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Simultaneous single-cell three-dimensional 
genome and gene expression profiling 
uncovers dynamic enhancer connectivity 
underlying olfactory receptor choice

Honggui Wu    1,2,6, Jiankun Zhang    1,2,6, Fanchong Jian    1,2,3,6, 
Jinxin Phaedo Chen    5, Yinghui Zheng1, Longzhi Tan    4  & X. Sunney Xie1,2 

The simultaneous measurement of three-dimensional (3D) genome 
structure and gene expression of individual cells is critical for 
understanding a genome’s structure–function relationship, yet this is 
challenging for existing methods. Here we present ‘Linking mRNA to 
Chromatin Architecture (LiMCA)’, which jointly profiles the 3D genome and 
transcriptome with exceptional sensitivity and from low-input materials. 
Combining LiMCA and our high-resolution scATAC-seq assay, METATAC, 
we successfully characterized chromatin accessibility, as well as paired 
3D genome structures and gene expression information, of individual 
developing olfactory sensory neurons. We expanded the repertoire of 
known olfactory receptor (OR) enhancers and discovered unexpected 
rules of their dynamics: OR genes and their enhancers are most accessible 
during early differentiation. Furthermore, we revealed the dynamic spatial 
relationship between ORs and enhancers behind stepwise OR expression. 
These findings offer valuable insights into how 3D connectivity of ORs 
and enhancers dynamically orchestrate the ‘one neuron–one receptor’ 
selection process.

Three-dimensional (3D) genome organization lays the physical foun-
dation for gene expression and gene regulation1–6. Understanding 
the intricate relationship between genome architecture and gene 
expression necessitates the development of advanced techniques to 
simultaneously measure these two modalities with high sensitivity 
from the same cell7–12. Existing methods have severe limitations. Cur-
rently, imaging-based methods can only measure a limited number 
of genomic loci (1,000–3,660, namely every 1–3 Mb) and transcripts 
(70–1,000 genes) and therefore lack a genome-wide view7–11. The 
published sequencing-based methods, HiRES, had limited sensitivity  
(~0.3 million contacts per cell) because genomic DNA was damaged 

during reverse transcription, captured only nuclear RNAs because the 
cytoplasm was destroyed during the procedure and only detected the 
3′ end of the transcript12. In addition, HiRES must be performed with a 
large number of cells, prohibiting analysis of low-input samples.

Here we report Linking mRNA to Chromatin Architecture (LiMCA), 
a sequencing-based method that simultaneously profiles single-cell 3D 
genome structure and full-length transcript information. In particular, 
LiMCA physically separates the nucleus and the cytoplasm of the same 
cell for measuring the 3D genome and transcriptome, respectively, 
and therefore does not compromise the detection sensitivity and 
performance of each modality.
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exhibited high concordance with a bulk in situ Hi-C contact map across 
various resolutions ranging from compartments to topologically 
associating domains and chromatin loops (Fig. 1b,c and Extended 
Data Fig. 1d–h). Furthermore, the gene expression profile of ensemble 
LiMCA displayed a high correlation with bulk RNA-seq data gener-
ated from the same cell line (Fig. 1d). Therefore, we concluded that 
LiMCA faithfully captures both the genome architecture and gene  
expression.

To examine the robustness of LiMCA, we further applied it to 
three different human cell lines (K562, eHAP and BJ) as well as mouse 
olfactory epithelium. This additional cell line dataset further validated 
our technique (Extended Data Fig. 1i and Extended Data Fig. 2a). Subse-
quently, we performed a comprehensive comparative analysis against 
published datasets, including HiRES12 (single-cell joint Hi-C-RNA), 
Dip-C18,26,28 (scHi-C) and single-cell RNA sequencing (scRNA-seq) data. 
Our results demonstrated that LiMCA detected a substantially higher 
number (2–5 folds) of contacts than HiRES and tissue datasets obtained 
through Dip-C (Fig. 1e, left). Furthermore, LiMCA exhibited a compa-
rable number of genes detected when compared to Smart-seq, while 
surpassing the number of genes identified by HiRES and droplet-based 
scRNA-seq methods (Fig. 1e, right, and Extended Data Fig. 1c). Notably, 
LiMCA not only offers enhanced sensitivity but also provides full-length 
transcript information, in contrast to HiRES, which solely captured 
the 3′ end of genes. Therefore, LiMCA is capable of measuring both 
chromatin interactions and gene expression at high sensitivity and 
consistently performs well across diverse cell types.

We then performed clustering based on chromatin interaction 
(scA/B value; Methods) or gene expression profiles offered by LiMCA 
to evaluate its accuracy in distinguishing cell types. We found that both 
modalities clearly separated the four cell types (Fig. 1f and Extended 
Data Fig. 2b). To confirm accuracy, we calculated scA/B values for 
cell-type-specific marker genes, which showed specific enrichment 
in corresponding cell types (Extended Data Fig. 2c,d), consistent with 
our previous work28. Hi-C ‘structural typing’ identified an additional 
cluster containing cells from all four cell types, which belongs to the 
metaphase (Extended Data Fig. 2e–g). This is in line with the knowl-
edge that the chromosome undergoes a homogeneous folding state 
during mitosis irrespective of cell type29. Furthermore, LiMCA accu-
rately detected cell-type-specific chromatin loops (Extended Data 
Fig. 2h,i). Thus, we established a single-cell multi-omics assay that 
simultaneously measures genome-wide chromatin interactions and 
transcriptome-wide gene expression in hundreds of single cells.

Relationship between gene expression and 3D genome 
structure
With our previously developed Dip-C algorithm26, we showed that about 
31% of GM12878 cells (68 of 220, with root-mean-square-deviation 
(r.m.s.d.) < 1.5) and 52% of eHAP cells (22 of 42, haploid cells) faithfully 
yielded 3D genome structures at a high resolution of 20 kb (Fig. 1a, 
Extended Data Fig. 1j and Methods). The pairwise 3D distance matrix 
obtained from individual single-cell structures exhibited a strong 
agreement with the ensemble and bulk contact maps (Extended Data 
Fig. 3a). With such high-resolution structures, we were able to pinpoint 
the spatial position of expressed genes in the nucleus.

To investigate the relationship between gene expression and chro-
matin structure, we focused on the NFKB1 gene, a critical transcrip-
tion factor for B cell development and function. We sorted GM12878 
cells into two groups based on NFKB1 expression level and compared 
ensemble contact maps. Our findings revealed that highly expressed 
NFKB1 interacts more frequently with an upstream enhancer (Fig. 1g). 
This observation was further validated by downsample and random 
sample control analysis (Extended Data Fig. 3c–h). Similar results were 
observed for other genes analyzed (Extended Data Fig. 3i,j), demon-
strating that gene expression dynamics are associated with changes 
in chromatin structure.

