
Nature Methods | Volume 21 | June 2024 | 1014–1022 1014

nature methods

Article https://doi.org/10.1038/s41592-024-02274-x

Scalable and unbiased sequence-informed 
embedding of single-cell ATAC-seq data  
with CellSpace

Zakieh Tayyebi    1,2, Allison R. Pine1,2 & Christina S. Leslie    1 

Standard scATAC sequencing (scATAC-seq) analysis pipelines represent 
cells as sparse numeric vectors relative to an atlas of peaks or genomic tiles 
and consequently ignore genomic sequence information at accessible loci. 
Here we present CellSpace, an efficient and scalable sequence-informed 
embedding algorithm for scATAC-seq that learns a mapping of DNA 
k-mers and cells to the same space, to address this limitation. We show that 
CellSpace captures meaningful latent structure in scATAC-seq datasets, 
including cell subpopulations and developmental hierarchies, and can 
score transcription factor activities in single cells based on proximity 
to binding motifs embedded in the same space. Importantly, CellSpace 
implicitly mitigates batch effects arising from multiple samples, donors or 
assays, even when individual datasets are processed relative to different 
peak atlases. Thus, CellSpace provides a powerful tool for integrating and 
interpreting large-scale scATAC-seq compendia.

Typical computational strategies to discover latent structure in 
scATAC-seq datasets mimic scRNA-seq workflows. First, scATAC-seq 
data is summarized as a sparse cell-by-event matrix, where events 
correspond either to an atlas of accessible peaks or to highly variable 
genomic tiles1,2, analogous to the cell-by-gene matrix in scRNA-seq 
analysis. The cell-by-event matrix can be binarized (1 if the event was 
accessible in a cell and 0 if the event was inaccessible or not captured) 
or contain counts. Then normalization followed by a standard dimen-
sionality reduction method (for example, latent semantic indexing 
(LSI)) allows construction of a nearest neighbor (NN) graph on cells 
in the lower-dimensional space and use of graph-based clustering and 
embedding algorithms from the scRNA-seq toolkit. However, due to its 
high dimensionality and sparsity, dimensionality reduction and embed-
ding of scATAC-seq is challenging and prone to complex batch effects. 
Another strategy summarizes single-cell chromatin accessibility pro-
files at the gene locus level to generate scRNA-seq-like data, allowing 
integration with scRNA-seq datasets3 but losing the representational 
richness of scATAC-seq.

Rather than mimicking scRNA-seq strategies, we will exploit the 
genomic DNA sequences underlying accessible peaks/tiles. Sequence 

signals, such as transcription factor (TF) binding motifs, reflect devel-
opmental state and cell identity and therefore should help reveal 
biologically meaningful latent structure. Importantly, we will incor-
porate sequence information in the latent structure discovery step 
of scATAC-seq analysis rather than in a post hoc analysis step. So far, 
few approaches have attempted sequence-informed embedding of 
scATAC-seq. Early work used chromVAR4 to represent each cell as a 
vector of accessibility scores relative to a fixed library of known TF 
motifs5. This approach can indeed group cells by cell type but intro-
duces bias through a priori motif choice; moreover, TF motif acces-
sibility scores can capture technical differences between samples and, 
hence, preserve batch effects. Recently, scBasset6 used a multitask 
neural network to learn both a sequence model for accessible peaks 
that passes through a bottleneck layer and cell-specific model vectors 
that predict whether a peak—given its bottleneck representation—will 
be accessible in the cell. This approach yields a low-dimensional rep-
resentation of cells via the model vectors and assigns TF accessibility 
scores to cells via motif injection. However, scBasset requires training 
of a large neural network model where the number of tasks equals 
the number of cells and likely will require further optimizations to 
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CellSpace learns latent structure and mitigates batch effects
We first tested our approach on a smaller scATAC-seq dataset profiling 
CD34+ hematopoietic stem and progenitor cell (HSPC) populations 
from multiple human donors5, where ground truth cell types based on 
fluorescence-activated cell sorting are available. After preprocessing 
steps (Methods), we retained 2,154 cells for embedding with CellSpace 
using 50,000 variable 500-bp tiles, sampling 150-bp sequences with 
3-grams of 8-mers. CellSpace obtained a biologically meaningful embed-
ding of the hematopoietic differentiation hierarchy as visualized by 
UMAP (Fig. 2a), where hematopoietic stem (HS) cells and multipotent 
progenitors (MPPs) diverge into two main erythroid and lymphoid 
branches, with common myeloid progenitors (CMPs) giving rise to 
megakaryocyte–erythrocyte progenitors (MEPs) along one branch 
and lymphoid-primed MPPs (LMPPs) giving rise to common lymphoid 
progenitors (CLPs) along the other. The granulocyte–monocyte pro-
genitors (GMPs) branch off both from LMPP and CMP populations, 
consistent with current knowledge (Fig. 2b). Trajectory analysis with 
Palantir12, using an HS cell as the origin, recovers six termini that include 
the most differentiated cell types represented in the dataset: CLPs, 
plasmacytoid dendritic cells (pDCs), MEPs, an end point within the GMP 
population and a GMP-adjacent population labeled as ‘unknown’ in the 
original study and monocytes (Fig. 2c and Extended Data Fig. 1a). We also 
embedded motifs for TFs important in hematopoietic differentiation 
using CellSpace (Fig. 2a). The location of motifs in the UMAP provides 
intuition for why CellSpace correctly recovers the developmental hier-
archy, with cell-type-specific TFs embedded close to the cells where they 
are active; for example, the HOXA9 motif is embedded near the HS cell 
population, GATA1 near MEPs, CEBPB near GMPs, PAX5 near CLPs and 
IRF1 near pDCs. TFs active in multiple cell types end up in between them; 
for example, the ESRRA motif is close to GMP and pDC populations.

Strikingly, CellSpace mitigates batch effects in this dataset, with 
cells from multiple donors well mixed and with HS cell and MPP popula-
tions from three donors clustering together (Extended Data Fig. 1b). 
Seurat’s shared NNs (SNN)-based clustering3,13 on the CellSpace embed-
ding largely recovered the known cell type labels, with earliest stem 
and progenitor populations HS cell and MPP grouping in one cluster 
(Extended Data Fig. 1b). By contrast, iterative LSI (itLSI) using ArchR 
separated the HS cell and MPP populations into two separate clus-
ters based on donor and obscured the overall hierarchy (Fig. 2d and 
Extended Data Fig. 1c). Similarly, scBasset reported a strong donor 
batch effect in their embedding of this dataset, requiring a modifica-
tion of the model to explicitly account for batch6.

We also asked whether we could learn TF motifs de novo from the 
CellSpace embedding, which in principle could enable the discovery of 
novel motifs. To do this, we used the trained CellSpace embedding to 
find the induced embedding of all 10-mers and compiled the 10-mers 
that are frequently among the NNs of cells in each cell cluster (Extended 
Data Fig. 1b and Methods). Next, we clustered these 10-mers on the 
basis of sequence composition, aligned the 10-mers in each cluster, 
and computed a position weight matrix (PWM) from each alignment, 
yielding 29 de novo motifs (Fig. 2e, Extended Data Fig. 1d and Methods). 
A comparison with CIS-BP14 motifs confirmed that the de novo motifs 
were similar to relevant hematopoietic TF motifs (Fig. 2e), suggesting 
the potential for learning novel motifs in systems where important 
factors are unknown.

