slopes (see Fig 4).

L4ðx̂; xÞ ¼
jx � x̂j=x; 0 < x̂ < x

jx � x̂j=ð1 � xÞ; x � x̂ < 1:

(

ð5Þ

A positive aspect of the above function when inferring logical rules is that it slightly favors

denser networks than expected. Finally, the total topological cost is evaluated as the weighted

sum of partial topological loss functions (Eq 6) serving as a separate objective in the process of

multiobjective optimization. The evolution of solutions in the first Pareto frontier with respect

to optimization objectives is displayed in Fig 5.

z2ðx̂Þ ¼ a1L1ðx̂; xÞ þ a2L2ðx̂; xÞ þ a3L3ðx̂; xÞ þ a4L4ðx̂; xÞ ð6Þ

Values of all partial topology-based loss functions range from 0 to 1. In a similar fashion we

limited αi weights from (Eq 6) to the interval [0, 1]. We performed a randomized search to

obtain the optimal α values.

Triadic census and dynamic update procedure

Consider a directed graph G = {V, E}, where V is a set of vertices and E is a set of edges, and its

undirected graph G0 = {V, E0}. The triadic census represents the count of all possible induced

triplets in G. Each triad is a separate non-isomorphic subgraph with three nodes. Fig 6 depicts

all possible triads and their orbits, i.e. automorphism points. Each triad is defined by its unique

label which consists of three digits and a potential character. The first digit represents the num-

ber of mutual links, the second digit represents the number of directed links and the third digit

represents the number of missing links in a triad. If the arrangement of edges in different

Fig 4. V-shaped piecewise linear function. Visualization of the loss function that describes the difference between the

observed (x̂) and the expected (x) network density.

https://doi.org/10.1371/journal.pone.0304102.g004
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triads is the same, the additional characters separate them, where C stands for cycle, T for tran-

sitivity, U for up, and D for down [56].

Our algorithm is based on the subquadratic triad census algorithm by Batagelj and Mrvar

[57]. It calculates the underlying triads by traversing all connected triplets (u, v, w) in the undi-

rected graph G0. Nonetheless, we are only considering connected triads, therefore excluding

triads with labels 003, 012, and 102 (see Fig 6). The triad count in this algorithm is updated by

the equation

tricode ¼ Linkðv; uÞ þ 2 ∗ Linkðu; vÞ þ 4 ∗ Linkðv;wÞþ

8∗Linkðw; vÞ þ 16 ∗ Linkðu;wÞ þ 32 ∗ Linkðw;uÞ;
ð7Þ

which uniquely maps the triad code to its triad type.

Fig 5. Evolution of Pareto frontier. Example of the improvement of the Pareto frontier through 10 NSGA-II generations on the network with 64

nodes. Each point represents a separate candidate network described by its adjacency matrix.

https://doi.org/10.1371/journal.pone.0304102.g005
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Ortman and Brandes [58] modified the basic algorithm to include the orbit count for each

node in G, i.e., the count of all automorphism points in a given triad. Similarly, we modified

the subquadratic triad census algorithm by quantifying how much each pair of vertices v and u
contributes to the total triad count of G. Considering that mutation updates only one edge in

Fig 6. Triads and their associated orbits. Depicition of all 16 possible triads and 36 orbits. Orbits are labeled with integers in nodes. Edges that are

present in both directions are represented as a single double arrow.

https://doi.org/10.1371/journal.pone.0304102.g006
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the subject’s graph, it is not mandatory to calculate a complete triadic census from scratch.

Instead, the update procedure updates the triadic census based on the local neighborhood. If

we modify the graph G by changing the potential edge (v, u) by either removing or adding it,

then the difference in the triadic census is defined only by the local neighborhoods of nodes v
and u,N(v) and N(u) respectively. If edge (v, u) exists in G0 after mutation, then the triadic cen-

sus is updated based on the triad count of the induced subgraph defined by the set of points {v,
u} [ N(v) [ N(u), otherwise the induced subgraph consisting of points {v, u} [ (N(v) \ N(u))

is considered (see Fig 7).