To demonstrate the biological insights that LiMCA can generate, 
we applied LiMCA to the mouse olfactory system. Understanding how 
the ‘one neuron–one receptor’ paradigm is established during olfactory 
sensory neuron (OSN) development is a long-standing pursuit of the 
field. There are more than 1,000 olfactory receptor (OR) genes, which 
are presented as gene clusters distributed across 18 chromosomes 
in the mouse genome13; however, each mature OSN expresses only 
one OR gene out of such a large repertoire in a monoallelic and seem-
ingly stochastic manner14. Recent bulk and single-cell chromosome 
conformation capture (3C/Hi-C) studies showed that OSNs establish 
strong and specific inter-chromosomal interactions between OR gene 
clusters, which are heterochromatically modified to assure the com-
plete silencing of OR genes15,16. Such OR–OR gene cluster interactions 
bring multi-chromosomal OR enhancers (termed the ‘Greek Islands’ 
(GIs)) together to form a super-enhancer hub17,18, which was proposed 
to activate the singular chosen OR gene, forging the ‘silence all and 
activate one’ model.

However, this model fails to address several unresolved issues. 
First, during OSN development, progenitors transiently express ran-
dom sets of OR genes19,20. Additionally, the onset of multigenic OR 
expression precedes the formation of repressive OR–OR gene compart-
ments. Furthermore, each OSN forms multiple enhancer aggregates, 
which means that simply being associated with enhancer hubs is insuf-
ficient to fully account for the singular OR gene. Unfortunately, existing 
bulk and single-cell techniques are unable to resolve these mysteries 
due to the lack of OR expression information and an inability to isolate 
a population expressing a random set of OR genes. Ideally, a technique 
that can simultaneously measure OR gene expression and 3D genome 
organization in the same cells would be necessary to elucidate how OR 
gene selection process is initiated and proceeded.

Using LiMCA and in combination with single-cell chromatin acces-
sibility and a gene expression landscape of the developing OSNs, we 
gained an unprecedented view of how the accessibility of OR enhanc-
ers is regulated and how the association with multi-chromosomal 
enhancers regulates the stepwise OR gene selection from multigenic 
OR activation to singular OR gene determination.

Results
Development of LiMCA
To enable simultaneous measurement of transcriptional activity 
and chromatin architecture in the same cell with high sensitivity, we 
employed a strategy utilizing physical separation of cytoplasm (mRNA) 
and nucleus (chromatin). This procedure has been used in single-cell 
multi-omics technologies21–23. Specifically, the separated cytoplasm 
was subjected to Smart-seq2 amplification for transcriptome analy-
sis24, while the nucleus was proceeded to conventional chromosome 
conformation capture procedure25 that included crosslinking, restric-
tion enzyme digestion and proximity ligation (Fig. 1a and Methods). To 
further increase chromatin contact detection in single cells, we adopted 
our high-coverage transposon-based whole-genome amplification 
(WGA) method, META26, to amplify the resulting nucleus. Then the 
messenger RNA library and 3C library were sequenced and integrated 
to obtain both modalities (Fig. 1a).

To evaluate whether LiMCA precisely captures high-order 
genome structure, we performed a proof-of-concept experiment on 
GM12878, a well-studied female human lymphoblastoid cell line with 
an extensively characterized genome structure27. LiMCA detected a 
median of 1.08 million unique chromatin contacts per cell (n = 220, 
s.d. = 470,000, minimum = 130,000, maximum = 2.79 million) (Sup-
plementary Table 1), which is comparable to our previously devel-
oped high-sensitivity single-cell Hi-C method, Dip-C26 (Extended Data 
Fig. 1a). The composition of contacts is similar to Dip-C, with a greater 
proportion of short-range (<20 kb) and lower long-range (>20 kb) 
intra-chromosomal contacts. Ensemble chromatin interaction profiles 
(merged from 220 individual cells, referred to as ensemble LiMCA) 
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The positioning of genes within the nucleus, such as the radial 
positioning and the association with nuclear landmarks, is known 
to influence their expression30. To examine how gene positioning 

influences gene expression in single cells, we explored the spatial dis-
tribution of expressed genes within the nucleus. Our analysis revealed 
that expressed genes have a higher density in the nuclear interior and 
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of expression level (FPKM) between bulk RNA-seq (ENCODE ENCFF897XES) and 
combined expression profile of LiMCA. e, The median contact number of LiMCA 
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(random sampled)), Smart-seq2 (HEK293T, 11,169, n = 35; MEF, 10,173, n = 7) and 
10x chromium (olfactory, 3,556, n = 300 (random sampled of this study); GM12878, 
2,754, n = 100 (random sampled)). f, Uniform Manifold Approximation and 
Projection (UMAP) embedding of four profiled cell lines based on gene expression 
profiles (left) or single-cell A/B values (right). The same cells are connected with 
lines. g, Contact matrices (left) around NFKB1, representing ensemble Hi-C 
data of NFKB1-high group (top left) and NFKB1-low (bottom right). Normalized 
contact frequency plot (right), centered at the NFKB1 upstream enhancer. The 
green and yellow dot/line indicates the position of the candidate enhancer and 
the transcription start site (TSS) and the transcription termination site (TTS) of 
NFKB1, respectively. h, Radial distribution of gene density; nucleus is sliced to 0.01 
thickness. The error bands represent the 95% confidence interval (CI). i, Histograms 
show the distribution of cluster size within 300 nm for expressed genes and 
random control. Data were analyzed by a two-sided Mann–Whitney U-test.
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more neighbors at a given 3D distance than randomly selected controls 
(Fig. 1h,i and Extended Data Fig. 3k,l). Though population average radial 
position negatively correlated with expression level (Extended Data 

Fig. 3o), this is not observed in single cells (Extended Data Fig. 3m,n). 
Notably, our analysis may be confounded by the fact that we could not 
distinguish the allele-specific gene expression.
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A multi-omics atlas of the developing OSNs
With our established multi-omics assay, we then sought out to explore 
how the ‘one neuron–one receptor’ rule is established. Traditional bulk 
assays and imaging-based methods are unable to delineate this process 
due to the fact that each progenitor cell transiently expresses a random 
set of 5–15 OR genes during the progenitor stage19,20, followed by a single 
OR gene outcompeting others during OSN maturation; however, our 
technique allows for simultaneous probing of both OR gene expression 
and 3D chromatin structure, providing an unprecedented insight into 
this complex process.