To quantify the extent to which CellSpace implicitly corrects batch 
effects while preserving biological heterogeneity and to compare to 
other scATAC-seq embedding methods, we assessed the batch effect 
using published metrics (k-NN batch-effect test (kBET), batch average 
silhouette width (ASW) and graph connectivity)15, as well as a mutual 
information-based metric (batch-normalized mutual information 
(NMI)), and also evaluated clustering quality metrics (homogeneity, 
adjusted Rand index, NMI and ASW)15,16 (Methods). Successful batch 
integration should yield good batch correction metrics without sac-
rificing biological complexity, as assessed by the clustering metrics. 

scale to large datasets. Finally, a recent method called SIMBA uses a 
graph-embedding approach for scRNA-seq, scATAC-seq and multiome 
data7, where cells, genes, peaks, k-mers and TF motifs are vertices and 
edges connect entities (such as peaks) that relate to other entities 
(such as cells). Notably, applying this method to scATAC-seq requires 
TF motifs to be specified before training to define the graph which 
could bias the learned embedding. Moreover, the cell-by-peak matrix 
is explicitly encoded in the graph, potentially inheriting underlying 
sparsity and batch effect issues.

Here, we present CellSpace, an efficient and scalable k-mer-based 
embedding algorithm for scATAC-seq. CellSpace employs a latent 
embedding algorithm from natural language processing called Star-
Space8, similar to the strategy we used in the BindSpace model to 
learn subtle binding preferences of TFs from SELEX-seq data9. Cell-
Space learns a joint embedding of k-mers and cells, where cells are 
embedded close to each other in the latent space based on shared DNA 
sequence content of their accessible events. Notably, CellSpace avoids 
explicitly embedding peaks and tiles and, therefore, does not encode 
the cell-by-event matrix. Single-cell TF motif activities can be readily 
computed in CellSpace’s latent space; the selection of TF motifs is not 
required ahead of time and does not influence training. Importantly, 
thanks to key representational and training choices, we show that 
CellSpace’s sequence-aware embedding has powerful intrinsic batch 
mitigating properties, allowing discovery of latent structure to enable 
trajectory analysis and cluster discovery across multiple samples and 
assays, even when the individual datasets are processed independently.

Results
Algorithm overview
CellSpace trains on scATAC-seq data to learn an embedding of DNA 
k-mers and cells into a common latent space (Fig. 1 and Methods). To 
generate training examples, CellSpace samples genomic sequences 
of fixed length from accessible events (peaks or tiles) and treats cells 
in which an event is present as positive labels for the sampled input 
sequence (Fig. 1a). This process produces left-hand side (LHS) and 
right-hand side (RHS) training pairs, where the LHS is a bag of k-mers 
from the sampled sequence, and the RHS is a cell in which the event is 
accessible. During training, CellSpace updates the embedding vectors 
of k-mers and cells to push the induced embedding representation of 
the LHS sequence towards the embedding of the ‘positive’ cell on the 
RHS and away from sampled ‘negative’ cells (Fig. 1b). Here, a K-negative 
sampling strategy10, where K negative cells are sampled at random, 
improves training time by updating only some of the weights at each 
optimization step. This technique is useful, since there are orders of 
magnitude that are more negative observations than positive ones, 
and also reduces the effect of false negatives caused by scATAC-seq 
sparsity. Importantly, CellSpace uses N-grams in the bag of k-mers 
representation to extract context from the data and improve the 
embedding (Fig. 1b).

Accessible events (peaks and tiles) are not explicitly embed-
ded; an induced representation of an event can be computed from 
the embedding of its k-mers. By not directly embedding peaks and 
by updating the cell embedding on the basis of the k-mer content 
rather than the identity of accessible regions, CellSpace appears to be 
less influenced by preprocessing choices or by technical differences 
between batches or even assay variants. Finally, any TF motif can be 
embedded in the latent space based on the embedding of constitu-
ent k-mers from its consensus sequence (Fig. 1c). Notably, the set of 
(known) TF motifs to be examined is not required at training time 
and does not bias the embedding. Similarity between a TF motif and 
cell embedding in the latent space produces a TF activity score, and 
these motif scores are useful in characterizing cell subpopulations. 
Finally, similarity of cells in the latent space can be used to produce a 
NN graph for clustering, visualization with UMAP11 and other down-
stream analyses (Fig. 1c).
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To statistically assess differences in performance, we used aggre-
gated scores—producing a single metric for batch, a single metric for 
biological complexity and a single overall metric—and performed a 

bootstrapping analysis to report 95% confidence intervals and false dis-
covery rate (FDR)-adjusted P values for pairwise comparisons between 
algorithms (Extended Data Fig. 2a–e, Supplementary Datasets 2 and 

Training the embedding of
cells and k-mers with CellSpace
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Fig. 1 | CellSpace learns a sequence-informed embedding of cells from 
scATAC-seq. Overview of the CellSpace algorithm. a, CellSpace samples 
sequences from accessible events (peaks or tiles) to generate training examples, 
each consisting of an ordered list of overlapping k-mers from the sampled 
sequence, a positive cell (where the event is open) and a sample of negative cells 
(where the event in closed). b, CellSpace learns an embedding of k-mers and 
cells into the same latent space. For each training example, the embeddings of 

the corresponding k-mers and cells are updated to pull the induced sequence 
embedding towards the positive cell and away from the negative cells in the 
latent space; learning contextual information, represented by N-grams of nearby 
k-mers, improves the embedding. c, Once the embedding of cells and k-mers is 
trained, TF motifs can be mapped to the latent space, allowing cells to be scored 
for TF activities based on TF-cell similarities.
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3 and Methods). We assessed CellSpace embeddings on the basis of 
variable genomic tiles and on variable peaks and compared to a wide 
range of existing methods: ArchR’s itLSI using variable tiles; standard 
LSI using peaks; scBasset; SIMBA using either peaks alone or peaks, 

k-mers, and TF motifs in the graph embedding; PeakVI17, a variational 
autoencoder embedding of the cell-by-peak matrix; and chromVAR 
using motifs or k-mers. For methods that implement an explicit batch 
correction option (scBasset, SIMBA and PeakVI), we ran both with 
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Fig. 2 | CellSpace recovers latent structure and developmental hierarchies.  
a, UMAP of CellSpace embedding for 2,154 cells from a small human 
hematopoietic scATAC-seq dataset annotated by fluorescence-activated cell 
sorting-sorted cell types. The embedding of key hematopoietic TF motifs is also 
shown. b, Current model of hematopoietic differentiation, with cell labels and 
colors as in a. c, Palantir pseudotime analysis using CellSpace embedding, with 
an HS cell starting point, identifies differentiation termini corresponding to CLP, 
pDC, GMP, MEP and monocyte (Mono) fates. d, UMAP of itLSI embedding based 
on cell-by-tile matrix using ArchR splits HS cell, MPP and MEP populations into 
two clusters due to batch effects. e, UMAP of cells and de novo motifs discovered 
based on the same trained CellSpace embedding as in a. DNA 10-mers that are 

frequent NNs of each cluster’s cells are identified and clustered by sequence 
content; 10-mer clusters are aligned and each converted to a PWM. f, Standard 
t-SNE from LSI dimensionality reduction of the cell-by-peak matrix for 7,846 cells 
from a murine fetal and adult mammary epithelial scATAC-seq dataset. The cells 
are annotated using CellSpace clusters (N = 3), and comparison with the original 
study was used to associate these clusters with cell types. g, UMAP of CellSpace 
embedding for the mouse mammary epithelial dataset shows the impact of 
N-gram parameter for N = 1 and 5. h, CellSpace with default N = 3 accurately 
captures developmental relationships between cell types. The key TF motifs in 
epithelial differentiation are also shown in the N = 3 CellSpace embedding.
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and without the batch covariate. For LSI-based embedding methods, 
we also evaluated metrics after batch correction with Harmony18,  
a widely-used single-cell integration method.