The whole procedure consists of two routines Count_triads (see Algorithm 1) and Coun-

t_local_triads (see Algorithm 2). In the first step, the whole graph is traversed and the triadic

census is calculated with information on how much each pair of vertices contributes to the tri-

adic census. After each mutation (see Algorithm 3), a count on a local neighborhood is per-

formed and the triadic census is accordingly updated. The computational complexity of the

subquadratic triad census algorithm is O(Δ � |E|), where Δ is the maximum degree of a node in

G0. The computational complexity of our update procedure is O(Δ). Note that by introducing

an additional |V| × |V| × 16 matrix, the space complexity does not change, considering that the

adjacency matrix in its raw form requires |V| × |V| elements.

Algorithm 1 Count_triads
Input:
G = {V, E} . . . directed graph
G0 = {V, E0} . . . underlying undirected graph
Initialization:
census[:]  0 . . . list with 16 elements
pair_count[:, :, :]  0 . . . matrix with |V|×|V| × 16 elements
for v 2 V do
N(v) . . . neighbors of v in G0

for u 2 N(v), where u > v do
N(u) . . . neighbors of u in G0

Fig 7. Representation of the induced undirected subgraph. The induced subgraph is defined by nodes u, v and their

neighbors. Nodes with bold outline represent neighbors of v, N(v). Gray nodes represent neighbors of u, N(u). Nodes

with gray fill and bold outline are common neighbors of nodes v and u.

https://doi.org/10.1371/journal.pone.0304102.g007
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S  N(v) [ N(u)
for w 2 S, where u < w or (v < w and not w 2 N(v)) do
E(a, b) returns 1 if edge exists and 0 otherwise
tricode  E(v, u)+ 2E(u, v) + 4E(v, w) + 8E(w, v) + 16E(u, w)
+ 32E(w, u)
type  map tricode to its type
census[type] = census[type] + 1
pair_count[v, u, type] = pair_count[v, u, type] + 1
pair_count[v, w, type] = pair_count[v, w, type] + 1
pair_count[u, w, type] = pair_count[u, w, type] + 1

end for
end for

end for
return census, pair_count

Algorithm 2 Count_local_triads
Input:
G = {V, E} . . . directed graph
G0 = {V, E0} . . . underlying undirected graph
v, u . . . pair of nodes, where potential edge is modified in G and conse-
quently in G0

Initialization:
pair_count_local[:]  0 . . . list with 16 elements
N(v) . . . neighbors of v in G0

N(u) . . . neighbors of u in G0

if E0(u, v) exists then
S  (N(v) [ N(u)) − {v, u}

else
S  (N(v) \ N(u)) − {v, u}

end if
for w 2 S do
E(a, b) returns 1 if edge exists and 0 otherwise
tricode  E(v, u) + 2E(u, v) + 4E(v, w) + 8E(w, v) + 16E(u, w) + 32E

(w, u)
type  map tricode to its type
pair_count_local[type] = pair_count_local[type] + 1

end for
return pair_count_local

Algorithm 3 Mutation
Input:
G = {V, E} . . . directed graph with edges in E and missing edges in EC

census . . . triadic census of G
pair_count. . . matrix with |V| × |V| × 16 elements
Initialization:
edge_operation  assign 0 or 1 with the same probability
if edge_operation is 1 then
(v, u)  randomly select element from EC

E  E [ {(v, u)}
else
(v, u)  randomly select element from E
E  E − {(v, u)}

end if
pair_count_local  Count_local_triads(G, v, u)
pair_count_difference  pair_count_local—pair_count[v, u, :]—
pair_count[u, v, :]
pair_count[u, v, :]  0
pair_count[v, u, :]  pair_count_local
census  census + pair_count_difference
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return G, census

Selection of the optimal Boolean network

Boolean networks are inferred from the final population of possible underlying directed

graphs, i.e. influence networks using the Quine–McCluskey minimization algorithm. Each

function is thus represented with its minimal disjunctive normal form. The dynamic error is

then assessed for each Boolean network and one with the minimal dynamic error is selected.