We created a joint 3D genome and gene expression multi-omics 
atlas of the developing OSNs with LiMCA, consisting of 411 cells from 
the mouse main olfactory epithelium (MOE) across six time points 
(postnatal day 3, 7, 14, 28, 60 and 120) (Fig. 2a,b). We obtained an aver-
age of 650,000 unique chromatin contacts per cell (s.d. = 298,000, 
minimum = 119,000 and maximum = 2.8 million) (Supplementary 
Table 2), of which 224 (54%) have high-quality 20-kb resolution 3D 
structures (r.m.s.d. ≤ 1.5; Supplementary Table 2). For gene expression, 
we detected a median of 4,528 genes per cell (Supplementary Table 2).

Upon embedding based on gene expression (Fig. 2c), we identified 
four clusters in RNA embedding: non-neuronal, progenitors, immature 
OSNs and mature OSNs (Fig. 2c, left, and Extended Data Fig. 4a). When 
examining the Hi-C embedding, we observed that the progenitors in 
RNA embedding were split into two distinct clusters, referred to as pro-
genitor1 and progenitor2 (Fig. 2c, right, and Extended Data Fig. 5a,b). 
We further validated the separation of progenitor1 and progenitor2 by 
integrating our published mouse MOE data18, excluding the potential 
influence of mouse lines or contact numbers (Extended Data Fig. 5c,d).

We observed a continuous trajectory in OSN genesis, from pro-
genitors to immature OSNs and finally to mature OSNs (Extended Data 
Fig. 4c,d). As expected, our LiMCA profiles recapitulated known char-
acteristic chromatin reorganization during OSN maturation, including 
gradually increased chromosomal intermingling, OR–OR gene interac-
tion and enhancer–enhancer interactions (Extended Data Fig. 5e–i). With 
the expression profiles of OR genes, we were able to reveal the spatial 
relationship between expressed OR genes and OR enhancers (Fig. 2d).

To comprehensively understand the underpinning chromatin 
state of OR enhancers along OSN development, we additionally gener-
ated a single-cell chromatin accessibility and gene expression atlas of 
the developing mouse MOE with our high-sensitivity METATAC31 and 
droplet-based scRNA-seq, consisting of 11,880 cells and 73,577 cells 
(Fig. 2e and Extended Data Fig. 8b,c), respectively. We utilized the 
scRNA-seq atlas as a reference to annotate the cell types in our METATAC 
atlas (Extended Data Fig. 6g). The atlas allowed us to capture the dynam-
ics of chromatin accessibility and gene expression throughout OSN 
development. For assay for transposase-accessible chromatin (ATAC), 
we detected a median of 66,000 ATAC fragments per cell (Extended Data 
Fig. 6b), and the gene expression yielded a median of 3,346 genes (8,651 
unique molecular identifiers (UMIs)) per cell (Extended Data Fig. 8a).

Our datasets validated the changes in cell type composition 
between multi-potent progenitor cells and developing OSNs during the 
first postnatal month of development (Extended Data Fig. 6e and 8h). 
Notably, our dataset precisely recapitulated known cell types in MOE 

and their marker genes (Fig. 2c, Extended Data Fig. 6c–g and Extended 
Data Fig. 8b–d). Specifically, both of our single-cell chromatin acces-
sibility and gene expression atlases captured the continuous develop-
mental trajectory of OSNs from globose basal cell (GBC) to immediate 
neuronal precursor (INP), then to immature OSN (iOSN) and mature 
OSN (mOSN) (Fig. 2e and Extended Data Fig. 8b). Our high-resolution 
single-cell chromatin accessibility atlas offers a new opportunity to 
understand the epigenetic regulatory mechanism underlying multiple 
lineage specification of MOE.

Chromatin accessibility dynamics of OR enhancers
Using our high-resolution single-cell chromatin accessibility atlas, we 
identified 27 new enhancers (Fig. 2f and Supplementary Table 3) accord-
ing to previous definitions32,33, which were located within OR gene 
clusters, exhibited ATAC peaks in mOSN, co-bound by LHX2 and EBF 
(Fig. 2f and Extended Data Fig. 7c–e) and contained the characteristic 
composite motif of LHX2 and EBF (Fig. 2g,h). The comprehensive char-
acterization of OR enhancers proves that almost all OR gene clusters 
harbor at least one enhancer, implying the critical role of cis-enhancer 
in the regulation of OR gene expression. The absence of identified 
enhancers in certain small clusters may be due to the low abundance 
of OSNs expressing these specific OR genes.

We then analyzed the chromatin accessibility dynamics of OR genes 
and OR enhancers during OSN differentiation. Using our METATAC data-
set, we performed pseudotime analysis to trace the developmental line-
age from the GBC stage to mOSNs (Fig. 2e and Methods). Our findings 
revealed that OR genes initially had a closed state at the GBC stage, fol-
lowed by a pervasive accessibility state at the late INP stage, correspond-
ing to multigenic OR expression. During OSN maturation, OR genes 
returned to a fully inaccessible state (Fig. 2i, bottom), even more closed 
than non-OSN cell types (Extended Data Fig. 7b), indicating robust OR 
gene repression. OR enhancers were completely inaccessible at GBCs but 
rapidly reached peak accessibility at the late INP stage before decreas-
ing to a lower level as OSNs matured to mOSN (Fig. 2i, top). Analysis of 
master transcription factors (TFs) of OR enhancers with our single-cell 
gene expression atlas showed that Lhx2/Ebf expression followed similar 
dynamics as OR enhancers along OSN development (Extended Data 
Fig. 8g). To further determine the temporal relationship between Lhx2 
expression and OR-enhancer accessibility, we integrated METATAC and 
scRNA-seq data by extracting the continuous developmental trajectory 
from GBC to mOSN (Fig. 2j, Extended Data Fig. 8i and Methods). The 
integrated pseudotime analysis confirmed that Lhx2/Ebf expression 
clearly precedes OR-enhancer activation (Fig. 2k,l). These results sug-
gest that the accessibility change of OR enhancers is elicited by LHX2, 
consistent with Lhx2 knockout eliminating GI accessibility in mOSNs33.

Overall, our study reveals that LHX2-activated OR enhancers 
reach their highest accessibility at the late INP stage, creating a highly 
activated environment for OR gene expression and explaining the 
multigenic OR activation at this stage. As OSN maturation, multiple OR 
genes initially activated in progenitors are silenced, leaving only one 
active OR gene. At the same time, the accessibility of OR genes and OR 
enhancers decreases as OSNs further matured, ensuring singular OR 
gene expression and silencing of excess ORs in mOSNs.