We found that CellSpace (variable tiles) significantly outperforms 
scBasset (with and without batch correction, adjusted P < 0.05 and 
0.01, respectively), all variants of SIMBA (adjusted P < 0.05 to 0.01), 
PeakVI (with and without batch correction, adjusted P < 0.05 and 0.01, 
respectively), both variants of chromVAR (adjusted P < 0.01) and LSI 
(peaks) without batch correction (adjusted P < 0.05) (Extended Data 
Fig. 2d). Based on bootstrap analysis, CellSpace (variable tiles) is sig-
nificantly better than ArchR itLSI (variable tiles) in terms of batch 
correction (adjusted P < 0.01), but there is no significant difference 
in terms of the biological complexity score and overall score between 
these methods. CellSpace, which uses no knowledge of batch covari-
ates, performs comparably on this small dataset to Harmony batch 
correction applied to ArchR itLSI (variable tiles) or LSI (peaks). Note 
that the variants of LSI are not sequence-informed embeddings and 
do not provide batch-corrected TF motif scores.

Examining individual batch metrics by cell type (Extended Data 
Fig. 2e), we observed that among competing methods to CellSpace, 
only those with explicit batch correction improve the batch scores for 
HS cells and MPP, which are most affected by donor batch; in some cases 
(for example, ArchR itLSI + Harmony and batch-corrected SIMBA), 
improvement for HS cells and MPP comes at the cost of poorer perfor-
mance on MEP. Overall, CellSpace (variable tiles) either ties or signifi-
cantly outperforms all competing methods on this dataset, including 
methods with explicit batch correction, and notably outperforms 
sequence-informed methods that provide TF motif scores.

We found that the use of N-grams in CellSpace was often important 
for recovering well-defined latent structure in the embedding. To illus-
trate this effect, we applied CellSpace to a second published scATAC-seq 
dataset profiling 7,846 murine fetal and adult mammary epithelial cells 
using the published peak atlas19. We first reproduced the t-distributed 
stochastic neighbor embedding (t-SNE) visualization from the original 
study using standard processing of the cell-by-peak matrix to identify 
the reported cell types: adult luminal progenitor, adult mature luminal, 
adult basal, luminal progenitor-like fetal, mature luminal-like fetal and 
basal-like fetal (Fig. 2f). Next, we ran CellSpace with different choices 
of the N-gram hyperparameter, sampling L = 300 bp sequences due to 
the larger peak size (1,000 bp) and plotted UMAPs (Fig. 2g,h). We found 
that N = 1 (Fig. 2g, simple bag of 8-mers) yielded a diffuse embedding, 
while N = 3 (Fig. 2h, default) clarified the population structure and 
identified correct developmental relationships between fetal and adult 
cell types. The larger value N = 5 (Fig. 2g) began to pull cell populations 
further apart in the embedding, although clustering and develop-
mental relationships were still correct. Canonical luminal (Foxa1 and 
Pparg) and basal (Trp63 and Egr2) TFs were correctly associated with 
cell populations via the CellSpace motif embeddings (N = 3; Fig. 2h).

CellSpace infers single-cell TF motif activities
Beyond visualizing TF motifs in the CellSpace UMAP, we can compute 
single-cell TF activity scores via the similarity between TF motif and 
cell embeddings in the latent space (Methods). To systematically assess 
CellSpace’s motif scoring, we analyzed a recent multiome dataset profil-
ing the human cortex containing 8,981 cells with both scRNA-seq and 
scATAC-seq readouts20. Running CellSpace with default parameters on 
the provided scATAC-seq cell-by-peak matrix readily captured major 
developmental relationships between cell types based on reported 
cluster annotations, with glutamatergic neuron (GluN) clusters group-
ing apart from inhibitory neuron (IN) clusters in the UMAP (Fig. 3a). For 
comparison, we ran scBasset on the same scATAC-seq dataset and found 
that the model converged by 45 epochs (before the default 1,000 epochs, 
Extended Data Fig. 3a) and trained efficiently when using specialized 
large-memory graphics processing units (GPUs) (Supplementary 
Dataset 1). Notably, scBasset applies stringent filtering to the training 

data, decreasing the number of peak training examples by an order of 
magnitude. scBasset found a topologically similar embedding to Cell-
Space, but unlike CellSpace and the standard LSI embedding, it failed 
to separate the IN cluster IN3 from the glutamatergic neurons (Fig. 3a).

Moreover, compared to TF motif scores provided by other 
sequence-informed embedding methods, CellSpace motif scores 
for key TFs correlated better with expression of the corresponding 
factors from the scRNA-seq readout (Fig. 3b). For example, CellSpace 
correctly captures that the strongest PAX6 activity is in the radial glia 
population, while scBasset associated PAX6 to cell populations where 
it is not expressed. For EMX2 and MEF2C, CellSpace better captures the 
overall landscape of TF activity, while scBasset overestimates activity 
in IN subpopulations. In other cases, such as NEUROD2, both methods 
correctly map the region of TF activity as validated by expression. 
For an overall comparison, we computed the correlation between 
gene expression and TF motif scores from each method for the set of 
important neurodevelopmental TFs identified by the original authors20 
whose motifs passed scBasset’s filtering steps (Methods). Extended 
Data Fig. 3b shows that CellSpace’s motif correlation scores outperform 
scBasset’s scores on these neurodevelopmental factors. In particular, 
CellSpace TF motif scores yield positive correlation with expression 
for almost all these factors (17/19, upper half plane of scatterplot), in 
contrast with scBasset (14/19, right half plane of scatterplot), and had 
similar performance as chromVAR (Fig. 3b and Extended Data Fig. 3b). 
Finally, we trained a SIMBA embedding on the peak atlas using k-mers 
and TF motifs. SIMBA had a significantly higher memory usage than 
CellSpace but trained faster using peaks associated with the top prin-
cipal components (Supplementary Dataset 1). The SIMBA motif scores 
did not provide meaningful per-cell motif activities, yielding mostly 
zero scores across the atlas (Fig. 3b) and near-zero correlations with 
TF expression (Extended Data Fig. 3b), although they could find an 
association with cell type via ranking (Extended Data Fig. 3c).

To compare across scATAC-seq embedding approaches, we pro-
duced UMAPs, clustered cells, computed performance scores for 
CellSpace and competing methods (Extended Data Fig. 3d,e, Sup-
plementary Datasets 2 and 4 and Methods) and performed a boot-
strapping analysis to report 95% confidence intervals for the overall 
biological complexity score and FDR-adjusted P values for pairwise 
comparisons as before. On this dataset, CellSpace (peaks) significantly 
outperforms LSI (adjusted P < 0.01), SIMBA (peaks) (adjusted P < 0.05), 
PeakVI (adjusted P < 0.01) and chromVAR (adjusted P < 0.01) but did 
not significantly outperform SIMBA (peaks+kmers+motifs) or scBas-
set (adjusted P = 0.087 for both) Thus, CellSpace ties or significantly 
outperforms all competing methods on the human cortex dataset.

Returning to the previous hematopoietic dataset (Fig. 2a), we 
can similarly compute motif scores for key blood developmental TFs 
(Fig. 3c). This analysis retrieved the correct association between TFs 
and HSPC populations, including GATA1 with MEP cells, ID3 with CLP 
and pDC cells and CEBPB with GMP cells. Interestingly, a subset of cells 
in the CMP population that are placed by CellSpace in cluster 1—pre-
dominantly made up of GMP cells—indeed have high CEBPB scores, 
suggesting progression towards the GMP cell state. Motif scoring for 
the mammary epithelial dataset (Fig. 2h) similarly identified correct 
activities of key luminal and basal TFs in fetal and adult cell populations 
(Extended Data Fig. 3f).