In case, when multiple Boolean networks have the same minimal dynamic error, the Boolean

network closest to the optimal point in normalized objective space is selected. Consider the

ideal solution composed of the best extreme solutions in the last Pareto frontier

�z ¼ ðzmin
1
; zmin

2
Þ, where z1 is compliance with regulator rankings and z2 is topological similarity.

Values of each axis are normalized to the interval of [0, 1] by the equation

z∗i ¼
zi � zmin

i

zmax
i � zmin

i

: ð8Þ

Some regulators may become obsolete and expressions can be reduced to constants by the

minimization procedure. In this case, each constant Boolean expression is replaced with a

non-constant expression taken from the Boolean network closest to the optimal point in nor-

malized objective space.

The running time of the Quine–McCluskey algorithm grows exponentially with the num-

ber of variables, however, SAILoR limits the number of possible regulations while simulta-

neously following the in-degree distribution of provided reference networks in the process of

NSGA-II optimization, further reducing the number of possible regulators. SAILoR thus does

not suffer from impractical high computational complexity in the process of minimizing logic

expressions. We applied the open-source PyPI package for the Quine–McCluskey minimiza-

tion available under the MIT License (BSD) [59].

Hyperparameter tuning and assessment of SAILoR

We evaluated SAILoR for the inference of networks with 16, 32, and 64 nodes. Ten different

networks of the same size were first extracted from E. coli GRN and then simulated with the

tool GeneNetWeaver [38]. We extracted 10 networks with 16 genes and at least 5 regulators,

10 networks with 32 genes and at least 10 regulators, and 10 networks with 64 genes and at

least 20 regulators. Each network was simulated to obtain 10 different time-series gene expres-

sion data with 56 time steps. All parameters were the same as in in-silico network challenge

DREAM4 [60]. For additional information see [16].

Due to the large number and range of potential parameter values of SAILoR, we performed

a hyperparameter tuning procedure using randomized search [61] with 60 iterations for

parameters α1, α2, α3, and α4. Each parameter specifies the weight of a separate topological

property in the final topological similarity objective (z1). We limited values of alphas to the

interval [0, 1] since all topological loss functions take values from the same interval. We

repeated 60 iterations of randomized search, which with the 95% probability guarantees that

the best configuration found will lie within the top 5% of the optimal area [61].

Parameters α1, α2, α3, and α4 were assessed on 10 networks with 64 nodes. Within each iter-

ation of the parameter search, we measured the improvement compared to the base network

obtained with dynGENIE3 and a prior knowledge of the expected number of regulations. The

improvement was measured as an absolute difference between the performance of dyn-

GENIE3 and SAILoR. We assessed improvements for metrics describing static correctness

based on the structure of the static underlying directed influence graph. We, therefore,
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assessed improvements for accuracy, precision, recall, F1 score, bookmaker informedness

(BM), and the Matthew’s correlation coefficient (MCC). Due to the stochasticity of SAILoR,

we repeated the inference for a single network 10 times. As a prior knowledge, we provided

structures of all networks with the same size, except the network to be inferred from time-

series data. After executing genetic algorithm in SAILoR with 10 generations and 1000 subjects

we obtained the following α values α1 = 0.285, α2 = 0.0604, α3 = 0.7872, α4 = 0.3377. Since each

initial network was generated based on the expected in-degree distribution, α2 is understand-

ably low, however, the high value of α3 indicates the significance of the triadic census when

considering topological properties.