Fig. 3 | Stepwise OR determination observed with single-cell joint profiling 
of chromatin architecture and gene expression. a, Cells were classified 
into three stages based on the total OR expression level and the ratio of OR 
with highest expression level of the developing OSNs (progenitor, iOSN and 
mOSN). b, The 3D positioning of ORs and enhancers in a representative cell at 
multigenic OR activation stage with expressed ORs depicted in detail, revealing 
that cis-enhancer activates their expression. c, Histogram summarizing the 
percentage of cis-enhancers and trans-enhancers within 150 nm of expressed 
ORs for three OR expression stages. d, The 3D positioning of ORs and enhancers 
in a representative cell at silencing stage with the dominant and silencing OR 
depicted in detail. e, The 3D positioning of ORs and enhancers in a representative 

cell at singular OR activation stage with the selected OR depicted in detail.  
f, Number of enhancers within 300 nm of active dominant OR and second-
highest expressed OR of the same cell (connected with a line). Statistical 
significance is labeled. A two-sided Wilcoxon signed-rank test was used.  
g, Number of OR enhancers of the largest enhancer aggregate, second-largest 
enhancer aggregate and active OR-residing enhancer aggregate of the same 
cell within 5 particle radii (300 nm) (connected with a line, n = 18). A two-sided 
Wilcoxon signed-rank test for paired data was used, ***P < 0.01. h, Illustration 
showing the stepwise OR gene determinations and their coordination with OR 
enhancers, the accessibility of OR enhancers and OR genes, and the expression of 
Lhx2 along OSN development is shown below.
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Spatial relationship between active OR genes and enhancers
With the paired 3D genome structure and OR gene expression profiles 
within the same cell, we explored the spatial relationship between 
OR enhancers and expressed OR genes to understand how OR gene is 
activated and selected. The presence of truncated and nonfunctional 
OR transcripts necessitates the utilization of full-length transcript 

information, a feature uniquely provided by LiMCA as opposed to 
HiRES. This capability plays a crucial role in accurately discerning 
genuine OR gene expression (Extended Data Fig. 9). According to OR 
gene expression profiles, we classified developing OSNs (progenitor, 
iOSN and mOSN) into three stages (Fig. 3a, Extended Data Fig. 10a–c and 
Supplementary Table 4): the multigenic OR activation stage (stage 1)  
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with multiple lowly expressed OR genes and without dominant ones; 
the silencing stage (stage 2) with one dominant OR gene and several 
weakly expressed OR genes; and the singular OR determination stage 
(stage 3) with only one highly expressed OR gene. We hypothesized that 
these three stages represent the stepwise OR gene expression starting 
with multigenic OR activation followed by one OR gene outcompeting 
the others and finally becoming the singularly determined one.

We then investigated the 3D connectivity between expressed 
OR genes and their enhancers at different stages. For this analysis, 
we included the newly identified OR enhancers. First, we focused on 
the progenitor stage where the expression of OR genes begins, which 
is rarely studied in previous research due to the lack of an available 
technique. At the activation stage, we observed that most activated 
OR genes have nearby enhancers (median distance to nearest enhancer 
was 2.29 radii of particle), which are predominantly cis-enhancers from 
the same chromosome (Fig. 3b,c and Extended Data Fig. 10d). This 
is consistent with weak inter-chromosomal (trans) OR gene interac-
tions at this stage. This supports the importance and sufficiency of 
cis-enhancers for OR gene activation, preceding the establishment of 
inter-chromosomal OR–OR gene cluster interactions. Furthermore, 
this concept is supported by previous reports that deletion of specific 
GIs only downregulates the expression of limited numbers of nearby 
OR genes belonging to the same OR gene cluster34–36.

After multigenic OR gene activation, one specific OR gene outcom-
petes other OR genes and becomes the ‘winner’ before achieving sin-
gular OR gene expression. Nevertheless, how the association with GIs 
contributes to its dominance remains unclear. When analyzing OSNs 
undergoing OR gene silencing (stage 2), we observed that the dominant 
OR gene typically associates with a greater number of proximal enhanc-
ers compared to these OR genes undergoing silencing (Fig. 3d,f and 
Extended Data Fig. 10e). Specifically, within a proximity of 150 nm, 11 
cells with the prevailing OR gene associate with more enhancers than 
silencing ones versus four cells showing the opposite trend; in the 
case of 300 nm, this is 16 cells versus 4 cells. Moreover, our contact 
map-based analysis further confirms this finding by illustrating that 
the dominant OR gene displays more specific and stronger interactions 
with trans-GIs (Extended Data Fig. 10i–k). These results suggest that an 
increased number of enhancers provide the associated OR gene with 
more transcriptional sources, thus contributing to its competitive 
advantage. This suggests a potential positive feedback mechanism 
between enhanced enhancer connectivity and higher expression levels.

Previous bulk 4C/Hi-C study on fluorescence-activated cell sort-
ing (FACS)-purified OSNs expressing a specific OR gene suggests that 
the active OR gene interacts frequently with trans- and long-range 
enhancers17,32. Single-cell Hi-C on OSNs showed that each OSN harbors 
multiple enhancer aggregates and proposed that the active OR gene 
presumably resides in the largest enhancer aggregates according to the 
bulk observations18. To validate whether the finally chosen OR gene is 
associated with the largest number of enhancers, we inspected OSNs 
expressing a singular OR gene; however, we found that the ultimately 
selected OR genes are typically not located in the largest enhancer 
aggregates (Fig. 3e,g and Extended Data Fig. 10h). This result refutes 
the previous speculation that the finally determined OR gene is linked 
to the largest enhancer aggregate.

Through our investigation into the regulation of OR gene expres-
sion, we have developed a comprehensive understanding of how OR 
enhancers are associated with this process (Fig. 3h). During the GBC 
stage, both OR genes and OR enhancers are inaccessible, resulting in 
no OR activation. Subsequently, LHX2 and EBF induce the OR enhanc-
ers to become highly accessible, which serve as cis-enhancers and 
lead to multigenic OR activation. As this process continues, one OR 
gene associates with multiple enhancers to become the dominant 
one, while the rest of the OR genes gradually turn off. Ultimately, 
only a small set of OR enhancers are retained to support singular OR  
gene expression.

Discussion
In this study, we developed a single-cell multi-omics profiling method 
that enables the efficient and accurate measurement of both 3D genome 
structure and gene expression. The throughput of this method could 
be increased with the help of an automated liquid handler or microwell 
system equipped with liquid-dispensing capabilities in the future. By 
applying this assay to the developing OSNs and in combination with the 
single-cell chromatin accessibility and gene expression atlases, we have 
comprehensively investigated the regulation of OR expression. We have 
gained an unprecedented understanding of the stepwise process that 
governs OR gene determination and the dynamic changes in accessibility 
of OR enhancers at various stages of OR gene expression. Our multi-omics 
dataset provides valuable insight into the previously unexplored mecha-
nisms before the establishment of the ‘one neuron–one receptor’ rule.