CellSpace scales to large scATAC-seq atlases
Next, to assess CellSpace’s scalability and batch-mitigating capabili-
ties, we ran the model on several large-scale multisample datasets with 
challenging batch effects. First, we turned to a larger human hemat-
opoietic dataset comprising 61,806 cells collected from bone marrow 
and peripheral blood from 12 healthy donors21, together with 2,706 
cells from the smaller hematopoietic dataset5. The cell-by-peak matrix 
was originally processed in multiple steps, with LSI dimensionality 
reduction followed by a batch correction procedure and variable peak 
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selection, then recomputation of LSI21. Cells were then clustered into 
31 clusters in this final lower-dimensional space; the resulting UMAP 
with major clusters is reproduced here (Fig. 4a). While developmental 
relationships can be inferred from this embedding, there also appears 
to be artifactual structure from residual batch effects and noise.

We asked whether CellSpace’s k-mer-based embedding could over-
come batch effects and find latent structure without multiple custom 
preprocessing steps. We therefore ran CellSpace on this approximately 
63,000 cell dataset using the cell-by-peak matrix for the top 50,000 
variable peaks and with default parameters, except for increasing the 
embedding dimension and number of epochs (Methods). Here, we 
exploit the fact that CellSpace is memory-efficient even for large-scale 
datasets (Supplementary Dataset 1), since random training examples 
are generated at every step of optimization and only the sparse count 
matrix and its corresponding genomic sequences are indexed and 
stored in memory (Methods). A UMAP visualization shows that Cell-
Space faithfully captured the hematopoietic developmental hierar-
chy within the HSPC compartment and correctly linked progenitor 
populations to more mature blood cell types (Fig. 4b); for example, 
the monocyte–dendritic progenitor population was embedded near 
to monocytes and conventional dendritic cells, while CLP cells dis-
played a differentiation trajectory towards pro-B and pre-B cells. We 
also found that batches and donors were well mixed in the embedding 
(Extended Data Fig. 4a). Given the diversity of this dataset, we were 
able to obtain more resolution by retraining the CellSpace embed-
ding on specific compartments, for example, to reveal detailed rela-
tionships among natural killer and T cell populations (Extended Data  
Fig. 4b).

We further applied CellSpace to a scATAC-seq dataset profiling 
the tumor immune microenvironment (TME) in basal cell carcinoma 
biopsies from seven patients21, comprising 37,818 cells. Although the 
authors reported a detectable batch effect that confounded further 
analyses and required attenuation21, we ran CellSpace directly on 
50,000 variable peaks and recovered the identified T cell types as 
well as other lymphoid, myeloid, endothelial and fibroblast popula-
tions that were well mixed over donors (Extended Data Fig. 4c). As has 
been described in tumor scRNA-seq analyses, the cancer cells from 
different patients retained more distinct identities in the embedding.

We again assessed CellSpace’s batch mitigation properties by 
comparing biological complexity, batch correction and overall metrics 
against both sequence-informed and sequence-ignorant methods, 
with and without explicit batch correction, through bootstrap analysis 
(Extended Data Fig. 4d, Supplementary Datasets 2 and 5 and Methods). 
An important caveat here is that the reported labels themselves are 
somewhat uncertain, since the authors had to perform a difficult batch 
correction and clustering to annotate their dataset. Nevertheless, for 
the large hematopoietic dataset, CellSpace significantly outperformed 
(adjusted P < 0.01) all methods except for PeakVI (batch corrected), 
which outperformed CellSpace here (adjusted P < 0.05), even though 
it was one of the poorer performers on the hematopoietic and cortex 
datasets. The performance improvement was due to PeakVI’s better bio-
logical complexity score relative to reported cell type labels (adjusted 
P < 0.01); the batch correction scores for CellSpace were higher than 
PeakVI but not significantly different.

For the TME dataset, CellSpace significantly outperformed all 
other methods based on batch score (adjusted P < 0.01 in all cases) but 
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Fig. 3 | Single-cell motif scoring using CellSpace accurately maps TF 
activities. a, CellSpace and scBasset embeddings of the scATAC-seq readout of 
a human cortex multiome dataset with 8,981 cells. Cyc. prog, cycling progenitor; 
EC, endothelial cell; Peric., pericyte; nIPC, neuronal intermediate progenitor 
cell; SP, subplane; mGPC, multipotent glial progenitor cell. b, Rows show the 

TFs PAX6, EMX2, MEF2C and NEUROD2, overlaid on the CellSpace embedding, 
the gene expression for the TFs, CellSpace motif scores, scBasset motif scores, 
chromVAR motif deviation scores and SIMBA motif scores. c, CellSpace TF 
motif scoring for the small human hematopoietic dataset, shown as a heatmap 
(annotated as in Fig. 2a and Extended Data Fig. 1b).
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only outperformed batch-corrected SIMBA on biological complexity 
score (adjusted P < 0.01), with comparison to other methods giving ties 
or losses for this score. On overall score, CellSpace mainly gave statisti-
cal ties to other methods, with significant wins over Harmony-corrected 
itLSI (adjusted P < 0.01), batch-corrected SIMBA (adjusted P < 0.01) and 
PeakVI (adjusted P < 0.05) but a loss to batch-corrected PeakVI (adjusted 
P < 0.05) (Extended Data Fig. 4d and Supplementary Datasets 2 and 6). 
We note, however, that PeakVI does not provide TF motif scores, and no 
other sequence-informed method (that is, with the potential to com-
pute batch-corrected single-cell motif scores) outperforms CellSpace.

To demonstrate scalability up to another order of magnitude in 
number of cells, we applied CellSpace to a very large, diverse and multi-
donor human fetal scATAC-seq atlas22, consisting of approximately 
720,000 cells from 20 donors in three batches. We used a latent space 
of dimension 70 to accommodate the diversity of cell types, computed 
variable peaks on a sample of approximately 5% of cells and used these 
events to train the full-scale embedding without difficulty (Methods 
and Supplementary Dataset 1). Qualitative visualization with UMAP 
showed proximity between more closely related tissues (Fig. 4c), and 
batches were well mixed. Moreover, blood cell types from multiple 
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organs clustered together, with lymphocytes from thymus and cells 
labeled ‘lymphoid/myeloid’ from the placenta in the same cluster 
(Fig. 4c).

Finally, we applied CellSpace to combine two distinct datasets 
using different assays to profile the human cortex: the scATAC-seq 
readout of the multiome dataset presented above (Fig. 3a) and a 
single-modal scATAC-seq dataset from the same study20. These two 
datasets were processed independently to generate different peak 
atlases. Selecting the 50,000 most variable peaks in each dataset 
yielded only 31,800 peaks (‘shared’ peaks) with nonzero overlap but 
not necessarily the same boundaries (Fig. 4d). Without reprocessing 
these datasets to generate a combined cell-by-peak matrix relative to a 
common peak atlas, this situation would yield an ‘uncorrectable’ batch 
effect for standard methods. We trained a CellSpace embedding to suc-
cessfully integrate the two datasets, each represented with respect to 
its own peak atlas and associated with a batch covariate, which we used 
to avoid pushing cells from different batches away from each other in 
negative sampling (Methods and Fig. 4d). The combined embedding 
recovered the correct overall structure based on cell type annotations 
from each dataset (Fig. 4d), with inhibitory and glutamatergic neurons 
well separated and progenitor populations, such as oligodendrocyte 
progenitor cells (OPCs) and radial glia (RG), placed at the apex of the 
developmental manifold. Clustering on the CellSpace embedding 
identified coherent clusters that mixed cells of similar types from the 
two datasets (Extended Data Fig. 4e,f). This example shows the unique 
and powerful ability of CellSpace to integrate independently pro-
cessed chromatin accessibility datasets through its sequence-informed 
embedding.