We assessed the ability of SAILoR to infer static graphs on all networks with the obtained α
values. We measured the improvement of structural correctness of the candidate network clos-

est to the ideal network in normalized objective space. The optimal point in normalized space

is �z∗ ¼ ð0; 0Þ and the solution closest to the ideal point is

ð~z∗
1
; ~z∗

2
Þ ¼ arg min

ðz∗
1
;z∗

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z∗2

1
þ z∗2

2

p
: ð9Þ

The optimal point in the normalized objective space represents the best compromise between

the topological similarity to the reference networks and the alignment with time-series gene

expression data. While this does not automatically guarantee the improvement of static accu-

racy compared to dynGENIE3, our results indicate that the improvement is significant in the

majority of cases for various network sizes (see section Structural properties of inferred net-

works). We provided all other networks of the same size as a reference and ran SAILoR for 10

generations with 1000 candidate networks.

Rarely, however, will the network closest to the optimal point in normalized objective space

have the best dynamic accuracy. To evaluate the capacity of SAILoR to infer accurate Boolean

networks, we measured the dynamic as well as the static performance with 10-fold cross-vali-

dation and averaged the obtained results across all networks of the same size (see section

Dynamic properties of inferred networks). In each cross-validation iteration, one time-series

experiment was excluded in the process of network inference and utilized in the process of val-

idation. Each network was inferred from a 9 time series with 56 time steps, which we merged

into a single time series with 9 � 56 time steps. Each network was evaluated on the excluded

time series. We provided all other networks of the same size as a reference and ran SAILoR for

10 generations with 1000 candidate networks.

Results and discussion

Structural properties of inferred networks

In comparison to dynGENIE3, the incorporation of prior knowledge in terms of expected net-

work topology significantly improves the correctness of inferred static networks in the major-

ity of cases for all the observed metrics, except for the static accuracy for networks with 32 and

64 nodes (see Fig 8). This indicates that SAILoR compensates for the correct prediction of

non-edges to increase the topological similarity, which results in a higher ratio of correctly

identified edges (see Precision, Recall and F1 score in Fig 8). However, due to the overall spar-

sity of biological GRNs, the number of missing edges is much larger than the number of edges.

Therefore, the identification of true edges bears a higher importance than the identification of

missing edges. The improvement of Bookmaker informedness (BM) and Matthew’s correla-

tion coefficient (MCC) indicate that SAILoR has higher predictive power than the dynGENIE3

since both metrics compare the classifier performance with random guessing (see BM and

MCC in Fig 8).
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Dynamic properties of inferred networks

We compared the performance of SAILoR with the performance of other Boolean network

inference approaches, namely Best-Fit [15], REVEAL [7], MIBNI [8], GABNI [5], ATEN [4],

and LogBTF [10]. Our results show that SAILoR retained the ability to infer Boolean networks

Fig 8. Performance improvements of SAILoR compared to dynGENIE3. Accuracy, Precision, Recall, F1 score, Bookmaker informedness (BM), and

Matthew’s correlation coefficient (MCC) improvements are calculated as a difference between the performance of SAILoR and the dynGENIE3

method. Blue boxes indicate improvements for networks with 16 nodes, orange boxes denote improvements for 32 node networks, and green boxes

represent 64 node network improvements. Results are obtained from 10 repetitions of 10 different networks for each network size.

https://doi.org/10.1371/journal.pone.0304102.g008

PLOS ONE SAILoR: Structure-Aware Inference of Logic Rules

PLOS ONE | https://doi.org/10.1371/journal.pone.0304102 June 11, 2024 17 / 29

https://doi.org/10.1371/journal.pone.0304102.g008
https://doi.org/10.1371/journal.pone.0304102


with high dynamic accuracy while improving the correctness of the underlying influence net-

work (see Fig 9). Overall SAILoR has the 2nd highest accuracy, right behind REVEAL, how-

ever, since REVEAL infers regulation rules where no inconsistencies are present, the number

of inferred regulations is often small. For this reason, REVEAL suffers from low dynamic accu-

racy and very low precision, recall, and F1 score.