It remains unclear how OR gene expression occurs during OSN 
development. At the progenitor stage, multiple ORs are randomly 
activated, giving rise to two potential scenarios. The first scenario 
suggests that all but one of the activated OR genes become inactivated. 
Alternatively, in the second scenario, all initially activated OR genes are 
silenced, followed by a random reactivation process where one specific 
OR gene is chosen for final determination. Our hypothesis holds true if 
the finally selected OR gene is among those activated at the progenitor 
stage. However, these possibilities cannot be distinguished by cur-
rent studies. This still needs to be explored in future research to fully 
understand the mechanism of OR gene determination.

Our finding uncovers that the active OR gene in mOSNs is usually 
not situated within the largest enhancer aggregate; however, this obser-
vation does not conflict with bulk Hi-C observations that demonstrated 
active OR genes interact most frequently with trans- and long-range 
cis-enhancers. The limitation of bulk Hi-C experiments is their inability 
to capture variability at the single-cell level. It is important to note that 
the highest contact frequency with GIs does not necessarily require 
that the active OR gene always interacts with the greatest number of 
enhancers in individual cells. Instead, the active OR gene interacts with 
a limited number but different sets of enhancers in individual OSN cells, 
which also explains the population-based observations.

To further reconcile why the dominant OR gene does not reside 
within the largest enhancer hub, one plausible explanation lies in the 
concept of OR ‘zone’ identity. OR gene selection is biased to predeter-
mined sets of OR genes along the dorsoventral axis of MOE, referred 
to as ‘zones’ (refs. 37–39). A recent study found that dorsal receptors 
form the strongest interactions across all zones, which are heterochro-
matic40. To investigate whether the ORs residing within the largest 
enhancer hub display a bias toward dorsal zone identity, we performed 
an analysis of OR zone identity on stage 2 and stage 3 OSNs harboring 
a dominant OR gene. Our findings revealed a significant difference 
in zone identity between the dominant OR gene and the OR genes 
located within the largest or second-largest enhancer hub (Extended 
Data Fig. 10l). Indeed, the largest enhancer hub typically encompasses 
more dorsal OR genes, which indicates that the largest enhancer hub 
tends to be inactive. This result potentially resolves the puzzle of why 
the active OR gene is not situated within the largest enhancer hub.

Previous studies proposed that intergenic OR enhancers facili-
tate specific and strong inter-chromosomal interactions among OR 
gene clusters across 18 chromosomes17. We observed that both the 
OR enhancers and their associated transcription factor, LHX2, exhibit 
peak activity during the INP stage. Notably, the inter-chromosomal 
contacts between OR–OR gene clusters are relatively weak at this stage. 
This suggests that additional mechanisms, such as the accumulation 
of repressive histone modifications on OR gene clusters during the 
maturation of OSNs15, as well as their interaction with HP1 proteins, 
may govern the compartmentalization of ORs16. Heterochromatic 
protein-guided phase separation could be the potential driving force 
for the formation of OR gene heterochromatic aggregate, which plays 
a central role in B compartment formation41.
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The presence of multiple OR-enhancer aggregates in each OSN 
suggests that simply being associated with an OR-enhancer hub is 
insufficient for OR activation42.

Our findings reveal a noteworthy pattern: OR enhancers undergo 
reduced accessibility along the course of OSN development, demon-
strating that only a subset of enhancers remain active in mature OSNs. 
Consequently, it can be inferred that only the OR gene interacting with 
an active multi-chromosomal enhancer hub is expressed, while others 
remain silenced.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02239-0.

References
1. Misteli, T. The self-organizing genome: principles of genome 

architecture and function. Cell 183, 28–45 (2020).
2. Oudelaar, A. M. & Higgs, D. R. The relationship between genome 

structure and function. Nat. Rev. Genet. 22, 154–168 (2021).
3. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter 

contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 
(2019).

4. Flavahan, W. A. et al. Insulator dysfunction and oncogene 
activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

5. Hnisz, D. et al. Activation of proto-oncogenes by disruption of 
chromosome neighborhoods. Science 351, 1454–1458 (2016).

6. Lupianez, D. G. et al. Disruptions of topological chromatin 
domains cause pathogenic rewiring of gene-enhancer 
interactions. Cell 161, 1012–1025 (2015).

7. Cardozo Gizzi, A. M. et al. Microscopy-Based Chromosome 
Conformation Capture Enables Simultaneous Visualization of 
Genome Organization and Transcription in Intact Organisms. Mol. 
Cell 74, 212–222.e5 (2019).

8. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at 
single-cell resolution. Nature 568, 49–54 (2019).

9. Su, J. H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome- 
scale imaging of the 3D organization and transcriptional activity 
of chromatin. Cell 182, 1641–1659.e26 (2020).

10. Takei, Y. et al. Integrated spatial genomics reveals global 
architecture of single nuclei. Nature 590, 344–350 (2021).

11. Shah, S. et al. Dynamics and spatial genomics of the nascent 
transcriptome by Intron seqFISH. Cell 174, 363–376.e16 (2018).

12. Liu, Z. et al. Linking genome structures to functions by 
simultaneous single-cell Hi-C and RNA-seq. Science 380, 
1070–1076 (2023).

13. Buck, L. & Axel, R. A novel multigene family may encode odorant 
receptors: a molecular basis for odor recognition. Cell 65, 175–187 
(1991).

14. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation 
regulates olfactory receptor gene expression. Cell 78, 823–834 
(1994).

15. Magklara, A. et al. An epigenetic signature for monoallelic 
olfactory receptor expression. Cell 145, 555–570 (2011).

16. Clowney, E. J. et al. Nuclear aggregation of olfactory receptor 
genes governs their monogenic expression. Cell 151, 724–737 
(2012).

17. Monahan, K., Horta, A. & Lomvardas, S. LHX2- and LDB1-mediated 
trans interactions regulate olfactory receptor choice. Nature 565, 
448–453 (2019).

18. Tan, L., Xing, D., Daley, N. & Xie, X. S. Three-dimensional genome 
structures of single sensory neurons in mouse visual and 
olfactory systems. Nat. Struct. Mol. Biol. 26, 297–307 (2019).

19. Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor 
transformations during olfactory neurogenesis. Science 350, 
1251–1255 (2015).

20. Tan, L., Li, Q. & Xie, X. S. Olfactory sensory neurons transiently 
express multiple olfactory receptors during development. Mol. 
Syst. Biol. 11, 844 (2015).

21. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, 
epigenetic, and transcriptomic heterogeneity in hepatocellular 
carcinomas. Cell Res. 26, 304–319 (2016).

22. Han, K. Y. et al. SIDR: simultaneous isolation and parallel 
sequencing of genomic DNA and total RNA from single cells. 
Genome Res. 28, 75–87 (2018).