Discussion
By training an embedding of both DNA k-mers and cells into a com-
mon latent space with a memory-efficient implementation, we have 
shown that CellSpace learns latent structure in multisample and even 
multiassay scATAC-seq datasets while mitigating batch effects. The 
TF motif activities in single cells can naturally be inferred on the basis 
of the similarity of TF motif and cell embeddings in the latent space, 
without requiring the TF motifs to be known at training time. In the 
large multibatch datasets shown here, CellSpace’s sequence-informed 
embedding implicitly mitigated batch effects, even without use of a 
batch covariate. In one case, where datasets were independently pro-
cessed with respect to distinct peak atlases, we used a batch covariate 
simply to avoid pushing cells from separate batches away from each 
other in training; this strategy allowed us to correct a batch effect that 
would be ‘uncorrectable’ by other methods without reprocessing from 
scratch. Indeed, we have found only rare cases where a clear batch effect 
persists after training CellSpace. In such cases, Seurat’s anchor-based 
data integration method3, inspired by mutual NNs23, can be readily 
applied to the CellSpace embedding for batch correction (Methods).

CellSpace was overall a top performer in benchmarking across 
datasets, giving equal or significantly better performance compared to 
standard LSI-based methods with or without Harmony batch correction 
or to other sequence-based embedding methods. Importantly, no other 
sequence-informed method—that is, with the potential to compute 
batch-corrected single-cell motif scores—outperforms CellSpace. 
CellSpace has impressive batch mitigation properties, with only one 
loss to another method in all pairwise comparisons across three data-
sets, while achieving a favorable tradeoff with biological complexity 
metrics. While explicit batch correction (for example, by Harmony) 
sometimes helps and sometimes hurts (it is not always clear which is 
happening), CellSpace gives consistently strong performance without 
the requiring an explicit consideration of batch effects.

We have found that the default parameters (Methods) work well 
in most cases, but hyperparameter tuning is sometimes needed; for 
example, a very large and diverse dataset typically requires a higher 
dimensional embedding space and a larger number of epochs to train. 

A qualitative sign that CellSpace hyperparameters need to be opti-
mized—or possibly that longer training is needed—is a ‘cloudy’ UMAP 
visualization, where distinct cell types or states have not been pulled 
apart enough. We have found it easier to obtain a good embedding with 
minimal changes to default parameters when using variable tiles rather 
than a peak atlas; the peak atlas quality may influence the amount of 
parameter optimization required. Using top variable peaks or genomic 
tiles identified by itLSI markedly improves running time while preserv-
ing or possibly improving the embedding quality. We found that Seu-
rat’s SNN-based clustering on the CellSpace embedding often required 
a higher resolution to obtain the same number of clusters as compared 
to a standard itLSI-based embedding. Additionally, the batch-aware 
version of CellSpace, where negative cells are sampled within the same 
batch as the positive cell, appears to be broadly useful for integrating 
datasets, whether processed with respect to different peak atlases or 
when using variable tiles.

We foresee an extension of CellSpace to multiome data where cells, 
genes and k-mers are embedded in the same space, and cell embed-
dings are updated both by sampling sequences from peaks and by 
expression-weighted gene lists. This will entail weighting how much 
sequence versus gene expression features should influence the cell 
embedding. We note that StarSpace has also been reformulated as a 
graph-embedding problem, where entities are vertices and (LHS, RHS) 
pairs specify edges in a graph24, and used by SIMBA for embedding 
scRNA-seq, scATAC-seq and multiome data7. For scATAC-seq, cells, 
peaks, k-mers and TF motifs are all explicitly embedded as vertices, 
and each cell is connected by edges to its peaks. While related to our 
approach, CellSpace makes important algorithmic choices that are 
less naturally framed as a graph-embedding problem. In particular, 
CellSpace does not explicitly embed peaks (which appears to miti-
gate batch effects in datasets analyzed here), uses negative sampling 
to address the label asymmetry in scATAC-seq, employs N-grams to 
capture local sequence context and uses sampling of sequences from 
accessible events to improve robustness. Finally, CellSpace enables 
the embedding of DNA sequences that were not explicitly introduced 
during training and importantly does not rely on any a priori choice 
of motifs.

There is also a connection between CellSpace and scBasset. We 
can view CellSpace as implicitly embedding peak (sub)sequences to 
a latent space while representing every cell as a classification model 
that predicts whether the embedded sequences are accessible in that 
cell, based on the cosine similarity between the sequence and cell in the 
latent space. This view is made explicit in scBasset, which learns a neu-
ral network embedding of peak sequences together with cell-specific 
model vectors in the latent space and minimizes classification loss 
using the entire cell-by-peak matrix as output labels. The neural net-
work sequence embedding is not only more expressive than our N-gram 
of k-mers representation but also may be more prone to overfitting and 
learning batch-specific technical artifacts (which are explicitly mod-
eled). Additionally, scBasset requires high-memory GPUs to train the 
neural network model in a practical running time. Finally, scBasset’s 
multitask classification approach may be susceptible to asymmetric 
label noise in the binary cell-by-peak matrix, that is, false negatives 
not captured in the library. Still, these sequence-informed embedding 
methods—CellSpace, graph embedding and neural network—poten-
tially have complementary strengths that could be combined in future 
algorithmic innovations for discovery of latent structure in single-cell 
epigenomic data.

We note several current limitations of CellSpace. As described 
above, CellSpace is for now restricted to embedding scATAC-seq data 
and does not handle other single-cell assays or co-assays such as mul-
tiome, although such extensions are possible. Our current consensus 
k-mer approach to motif embedding, which enables motif activity scor-
ing via similarity with cell embeddings in the latent space, is fairly sim-
ple and may not be suitable for composite motifs. More sophisticated 
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approaches could be explored, such as representing the motif using 
N-grams of k-mers or as a weighted ensemble of matching sequences 
rather than a single consensus sequence. Finally, some amount of 
parameter tuning, for example, the dimension of the latent space and 
the number of training epochs, may be required to obtain a useful 
embedding. Beyond the heuristics for parameter choice provided 
here, we hope in the future to develop intrinsic metrics of embedding 
quality to enable automation of the parameter search.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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References
1. Fang, R. et al. Comprehensive analysis of single cell ATAC-seq 

data with SnapATAC. Nat. Commun. 12, 1337 (2021).
2. Granja, J. M. et al. ArchR is a scalable software package for 

integrative single-cell chromatin accessibility analysis. Nat. 
Genet. 53, 403–411 (2021).

3. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 
177, 1888–1902 (2019).

4. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. 
chromVAR: inferring transcription-factor-associated accessibility 
from single-cell epigenomic data. Nat. Methods 14, 975–978 
(2017).

5. Buenrostro, J. D. et al. Integrated single-cell analysis maps the 
continuous regulatory landscape of human hematopoietic 
differentiation. Cell 173, 1535–1548 (2018).

6. Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of 
single-cell ATAC-seq using convolutional neural networks. Nat. 
Methods 19, 1088–1096 (2022).

7. Chen, H., Ryu, J., Vinyard, M. E., Lerer, A. & Pinello, L. SIMBA: 
single-cell embedding along with features. Nat. Methods  
https://doi.org/10.1038/s41592-023-01899-8 (2023).