Both SAILoR and LogBTF achieve high scores for bookmaker informedness and Matthew’s

correlation coefficient. However, the dynamic performance of LogBTF on our dataset is low,

Fig 9. Performance of Boolean inference methods. Performance of Boolean inference methods in terms of dynamic accuracy, static accuracy,

precision, recall, F1, bookmaker informedness (BM), and Matthew’s correlation coefficient (MCC). Solid lines denote mean values and shaded areas

represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0304102.g009
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for which we hypothesize several reasons. First, Boolean threshold functions may not be as

suitable for the representation of GRNs as disjunctive normal forms since Boolean threshold

functions cannot describe an arbitrary logic function. For example, exclusive or, and logical

equivalence cannot be represented with a Boolean threshold function. Second, LogBTF seems

to be more sensitive to errors in our dataset, which arose from merging multiple time series

data into a single time course. Errors often occur in real experimental data due to noisy condi-

tions and measurement errors [62]. Finally, Li et al. [10] evaluated the dynamic performance

of LogBTF on the training data, while 10-fold cross-validation was used in our case. This may

additionally explain the discrepancy between our results and the results reported by Li et al.

The bookmaker informedness score of SAILoR is right behind the score of GABNI in terms

of inferring small networks. Both MIBNI and GABNI suffer from low static accuracy, as both

methods overestimate the number of regulators in Boolean functions in order to achieve

higher dynamic accuracy. Nevertheless, in most cases, such networks are overfitted to the pro-

vided binarized time-series data. While MIBNI limits the number of regulators to 10, the

upper bound of regulators per node in GABNI is 0.6n, where n is the number of nodes in a net-

work. Such networks are not biologically relevant, since they overestimate the number of regu-

lators (see Fig 10). Fig 11 displays the in-degree distributions of Boolean functions inferred

with SAILoR, which represent the probability of a logic function with a certain number of

inputs. The distributions are separated according to the network size, whereby all logic func-

tions from evaluated networks are taken into account. Boolean functions of evaluated net-

works derived with SAILoR consist mainly of at most 5 regulators. The in-degree distribution

is slightly more skewed to the right for logic functions from networks with 64 nodes, however,

only 0.4% (25 of 6, 400) of such Boolean functions have seven or more distinct inputs. This

shows, that constraining the number of regulators to 10 has no impact on the dynamic accu-

racy of networks inferred with SAILoR. SAILoR has a high precision and a high F1 score,

while the recall is low. This indicates that SAILoR infers a lower number of regulations, while

it simultaneously increases the ratio of all correct edges among all predicted edges. Overall,

Boolean networks inferred with SAILoR are biologically more relevant and have high dynamic

accuracy and high structural correctness.

Fig 10. Example of Boolean networks’ influence graphs obtained with SAILoR, MIBNI, and GABNI. Fig a), b) and c) illustrate the influence graphs

of the Boolean networks with 32 nodes obtained with the inference methods SAILoR, MIBNI and GABNI, respectively.

https://doi.org/10.1371/journal.pone.0304102.g010
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Computational complexity

The computational complexity of SAILoR depends on multiple factors. The main contributors

to the overall running time are the number of generations (G), the number of subjects (N), the

problem size, i.e. number of nodes in the inferred network (n), and the total number of time

points (T). Under the assumption that the size of the provided reference networks is of the

same order as the problem size, the computational complexity for extraction of topological

properties from reference networks is O(m(3n2 + Δ|E|)), wherem is the number of networks

and |E| is the expected number of edges. In the worst case, the maximum degree in a network

(Δ) is n. In addition, we can approximate the number of edges in a scale-free network to

jEj � n
Xn

k¼1

1

kl� 1
⪅n
X1

k¼1

1

kl� 1
⪅nC; ð10Þ

where C is a constant. Note that for the typical values of λ (2< λ< 3) [41] the above series (Eq

10) converges [63]. Our experiments indicate sufficient performance of SAILoR for the con-

stant number of reference networks, regardless of the problem size. Under the above assump-

tions, the computational complexity for extraction of topological properties can be reduced to

O(n2). Computational complexity of dynGENIE3 is O(n2TlogT) [20]. Both methods are exe-

cuted only once. Furthermore, the computational complexity of the fast non-dominated sort-

ing in SAILoR is O(2N2) [35] given a fixed number of optimization objectives. The mutation

of each subject has a complexity of O(n2), however, the update procedure of topological prop-

erties after the mutation has O(1 + n) complexity. The update of network density and degree

distributions is performed in constant time, whereas the triadic census update takes O(n) time.