23. Zachariadis, V., Cheng, H., Andrews, N. & Enge, M. A highly 
scalable method for joint whole-genome sequencing and 
gene-expression profiling of single cells. Mol. Cell 80, 541–553.e5 
(2020).

24. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome 
profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

25. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing 
chromosome conformation. Science 295, 1306–1311 (2002).

26. Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional 
genome structures of single diploid human cells. Science 361, 
924–928 (2018).

27. Rao, S. S. et al. A 3D map of the human genome at kilobase 
resolution reveals principles of chromatin looping. Cell 159, 
1665–1680 (2014).

28. Tan, L. et al. Changes in genome architecture and transcriptional 
dynamics progress independently of sensory experience during 
post-natal brain development. Cell 184, 741–758.e17 (2021).

29. Naumova, N. et al. Organization of the mitotic chromosome. 
Science 342, 948–953 (2013).

30. Ferrai, C., de Castro, I. J., Lavitas, L., Chotalia, M. & Pombo, A. Gene 
positioning. Cold Spring Harb. Perspect. Biol. https://doi.org/ 
10.1101/cshperspect.a000588 (2010).

31. Wu, H. et al. Highly sensitive single-cell chromatin accessibility 
assay and transcriptome coassay with METATAC. Proc. Natl Acad. 
Sci. USA 119, e2206450119 (2022).

32. Markenscoff-Papadimitriou, E. et al. Enhancer interaction 
networks as a means for singular olfactory receptor expression. 
Cell 159, 543–557 (2014).

33. Monahan, K. et al. Cooperative interactions enable singular 
olfactory receptor expression in mouse olfactory neurons. eLife 6, 
e28620 (2017).

34. Nishizumi, H., Kumasaka, K., Inoue, N., Nakashima, A. & Sakano, H. 
Deletion of the core-H region in mice abolishes the expression of 
three proximal odorant receptor genes in cis. Proc. Natl Acad. Sci. 
USA 104, 20067–20072 (2007).

35. Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the 
H element on expression of odorant receptor genes in mouse. 
Cell 130, 373–384 (2007).

36. Khan, M., Vaes, E. & Mombaerts, P. Regulation of the probability  
of mouse odorant receptor gene choice. Cell 147, 907–921  
(2011).

37. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of 
odorant receptor gene expression in the olfactory epithelium. 
Cell 73, 597–609 (1993).

38. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant 
receptor expression in the mammalian olfactory epithelium. Cell 
74, 309–318 (1993).

39. Tan, L. & Xie, X. S. A near-complete spatial map of olfactory 
receptors in the mouse main olfactory epithelium. Chem. Senses 
43, 427–432 (2018).

40. Bashkirova, E. V. et al. Opposing, spatially-determined epigenetic 
forces impose restrictions on stochastic olfactory receptor 
choice. eLife 12, RP87445 (2023).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02239-0
https://doi.org/10.1101/cshperspect.a000588
https://doi.org/10.1101/cshperspect.a000588


Nature Methods | Volume 21 | June 2024 | 974–982 982

Article https://doi.org/10.1038/s41592-024-02239-0

41. Larson, A. G. et al. Liquid droplet formation by HP1α suggests 
a role for phase separation in heterochromatin. Nature 547, 
236–240 (2017).

42. Pourmorady, A. & Lomvardas, S. Olfactory receptor choice: a case 
study for gene regulation in a multi-enhancer system. Curr. Opin. 
Genet. Dev. 72, 101–109 (2022).

Publisher’s note Springer Nature remains neutral with regard  
to jurisdictional claims in published maps and institutional  
affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemethods
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Article https://doi.org/10.1038/s41592-024-02239-0

Methods
Animals
The study was approved by the Peking University Institutional Animal 
Care and Use Committee. All animal experiments were conducted 
following their guidelines. F1 hybrids of CAST/EiJ ( JAX 000928) × 
C57BL/6J ( JAX 000664) and DBA/2J ( JAX 000671) × C57BL/5J were used 
in this study, including LiMCA, METATAC and scRNA-seq experiments; 
for detailed sampling, please see Fig. 2b. All animals were cultured in 
specific-pathogen-free conditions and housed in a 12-h light–dark cycle 
with 40–60% humidity and room temperature (~25 °C).

Cell types and culture conditions
We performed LiMCA on four human cell lines and the developing 
mouse MOE.

K562 (ATCC, CCL-243), chronic myeloid leukemia cells, were 
cultured in Iscove’s modified Dulbecco’s medium (Gibco, cat. 
no. 12440053) supplemented with 10% fetal bovine serum (FBS) 
(Gibco, Thermo Fisher Scientific, cat. no. 10099141) and 1% penicil-
lin/streptomycin (Pen/Strep) (Gibco, Thermo Fisher Scientific, cat.  
no. 15140148).

GM12878 (Coriell Institute), B lymphoblastoid cells, were grown in 
Roswell Park Memorial Institute 1640 Medium (Gibco, Thermo Fisher 
Scientific, cat. no. 11875093) supplemented with 15% FBS and 1% Pen/
Strep. GM12878 cells were grown from a single-cell clone.

BJ (ATCC, CRL-2522), fibroblasts, were grown in ATCC-formulated 
Eagle’s minimum essential medium (ATCC, cat. no. 30-2003) with 10% 
FBS and 1% Pen/Strep.

eHAP (Cellosaurus), an engineered haploid chronic myeloid leu-
kemia cell line43, was grown in Iscove’s modified Dulbecco’s medium 
(Gibco, cat. no. 12440053) supplemented with 10% FBS and 1% Pen/
Strep and passaged every 2–3 days at a 1:10 to 1:15 dilution.

When used, adherent cells (for example, K562 and eHAP) were 
washed twice in 1× PBS and 0.25% Trypsin-EDTA was added (Thermo 
Fisher Scientific, cat. no. 25200072) and incubated at 37 °C for 5 min, 
then diluted with complete culture medium to stop trypsinization. 
Cells were collected by centrifuge at 350g for 5 min and resuspended 
in 1× PBS. All cell lines were maintained at 37 °C with 5% CO2 at a recom-
mended density.

Dissociation of single cells from the mouse olfactory epithelium. 
The MOE was dissected and minced into small pieces, then dissoci-
ated into a single-cell suspension with the Papain Dissociation System 
(Worthington Biochemical, cat. no. LK003150) at 37 °C for 15 min 
during incubation, with titration every 5 min with a wide-bore pipette 
tip according to previously described methods20. Then the suspen-
sion was filtered with a 30-μm strainer (MACS) and washed twice with 
ice-cold 1× PBS.