8. Wu, L. Y. et al. StarSpace: embed all the things! In Proc. AAAI 
Conference on Artificial Intelligence 5569–5577 (AAAI, 2018).

9. Yuan, H., Kshirsagar, M., Zamparo, L., Lu, Y. & Leslie, C. S. 
BindSpace decodes transcription factor binding signals by 
large-scale sequence embedding. Nat. Methods 16, 858–861 
(2019).

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. 
Distributed representations of words and phrases and their 
compositionality. In Advances in Neural Information Processing 
Systems 3111–3119 (NIPS, 2013).

11. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold 
Approximation and Projection for dimension reduction. Preprint 
at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2018).

12. Setty, M. et al. Characterization of cell fate probabilities in 
single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

13. Xu, C. & Su, Z. Identification of cell types from single-cell 
transcriptomes using a novel clustering method. Bioinformatics 
31, 1974–1980 (2015).

14. Weirauch, M. T. et al. Determination and inference of eukaryotic 
transcription factor sequence specificity. Cell 158, 1431–1443 
(2014).

15. Luecken, M. D. et al. Benchmarking atlas-level data integration in 
single-cell genomics. Nat. Methods 19, 41–50 (2022).

16. Pedregosa, F. et al. Scikit-learn: machine learning in Python.  
J. Mach. Learn. Res. 12, 2825–2830 (2011).

17. Ashuach, T., Reidenbach, D. A., Gayoso, A. & Yosef, N. PeakVI:  
a deep generative model for single-cell chromatin accessibility 
analysis. Cell Rep. Methods 2, 100182 (2022).

18. Korsunsky, I. et al. Fast, sensitive and accurate integration of 
single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

19. Chung, C. Y. et al. Single-cell chromatin analysis of mammary 
gland development reveals cell-state transcriptional regulators 
and lineage relationships. Cell Rep. 29, 495–510 (2019).

20. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of 
the developing human cerebral cortex at single-cell resolution. 
Cell 184, 5053–5069 (2021).

21. Satpathy, A. T. et al. Massively parallel single-cell chromatin 
landscapes of human immune cell development and intratumoral 
T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

22. Domcke, S. et al. A human cell atlas of fetal chromatin 
accessibility. Science 370, eaba7612 (2020).

23. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch 
effects in single-cell RNA-sequencing data are corrected by 
matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 
(2018).

24. Lerer, A. et al. PyTorch-BigGraph: a large-scale graph embedding 
system. In Proc. Conference on Systems and Machine Learning 
120–131 (2019).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02274-x
https://doi.org/10.1038/s41592-023-01899-8
https://doi.org/10.48550/arXiv.1802.03426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Article https://doi.org/10.1038/s41592-024-02274-x

Methods
CellSpace algorithm
CellSpace uses the StarSpace (mode 0) algorithm25 to learn a co- 
embedding of DNA k-mers (k = 8 by default) and cells into a latent vector 
space ℝd  (d = 30 dimensions by default) based on training example 
sequences sampled from accessible events.

Accessible events are either an atlas of accessible peaks or variable 
tiles, for which a cell-by-event matrix of accessibility is available. Top 
variable tiles (500 bp genomic bins) can be identified using ArchR’s 
itLSI method. When stated, we used top variable peaks instead of the 
entire peak atlas, which were identified with an adaptation of ArchR 
functions.

Starting from a binary cell-by-event matrix, CellSpace creates mul-
tiple training examples per event (20 by default) while training during 
each epoch (50 epochs by default). To generate a training example for 
an event, an L-length (L = 150 bp by default) DNA sequence is randomly 
sampled from the corresponding genomic region. The bag of L − k + 1 
consecutive overlapping k-mers, created by sliding a window of size 
k across the sampled sequence by one nucleotide at a time, is used 
as the ‘input’. Assuming each DNA k-mer and its reverse complement 
have identical genetic information, we hash them to the same row of 
the embedding matrix. The cells for which the event is accessible are 
used as ‘positive labels’. The model is optimized so that the ‘input’ 
sequence is embedded closer to its ‘positive labels’ in the latent space 
than to ‘negative labels’ (that is, K randomly sampled cells for which 
the event is not accessible) which are selected by K-negative sampling.

StarSpace represents features, which are embedded directly, and 
entities (that is, bag of one or more features) by a d-dimensional vector. 
The inferred embedding of an entity composed of M features is given 
by 1

MP
∑M

i=1 wi, where w1,⋯,wM are the vector representations of its fea-
tures and P = 0.5 is the default value. CellSpace embeds cells (as ‘labels’) 
and k-mers (as features in ‘input’) directly and infers the embedding of 
any DNA sequence as a bag of k-mers, enabling the comparison of 
sequences and cells in the same space.

Additionally, CellSpace learns contextual information from the 
relative position of the k-mers by training StarSpace with N-grams 
(window of N = 3 consecutive k-mers by default), so that each pair of 
k-mers within an N-gram is also considered as a feature, embedded 
directly with a row in the embedding matrix and added to the ‘input’ 
of the training example. For N > 1, StarSpace uses a hashing trick to 
retrieve the embedding vector of an N-gram. The user can control the 
size of the hashing map ‘bucket’.

At step i of stochastic gradient descent optimization, StarSpace 
picks one random ‘positive label’ as the right-hand side entity RHSi of 
the training example and uses the ‘input’ as the left-hand side entity 
LHSi. CellSpace randomly selects a positive cell for the corresponding 
event as the RHSi. The ‘input’ L-length sampled sequence represents 
the LHSi, and its embedding is inferred from the embedding vectors of 
its features as described above. CellSpace then samples K random 
‘negative’ cells cn1 … cnK—for which the event is not accessible—and 
optimizes the parameters to pull the LHSi closer to the embedding of 
the positive cell and away from that of the negative cells by minimizing 
the margin ranking loss, as shown in

Lossi =
1
K

K
∑
k=1

max (0,margin − sim(LHSi,RHSi) + sim(LHSi, cnk )) .

Here, ‘sim’ is the cosine similarity in the embedding space by default. 
Therefore, the loss increases unless the event is closer to the positive 
cell than the negative cell, and the difference is greater than the margin. 
The embedding of a negative cell is not updated if it yields zero loss, 
because it is already sufficiently distant to the event.

CellSpace has been integrated into the C++ StarSpace implementa-
tion so that the sparse cell-by-event matrix and the DNA sequences of 
the events are loaded, parsed, indexed and stored in memory. Training 
example batches are randomly created in real time during training and 

are only temporarily stored, so that the running time of CellSpace will 
increase linearly with the number of training examples and the memory 
usage is constant. Furthermore, CellSpace utilizes the parallel training 
capability of StarSpace, which enables scalability to larger single-cell 
ATAC-seq datasets.

Multiple scATAC-seq datasets represented by different sets of 
events (that is, peak and tile sets) can be simultaneously embedded by 
CellSpace. All datasets are initially loaded, and training examples are cre-
ated in random order. The event, the positive cell and the negative cells  
for each training example are sampled from the same dataset. This co- 
embedding utilizes the shared DNA sequence information between 
events that may not have the exact same genomic region.

CellSpace visualization, clustering and motif embeddings
CellSpace outputs embedding vectors for cells and k-mers after train-
ing a StarSpace model on scATAC-seq data.

The CellSpace embedding of each TF motif is computed by creat-
ing a bag of k-mers by sliding a k bp window across the consensus motif 
sequence, then computing its embedding from the embedding vectors 
of its length(motif) − k + 1 constituent k-mers as previously described 
for a StarSpace entity. Cell-by-TF similarities (that is, cosine similarity 
between CellSpace embedding vectors) are computed and z-scored 
across all cells per TF to represent TF activities.