The computational complexity of crossover is O(n2). In addition, all topological properties

need to be recalculated, which can be done in O(4n2) time. Overall, the computational com-

plexity of GA in SAILoR, including the calculation of subjects’ initial topological properties, is

O(Nn2 + G(Nn2 + N2)), which is reduced to O(GNn2). In the final step, SAILoR performs itera-

tive k-means binarization [14], which can be computed in O(nT) time, considering the con-

stant number of re-clustering iterations and the constant iterative depth of 3. The inference of

a Boolean network from a given adjacency matrix with the Quine–McCluskey algorithm is

Fig 11. In-degree distributions of Boolean functions inferred with SAILoR. In-degree distributions of inferred Boolean functions are extracted from

all evaluated networks with 16, 32, and 64 nodes. The vertical axis displays the probability of a Boolean function consisting of multiple distinct

regulators. Bin colors represent different network sizes.

https://doi.org/10.1371/journal.pone.0304102.g011
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bounded by Oðr23rÞ running time, where r is the number of regulators [64]. For a constant

number of regulators, this computational complexity is constant. While this constant is not

negligible for large r, we must note, that a very small fraction of nodes have a high number of

regulators in biological networks [47]. Furthermore, the number of regulators for each target

gene in SAILoR is constrained to 10. At the final step, every Boolean network is evaluated at T
time points. This can be done in O(nNT) time. The overall computational of SAILoR is O
(n2TlogT + GNn2 + nNT).

We have parallelized SAILoR in multiple stages to reduce its running time. First, ranked

interactions are obtained with parallel execution of dynGENIE3. In addition, the inference of

Boolean rules and the identification of a suitable Boolean network are executed in parallel. The

DEAP library allows simultaneous evaluation of subjects, however, in our case the sequential

execution of the genetic algorithm proved to be less time-consuming, due to the communica-

tion overhead between different processes. Communication overhead is especially prominent

in Python since the global interpreter lock (GIL) prevents parallel execution of multiple

threads [65]. SAILoR required on average approximately 7 minutes and 41 seconds to infer a

Boolean network with 64 nodes on 32 allocated AMD EPYC 7453 CPU cores.

Inference of context-specific gene regulatory subnetworks of Drosophila
melanogaster
To demonstrate the applicability of SAILoR we inferred context-specific Boolean networks

describing the genetic response of Drosophila melanogaster to mating. Delbare et al. [39] mea-

sured female neural gene expression profiles for 9, 027 expressed genes of D. melanogaster at

0.5, 1, 2, 3, 4, 5, 6, 8, 12 and 24 hours after mating and for virgin flies. The authors show that

the seminal fluid protein, i.e. Sex peptide (SP) alters a female’s circadian rhythm after mating,

which may play a role in a virgin-to-mated transcriptional switch and in changes of metabolic

gene regulatory network.

Due to the large gap in measurements between 8, 12, and 24 hours, we considered measure-

ments from 1 to 8 hours and interpolated gene expressions at 7 hours after mating. We are

interested in the Boolean dynamics between genes, whose role is directly associated with egg-

laying behavior, regulation of female receptivity, and circadian behavior. We therefore

observed frma, per, egh, na, Est-6, IBIN, Clk, NPF, SPR, cyc, JhI-26, tim, spin, mbl, pain, dati,
Rack1, slo, ash1, cry, lectin-46Cb, loj, sra, Rh7, Ide, Sk2, Tdc2, Esp, Gadd45, SIFa, Tmc, Pdfr,
retn, hdly, Nrg, BTBD9, and CG10433. Each time-series CPM (count per million) data is avail-

able for three independent biological replicates. Nonetheless, we discarded the last replicate

due to missing data.