Single-cell ATAC-seq (METATAC)
Single-cell ATAC-seq datasets were generated with our high-sensitivity 
METATAC method. METATAC was performed as described in our previ-
ous work31. We performed METATAC on mouse MOE at four time points 
during the first postnatal month, day 3, day 7, day 14 and day 28. In brief, 
dissociated single cells were stained with 7-AAD (eBioscience, cat. no. 
00-6993-50), then FACS was used to sort viable cells. The FACS gating 
strategy is indicated in Extended Data Fig. 6a. Cells were counted and 
50,000 cells were taken as input. The nuclei were extracted with 50 μl 
ATAC lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl2, 
0.01% digitonin, 0.1% Tween-20 and 0.1% IGEPAL-CA630) by incubat-
ing on ice for 5 min and then they were bulk transposed with META 
transposome (12.5 μl 2× TD buffer from Illumina Nextera kit, 10 μl 1× 
PBS (pH 7.4), 0.25 μl 1% digitonin, 0.25 μl 10% Tween and 2 μl 1.25 μM 
META transposome), then the transposed nuclei were sorted onto 
96-well plates. The sorted nuclei were stored at −80 °C or proceeded 
to amplification.

Droplet scRNA-seq
A scRNA-seq library was prepared according to the 10x Genomics 
guidance using the Single-cell Gene Expression 5′ RNA-seq kit v.1.1 
(CG000331_ChromiumNextGEMSingleCell5-v2_UserGuide_RevE). In 
brief, a dissociated single-cell suspension was stained with 7-AAD, then 
subjected to flow cytometry to sort viable cells. We used about 40,000 
cells as input for each reaction. A total of three 10x runs were generated. 
For the P4–P7 sample, cells from mice at postnatal day 4 and postnatal 
day 7 were pooled together to load on the same channel. For P14 and P28 
samples, cells were from mice at postnatal day 14 and day 28, respec-
tively. One male and one female mouse were used at each time point.

LiMCA protocol
Our method was based on nucleus–cytoplasm physical separation, 
such as Trio-seq21. The nucleus was submitted to chromosome con-
formation capture processing and the cytoplasm mRNA was amplified 
according to the Smart-seq2 procedure24. A detailed step-by-step 
protocol is presented elsewhere44.

Single-cell nucleus–cytoplasm separation. In brief, viable cells 
were picked into a single tube containing 7 μl soft cell lysis buffer 
(25 mM Tris, pH 8.3, 30 mM NaCl, 0.45% IGEPAL-CA630 and 1 U μl−1 
SUPERaseIn), incubated on ice for 30 min, followed by vortexing for 
1 min. Samples were centrifuged at 500g for 5 min at 4 °C, then 5 μl 
supernatant was carefully placed into a new tube. The supernatant 
was used for Smart-seq2 reverse transcription and amplification24. The 
nuclei were used for chromosome conformation capture.

Cytoplasm Smart-seq2 procedure. In brief, 1.25 μl oligo-dT-dNTP mix 
(1 μM oligo-dT30VN and 2 mM dNTP mix) was incubated at 72 °C for 
5 min, then incubated at 4 °C for 5 min. Then, 7 μl reverse transcription 
mix (1× SSII first-strand buffer, 1 U μl−1 RNase inhibitor, 10 U μl−1 SSII RTase, 
1 mM GTP, 5 mM dithiothreitol, 1 M betaine, 6 mM MgCl2 and 1 μM tem-
plate switch oligonucleotide) was added, incubated at 42 °C for 90 min, 
then, ten cycles of 50 °C for 2 min and 42 °C for 2 min, followed by 72 °C for 
5 min. After reverse transcription, 14.75 μl amplification mix (14 μl KAPA 
HiFi Hotstart mix, 0.28 μl 10 μM ISPCR primer and 0.47 μl nuclease-free 
water) was added to each tube and incubated at 98 °C for 3 min, followed 
by 21 cycles of 98 °C for 20 s, 65 °C for 30 s and 72 °C for 4 min, followed 
by 72 °C for 5 min. Samples were purified with 0.7× AMPure XP beads.

Single-nucleus chromosome conformation capture. We added 
8 μl 2.5% paraformaldehyde (EMS, 15714-S) to the remaining 2-μl pel-
let (containing the nucleus), vortexed to resuspend, incubated at 
room temperature for 10 min to fix nuclei, then added 10 μl 0.25 M 
glycine supplemented with 0.2 μl magnetic beads (Invitrogen, 65011) 
to quench. Samples were centrifuged at 500g for 5 min at 4 °C and 17 μl 
supernatant was discarded. We added 17 μl Hi-C lysis (10 mM Tris, pH 
8.0, 10 mM NaCl and 0.2% IGEPAL-CA630, supplemented with protease 
inhibitor) without incubation. Following centrifugation at 500g for 
5 min at 4 °C, we discarded 17 μl supernatant, leaving 3 μl. We added 2 μl 
0.75% SDS to each tube (final 0.3%), vortexed to resuspend, incubated 
at 62 °C for 10 min, then added 5 μl 4% Triton X-100 and incubated at 
37 °C for 15 min to quench. We added 10 μl digestion mix (2× rCutSmart 
buffer and 4 U μl−1 NIAIII) and incubated it at 37 °C for 2 h with rotation. 
Following centrifugation at 500g for 5 min at 4 °C, we discarded 17 μl 
supernatant. We added 17 μl 1× T4 buffer, then following centrifuga-
tion at 500g for 5 min at 4 °C, we, again, discarded 17 μl supernatant. 
Then we added 17 μl ligation mix (1× T4 buffer containing 10 U μl−1 T4 
ligase) and incubated it at room temperature for 2.5 h with rotation. 
Following centrifugation at 500g for 5 min at 4 °C, we discarded 18 μl 
supernatant. We then added 2 μl cell lysis buffer (20 mM Tris, pH 8.0, 
40 mM NaCl, 30 mM dithiothreitol, 2 mM EDTA, 0.2% Triton X-100 and 
3 mg ml−1 QP). Samples were incubated at 50 °C for 1 h, 65 °C for 1 h and 
70 °C for 15 min. After lysis, cells were stored at −80 °C.
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Single-cell WGA. Single cells were amplified with our transposon-based 
state-of-the-art WGA method, META (Tn5 transposase (Vazyme, 
S111-01)), as previously described18,26. In this study, we use 20 META  
tags26.

Library construction. The complementary DNA amplicons were quan-
tified, taking 1–5 ng as input for Nextera Tn5 (Vazyme, TD502) tagmen-
tation and library preparation. Cells were pooled for purification and 
first purified with 0.6× SPRI beads, then purified with 0.2× SPRI beads. 
The sequenced gDNA and RNA data from the same cells are integrated 
based on experimental labels.