The pairwise distance matrix of cells (that is, cosine distance 
between CellSpace embedding vectors) is used to build a NN and SNN 
graph. Cells are visualized with a UMAP embedding and clustered using 
the Louvain method on the SNN graph by Seurat (v.3 or higher)3,26.

To visualize cells and TFs in the same space, the embedding vec-
tors of selected TFs are concatenated to the embedding vectors of 
cells, and their pairwise cosine distances are used to compute a UMAP 
embedding as described above.

The sequence-informed embedding of CellSpace captures the 
structure of scATAC-seq data across multiple samples, donors and 
datasets while mitigating possible batch effects. However, if a batch 
effect persists in the CellSpace embedding, we found the problem could 
be easily corrected by Seurat’s anchor-based data integration method3. 
CellSpace can place multiple datasets in a shared low-dimensional 
space, which can be used instead of canonical correlation analysis to 
identify and score pairs of mutual NNs ‘anchors’ between datasets. 
Similarly, the NN graphs used for weighting the anchors for cells within 
each dataset can be created from the CellSpace embedding, instead of 
using principal component analysis dimensionality reduction. Finally, 
the batch effect can be removed by correcting the CellSpace embed-
ding of ‘query’ datasets with respect to the ‘reference’ dataset, similar 
to how gene expression matrices are corrected by Seurat.

Discovering de novo motifs with CellSpace
We computed the inferred embedding of all possible DNA 10-mers by 
sliding an 8 bp window across each 10 bp sequence and computing the 
average CellSpace embedding of its three constituent 8-mers. We built 
a bipartite K = 50 NN graph between cells and 10-mers on the basis of 
their cosine distance in the embedding space, representing each 10-mer 
and its reverse complement as a single vertex in the graph.

For each group of cells, we identified the 10-mers that were among 
the NNs of at least 20% of its cells. These 10-mers were clustered by 
kmer::cluster (v.1.1.2) in R27, using a top-down tree-building approach 
and cutting the tree at height of 0.5. For each cluster of size greater than 
three, we aligned the 10-mers by msa::msaClustalW (v.1.26.0) in R with 
default settings28. From each alignment, we computed the PWM of a 
de novo motif. The embedding of each de novo motif was computed 
as the average embedding of the 10-mers in its corresponding cluster.

Evaluating scATAC-seq analysis results
Clustering and visualization. For each embedding, the cells were 
clustered using Seurat26 v.4.3.0 (SNN-based method) and visualized by 
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UMAP, with K = 20 by default and the metric set to ‘cosine’ for CellSpace 
and to ‘euclidean’ for other methods. We used a range of values as Lou-
vain clustering resolution and picked the value that yielded the same 
number of clusters as cell types (that is, the cell labels that would be 
used as ground truth in evaluation). In a few cases where no such value 
was found and there were too many clusters, we merged the smallest 
clusters into the nearest larger clusters based on their connectivity in 
the SNN, using the R function CellSpace::merge_small_clusters which 
was adapted from Seurat::GroupSingletons.

Biological conservation scores. To evaluate the embedding and 
clustering results from each method, we used the implementation of 
ASW, NMI and the adjusted Rand index by scib15 v.1.1.3 in Python, as 
well as the implementation of homogeneity by scikit-learn16 v.1.3.0 in 
Python. The biological conservation score was computed as the aver-
age of all four metrics.

Batch correction scores. To evaluate the batch effect in the embed-
ding of each method, we used batch ASW, graph connectivity and kBET 
from scib. To speed-up the bootstrapping process for the large-scale 
hematopoietic and tumor microenvironment datasets, we used the 
implementation of kBET by scib-metrics v.0.3.3 in Python, which 
approximates the method used in the original scib package and uti-
lizes GPUs. The metric batch NMI was computed as 1 − NMI (cluster 
and batch) in each cell type and reported as the average over all cell 
types. The batch correction score was computed as the average of all 
four metrics.

Overall score. The overall score is the weighted average of the biologi-
cal conservation and batch correction scores, with 0.6 and 0.4 as their 
relative weights, respectively.

Bootstrapping. For each dataset, we created B = 1,000 bootstrap sam-
ples from the original dataset by resampling the same number of cells, 
with replacement. For each embedding, we clustered every bootstrap 
sample and computed the corresponding benchmarking scores as 
described above. For confidence level 1 − α of a statistic, we reported 
the percentile confidence interval, that is, the α

2
 and 1 − α

2
 quantiles of 

the bootstrap distribution. To compare the scores of two methods, we 
performed a two-sided test under the null hypothesis θ = 0, where θ is 
the difference in scores. We computed the P value of the null hypothesis 
using a confidence interval inversion; the P value for a two-sided test 
of the point-null hypothesis θ = θ0 is the smallest α ∈ [ 1

B
, 1], such that θ0 

is not contained in the 1 − α confidence interval from the bootstrap 
distribution of θ. For each dataset, we performed pairwise tests 
between all the methods and FDR-adjusted the P values.

Dataset-specific benchmarking details. For the small hematopoietic 
dataset, the ‘unknown’ cell type was included in the embedding but 
excluded from benchmarking evaluations. For the TME dataset, to 
reduce potential label uncertainty, we restricted the evaluation of clus-
tering and batch correction metrics to the nontumor cells, although 
all cells were embedded by all methods.

Dataset-specific and method-specific embedding and benchmark-
ing details and hyperparameters are provided in the Supplementary 
Note.

Cellspace and other method parameters
ArchR. We used ArchR2 v.1.0.1 and its implementation of itLSI to iden-
tify the most variable tiles (genome-wide 500-bp bins) and used the 
dimensionality reduction from the last iteration of itLSI as the ArchR 
embedding. For batch correction, we used Harmony18 v.0.1.1.

scBasset. scBasset6 v.0.1 was trained with its default Basenji-inspired 
architecture and a bottleneck layer size of 32. For batch correction, 

batch labels were provided as input to the scBasset-BC architecture, 
which adds a fully connected layer to predict the batch-specific con-
tribution before the final sigmoid.

SIMBA. For the peak-only version, SIMBA7 v.1.2 was run on peak-by-cell 
matrices using default settings. Unless stated otherwise, the 
embedding was trained on peaks associated with top PCs. For the 
sequence-aware version, the peak set was annotated with k-mers and 
motifs using the scan_for_kmers_motifs R function, and peak-motif and 
peak-kmer edges were included in graph generation. To obtain motif 
scores, we used the compare entities function between cell embed-
ding and motif embedding matrices, followed by subsequent softmax 
transformation. For batch-corrected SIMBA, peak-by-cell matrices 
were split by batch. The edges between batches were inferred using 
their mutual NN implementation in the infer_edges function, and the 
edges between batches were included in graph generation. For all 
versions, the model was trained for the recommended ten epochs, 
at which point the validation loss leveled and the embedding had  
converged.

PeakVI. PeakVI17 (scVI-tools v.1.0.0) was run with default settings (two 
encoder layers, two decoder layers and a dropout rate of 0.1) on the 
peak-by-cell matrix as input and optionally providing donor annota-
tions for explicit batch correction.

chromVAR. We used chromVAR4 v.1.16.0 to compute ‘deviations’ of 
JASPAR 2020 motifs29 for the motif version, or that of DNA 8-mers 
for the k-mer version, from the peak-by-cell count matrix, following 
standard steps with default parameters. Highly correlated features 
(cor > 0.9) and features with low variance (s.d. < 1.5) were removed 
from the cell-by-motif/kmer deviation z-score matrix, and a principal 
component analysis was performed on the filtered matrix. The PCs 
were used as the chromVAR embedding.