Furthermore, we obtained the reference network of female Drosophila constructed with the

context-specific inference method NetREX [36]. The initial network contains 300, 000 ranked

interactions for 7, 530 genes. We selected the top 60, 000 interactions and extracted 10 sub-net-

works with 37 nodes and at least 20 regulators. We inferred the context-specific Boolean net-

work of D. melanogaster after mating (M), and the Boolean network of a virgin (V) D.

melanogaster from CPM measurements.

The dynamic accuracy of (V) Boolean network is 0.66 for the first time series and 0.77 for

the second time series, while the dynamic accuracy of (M) network is 0.68 for the first time

series and 0.73 for the second time series. Obtained dynamic accuracy is in the expected range

according to Fig 9. Nonetheless, we must note that SAILoR does not overfit Boolean network

to binarized time-series data, since it also considers continuous data as well as given structural

constraints. However, if we apply (V) time-series data to (M) Boolean network, the dynamic

accuracy falls to 0.56 and 0.52. Similarly, if we apply (M) time-series data to (V) network, the
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dynamic accuracy falls to 0.55 for both replicates, which is slightly above random guessing.

This further demonstrates the need to infer context-specific dynamical models of biological

systems. Figs 12 and 13 display static representation, i.e. influence graphs, of Boolean networks

(V) and (M) respectively. We assessed the positive and negative influence of connections with

truth tables. If the target gene is predominantly the same as its regulator, then we assigned pos-

itive influence. Otherwise, we marked the edge as a negative influence. Due to the small

Fig 12. Influence graph of a context-specific Boolean network of virgin female Drosophila melanogaster. Static representation of the virgin Boolean

network (V). Black and red edges represent positive and negative influences, respectively. Each node is colored according to its known biological role.

https://doi.org/10.1371/journal.pone.0304102.g012
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subnetwork size, each edge can depict direct or indirect interaction. In addition, some edges

may be fabricated by SAILoR to best fit the given constraints and a Boolean model.

Both networks differ in many interactions, signifying the importance of a proper context

when inferring Boolean networks. For example, consider the positive interaction of Clk and

cry from the network (V) (see Fig 12). Protein CRY has been linked to circadian rhythmicity

as a blue light photoreceptor dedicated to mediating TIM degradation [66] and to resetting of

Fig 13. Influence graph of a context-specific Boolean network of female Drosophila melanogaster after mating. Static representation of the mating

Boolean network (M). Black and red edges represent positive and negative influences, respectively. Each node is colored according to its known

biological role.

https://doi.org/10.1371/journal.pone.0304102.g013
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circadian rhythms [67]. However, in the network (M) this interaction is reversed (see Fig 13).

This further indicates that the mating disrupts the circadian rhythm of Drosophila. While the

known negative regulation of tim by cry is missing from both networks, SAILoR still identified

indirect positive regulation of Clk through double repression, since TIM-PER heterodimer

inhibits CLK-CYC activity. We must also note, that SAILoR unsuccessfully identified the

linked role of Clk and cyc in the downstream regulation of other clock genes [68]. For exam-

ple, CLK and CYC directly activate transcription of per and tim [66]. Nonetheless, SAILoR

still identified the combined role of CLK-CYC dimer through joint regulation of retn in (V)

network and through the indirect regulation of Gadd45 in (M) network. The Dead ringer pro-

tein (RETN) is implicated as a major repressor of male courtship behavior [69]. In (M) net-

work retn is regulated by per. Additionally, RACK1, an essential receptor at multiple steps of

Drosophila development, particularly in oogenesis [70], is in the network (M) heavily regu-

lated. However, Rack1 was reduced to a constant 1 in network (V). While the relationship

between the molecular clock genes and the regulation of female receptivity and regulation of

egg-laying behavior has not been yet completely explained, it has been shown, that the altered

circadian expression impacts metabolic and neuronal features [39].

Conclusions

SAILoR infers Boolean representations of gene regulatory networks with the utilization of

time-series gene expression data and incorporation of prior knowledge of the structure of the

inferred network. We performed a rigorous evaluation of SAILoR. First, we assessed the ability

of SAILoR to infer accurate static networks, which act as influence graphs for Boolean net-

works. We evaluated SAILoR on subnetworks extracted from the E. coli. Our results indicate a

significant improvement in static accuracy to the method dynGENIE3 for the majority of cases

(see section Structural properties of inferred networks). In addition, we evaluated the ability of

SAILoR to infer Boolean networks. We compared the performance of SAILoR with other

Boolean network inference approaches including Best-Fit, REVEAL, MIBNI, GABNI, ATEN,

and LogBTF. We demonstrated that the incorporation of prior knowledge in terms of general

network structure allows SAILoR to improve the structural correctness of inferred Boolean

networks while maintaining dynamic accuracy (see section Dynamic properties of inferred

networks). Furthermore, we utilized SAILoR to infer the context-specific Boolean subnetworks

of Drosophila melanogaster before and after mating (see [39]). Obtained networks differed in

numerous interactions, which in our opinion demonstrates the necessity for context-specific

dynamical models.

Due to large space and time complexity, the current implementation of SAILoR is impracti-

cal for larger problems. This problem could be mitigated with the utilization of sparse matri-

ces, however, in this case, the time complexity of SAILoR would increase, due to additional

operations specific to sparse matrices. For this reason, SAILoR is appropriate for the inference

of small to medium-sized Boolean networks. Nonetheless, even larger networks could be

inferred with the aid of SAILoR. For example, one could infer a Boolean network consisting of

known regulators using SAILoR and additionally apply, for example, Best-Fit to infer logical

functions of the remaining genes. Best-Fit is a bit faster and not as memory-consuming as

SAILoR. Best-Fit could be additionally modified to infer logic functions from a reduced set of

potential regulators obtained for example with the application of the mutual information-

based feature selection as used in MIBNI. Nonetheless, SAILoR can still be applied in the pre-

sented form to infer specific subsystems of real-world gene regulatory networks. We demon-

strated this with the inference of context-specific Boolean networks describing the dynamics

of virgin D. melanogaster and the dynamics of D. melanogaster after mating.
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Another limitation of SAILoR is that the size of reference networks should be of the same

order as the network being inferred. Currently, SAILoR utilizes expected network density as

one of its objectives. This property is proportional to the squared number of nodes in the net-

works. The network density differs between networks of various sizes that have the same num-

ber of expected edges per node. To consider reference networks of different sizes, SAILoR

could be modified to take into account the expected number of edges per node. Instead, we

argue that in most cases reference networks will and should be of approximately the same size.

Nonetheless, SAILoR offers numerous advantages to other assessed methods for inference

of Boolean networks. SAILoR predicts a Boolean network from both continuous and binarized

time series data. For this reason, inferred interactions better align with the underlying static

representation of the GRN process. In addition, SAILoR does not overestimate the number of

regulators that form a Boolean function since it considers the topological properties of refer-

ence networks. In our experiments, we constrained the number of regulators of a gene to 10.

However, this value could be revisited when inferring larger Boolean models. SAILoR maneu-

vers between multiple objectives to infer biologically relevant Boolean networks, which are not

overfitted to the binarized time series data. SAILoR could be therefore applied, to infer and

predict the dynamics of context-specific biological sub-systems, which we believe is an impor-

tant step also towards the reconstruction of personalized models for personalized medicine

applications.
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32. Chevalier S, Froidevaux C, Paulevé L, Zinovyev A. Synthesis of Boolean networks from biological

dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on

Tools with Artificial Intelligence (ICTAI). IEEE; 2019. p. 34–41.
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