CellSpace. By default, CellSpace samples L = 150 bp sequences, uses 
8-mers with 3-grams (k = 8 bp, N = 3), generates 20 training examples 
per event (tile or peak) per epoch and trains for 50 epochs to learn a 
d = 30-dimensional latent space representation of cells and k-mers. 
To extract peak and tile sequences from reference genomes, we used 
GenomicRanges v.1.46.1, Biostrings v.2.62.0 and BSgenome v.1.62.0 
in R.

The dataset-specific preprocessing steps and hyperparameters 
for CellSpace and other methods are detailed in Supplementary  
Note.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
For this study, we used only public datasets, available through the Gene 
Expression Omnibus: the small human hematopoietic dataset from 
GSE96769 and GSE74310; the mouse mammary epithelial dataset from 
GSE125523, in addition to processed files provided by the original study 
from https://github.com/jaychung10010/Mammary_snATAC-seq; the 
human cortex multiome dataset from GSE162170; the large human 
hematopoietic and TME datasets from GSE129785; and the large human 
fetal dataset from GSE149683. More details about downloading the 
raw and processed files for each dataset are described in the Supple-
mentary Note.

Code availability
CellSpace is freely available on Zenodo25 at https://doi.org/10.5281/
zenodo.10521077 and on GitHub at https://github.com/zakieh-tayyebi/
CellSpace. Instructions for installing and using CellSpace are provided 

http://www.nature.com/naturemethods
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96769
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125523
https://github.com/jaychung10010/Mammary_snATAC-seq
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162170
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149683
https://doi.org/10.5281/zenodo.10521077
https://doi.org/10.5281/zenodo.10521077
https://github.com/zakieh-tayyebi/CellSpace
https://github.com/zakieh-tayyebi/CellSpace


Nature Methods

Article https://doi.org/10.1038/s41592-024-02274-x

in this GitHub repository, in addition to a tutorial, scripts and required 
data for training and interpreting a CellSpace model for the small 
human hematopoietic dataset. For this demo dataset, we have also 
provided preprocessing scripts and instructions to identify highly 
variable tiles and peaks using itLSI, which can be adapted to preprocess 
other scATAC-seq datasets. Details of preprocessing other datasets, 
running different methods on each dataset, all downstream analyses, 
computing performance metrics and bootstrapping the scores are 
provided in the Methods and Supplementary Note, and the scripts for 
reproducing these results are available upon request.
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Extended Data Fig. 1 | CellSpace recovers latent structure and developmental 
hierarchies. a. Palantir branch probabilities showing trajectories to 6 termini 
in the small human hematopoietic dataset, including termini at CLP, pDC, GMP, 
an ‘unknown’ GMP-adjacent population, MEP, and monocytes. b. CellSpace 
embedding annotated by donor (left) and by Seurat’s SNN-based clustering 
(right), which largely recovers annotated cell types. c. ArchR embedding of the 

small human hematopoietic dataset annotated by donor (left) and by Seurat’s 
SNN-based clustering (right). d. Clustering of 10-mers retrieved as frequent 
nearest neighbors of cell clusters from the small human hematopoietic dataset; 
10-mers in each cluster are aligned and then converted to PWMs of de novo 
CellSpace motifs (visualized in Fig. 2e).
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Extended Data Fig. 2 | CellSpace outperforms other scATAC-seq embedding 
methods in batch mitigation/correction while preserving biological 
complexity. a. UMAP visualizations for multiple scATAC-seq dimensionality 
reduction and embedding methods on the small human hematopoietic dataset, 
excluding the ‘unknown’ cell type. If the method offers an explicit batch 
correction option, the embedding corrected for donor batch effect is labeled as 
‘batch-corrected’. b. UMAP visualizations annotated by donor (batch). c. UMAP 
visualizations annotated by Seurat’s SNN-based cluster. d. Performance metrics 
(aggregated biological conservation score, aggregated batch correction score, 
and overall score) for all methods on the small human hematopoietic dataset, 

excluding the ‘unknown’ cell type, with 95% confidence intervals over 1000 
bootstrap samples. For each metric, all methods were compared in pairwise, 
two-sided tests on the bootstrapping samples, under the null hypothesis that 
the score difference is zero. The p-value for each comparison was computed 
using confidence interval inversion, and the values were FDR-adjusted across 
all comparisons. Only FDR-adjusted p-values comparing CellSpace to other 
methods are shown; *: adjusted p < 0.05; **: adjusted p < 0.01. e. Batch correction 
metrics reported per cell type, excluding the monocyte cell type which consists 
of a single batch. Average score over all cell types is also shown.
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Extended Data Fig. 3 | Single cell motif scoring using CellSpace accurately 
maps TF activities. a. The scBasset model training converges after 40 epochs on 
the human cortex multiome dataset. b. Comparison of CellSpace vs. scBasset TF 
motif activity scores, CellSpace vs. SIMBA scores, and CellSpace vs. chromVAR 
scores based on correlation with gene expression in the human cortex multiome 
dataset. Important neurodevelopmental TFs shown in red. c. SIMBA motif scores 
for PAX6, EMX2, MEF2C, and NEUROD2 can be used to rank cells and learn an 
association with the top-ranked cell type. d. UMAP embedding and Seurat’s 
SNN-based clustering of the human cortex multiome dataset using multiple 
scATAC-seq embedding methods. e. Overall biological conservation score for 

all methods on the human cortex dataset (single batch), with 95% confidence 
intervals over 1000 bootstrap samples. For each metric, all methods were 
compared in pairwise, two-sided tests on the bootstrapping samples, under the 
null hypothesis that the score difference is zero. The p-value for each comparison 
was computed using confidence interval inversion, and the values were 
FDR-adjusted across all comparisons. Only FDR-adjusted p-values comparing 
CellSpace to other methods are shown; *: adjusted p < 0.05; **: adjusted p < 0.01. 
f. TF motif scores from the CellSpace embedding for the mammary epithelial 
dataset (embedding and clusters visualized in Fig. 2h).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | CellSpace’s embedding implicitly mitigates donor- and 
assay-specific batch effects in large-scale scATAC-seq datasets. a. Batches and 
human donors are well mixed in the CellSpace embedding of the large human 
hematopoietic dataset (visualized in Fig. 4b). b. CellSpace embedding of the 
large human hematopoietic dataset restricted to 30,211 natural killer and T cells.  
c. CellSpace embedding of 37,818 cells from a basal cell carcinoma TME scATAC-
seq dataset from 7 patients, annotated by cell type and by donor, recovers 
immune and stromal cell types with no evident donor batch effect.  
d. Performance metrics (aggregated biological conservation score, aggregated 
batch correction score, and overall score) for all methods on the large human 
hematopoietic and TME datasets, excluding the tumor clusters, with 95% 
confidence intervals over 1000 bootstrap samples. For each metric, all methods 

were compared in pairwise, two-sided tests on the bootstrapping samples,  
under the null hypothesis that the score difference is zero. The p-value for  
each comparison was computed using confidence interval inversion, and  
the values were FDR-adjusted across all comparisons. Only FDR-adjusted  
p-values comparing CellSpace to other methods are shown; *: adjusted  
p < 0.05; **: adjusted p < 0.01. e. Seurat’s SNN-based clustering after CellSpace 
joint embedding of the (single-modal) scATAC-seq and the scATAC-seq readout  
of the multiome human cortex datasets. f. Membership of annotated cell 
types from multiome and (single-modal) scATAC-seq human cortex datasets 
in CellSpace clusters as shown in e, after joint embedding, showing coherent 
clusters with membership from both assays.
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