Sequencing
METATAC libraries were sequenced with paired-end 2 × 150 bp on Illu-
mina Novaseq, sequenced at 9 Gb per 96-well plate. LiMCA libraries 
were sequenced with paired-end 2 × 150 bp on Illumina HiSeq x10 or 
Novaseq, sequenced at 3–6 Gb for gDNA and 0.2–0.6 Gb for cDNA 
per cell.

Published data
Phased single-nucleotide polymorphism (SNP) files were downloaded 
from the Sanger Institute Mouse Genomes Project (‘mgp.v5.merged.
snps_all.dbSNP142.vcf.gz’). Bulk Hi-C or Micro-C was taken from the 
4DN Data Portal (4DNFIXP4QG5B for GM12878, 4DNFIB59T7NN for 
HFFc6, 4DNFINSKEZND for HAP1, 4DNFI18UHVRO for K562, 4DNFI1T-
BYKV3 for GBCs, 4DNFICUQ1N7S for INP, 4DNFIUH9FJR6 for mOSN, 
4DNFI5AFARSZ for mOSN (Olfr1507) and 4DNFIB5G24G6 for mOSNs 
(Olfr17)). Bulk RNA-seq data of GM12878 were downloaded from 
ENCODE under accession no. ENCFF897XES.

Lhx2/Ebf ChIP-seq data and bulk ATAC-seq data of mOSNs 
were taken from the Gene Expression Omnibus under accession no. 
GSE93570 (ref. 33).

METATAC analysis
METATAC data preprocessing. METATAC data were processed as 
described previously31. In brief, cell barcodes and META sequences were 
identified for each pair of reads using a custom script. Reads from each 
cell were split according to their barcodes. Adaptors were then trimmed 
using cutadapt (v.4.0) with parameters ‘-e 0.22 -a CTGTCTCTTATACA-
CATCT’ followed by parameters ‘-e 0.22 -g AGATGTGTATAAGAGACAG’. 
Cleaned reads were then mapped to the mm10 (GRCm38) reference 
genome using bowtie2 (v.2.3.4.3) with parameters ‘-X 2,000–local–
mm–no-discordant–no-mixed’. Duplicated reads were removed using 
custom script according to both their mapped location on the genome 
and META tags. Mapped paired reads were transformed into fragments 
and a bias of ‘+4’ or ‘−5’ was added to each end of each fragment to 
center the Tn5 insertion sites.

Fragments from all cells were then integrated. Fragments that 
may have arisen from contamination were identified and removed 
by a custom script as described previously31. The decontaminated 
fragments were then subjected to R (v.4.1.0) package ArchR (v.1.0.2) 
for quality control (QC). TSS enrichment scores and doublet scores 
of each cell were calculated using the default parameters of ArchR. 
Cells meeting any of the following conditions were considered to be of 
low quality and were excluded from downstream analyses: number of 
aligned reads <5 × 104 or >1 × 106; ratio of aligned reads <0.85; number 
of fragments <3.16 × 103 or >3.16 × 105; ratio of contaminated fragments 
>0.6; mitochondrial reads >5%; TSS enrichment score <5; promoter 
fragments <0.1; and doublet score >10.

METATAC cell embedding and clustering. Processed METATAC 
fragments after QC were analyzed using ArchR. First, gene activities 
were calculated using the addGeneScoreMatrix function with GEN-
CODE v.M25 annotation of mm10 genome. Iterative Latent Semantic 
Indexing was performed with clustering parameters ‘resolution = 0.2, 

sampleCells = 10,000, n.start = 10’. UMAP embedding was calculated 
with parameters ‘nNeighbors = 30, minDist = 0.5’. Then, cells were 
clustered (addClusters) with parameters ‘maxCluster = 35, resolu-
tion = 0.8’. The cell type of each cluster was annotated manually with 
the help of the Enrichr database (https://doi.org/10.1093/nar/gkw377) 
according to their marker genes calculated by the getMarkerFeatures 
function with default parameters. Cell type-specific ATAC peaks were 
identified using addReproduciblePeakSet function of ArchR with 
macs2 (v.2.2.7.1). We identified the marker peaks for cell types of inter-
est, including HBCs, GBCs, early/late INPs and immature/mature OSNs, 
using the getMarkerFeatures function on ‘PeakMatrix’, and the enriched 
TF-binding motifs in the corresponding marker peaks were identified 
using the peakAnnoEnrichment function.

Integration of METATAC and scRNA-seq profiles. We used the Seurat 
CCA-based algorithm to integrate the METATAC and 10x scRNA-seq 
data of MOE. According to the cell typing of previous single-assay 
analyses, we used GBCs, early/late INPs, iOSNs and mOSNs from the  
METATAC dataset, and the same group of cells as those used in 
scRNA-seq pseudotime analysis from the scRNA-seq dataset. ATAC 
fragments of these cells and the ArchR peaks associated with these 
cell types were extracted and analyzed using Signac (v.1.11.0). The 
gene activities of scRNA-seq variable genes were calculated by the 
GeneActivity function and normalized. The FindTransferAnchors 
function was used to perform a canonical correlation analysis and 
identify the anchors between the two assays. According to the anchors, 
pseudo-transcriptomes of ATAC cells are imputed and merged with the 
scRNA-seq dataset. Standard principal-component analysis (PCA) and 
UMAP embedding of Seurat were performed on the resulting integrated 
dataset. Similar to the processing of transcriptome dataset, pseudo-
time analysis on the co-embedding space was performed by slingshot.

METATAC pseudotime analysis. We used the ‘addTrajectory’ function 
of ArchR with default parameters to reconstruct the trajectory of MOE 
development in the UMAP embedding space and assign pseudotime 
values for GBCs, early/late INPs, iOSNs and mOSNs.

Identification and validation of candidate OR enhancers
We utilized the Lhx2 and Ebf ChIP-seq data in mOSNs and previously 
defined GIs from Monahan et al.17. We first interrogated in our peak 
set if there were peaks in OR gene clusters following the criteria of 
GIs (overlap with both Lhx2 and Ebf ChIP-seq peaks) but not identi-
fied as GIs previously. DNA sequences of the resulting 27 peaks and 
63 previously identified GIs were extracted from the mm10 genome 
and subjected to the XSTREME online server (https://meme-suite.
org/meme/tools/xstreme) for de novo motif discovery with default 
parameters. The resulting motif with the most significant E-value 
corresponded to the desired composite motif. We used fimo (v.5.3.3) 
with a q value threshold of 10−3 to further identify the location of the 
motif within GIs and candidate peaks, and determined the q values of 
all matched sites. GIs and identified regulatory peaks were visualized 
in a Circos plot with ChIP-seq and scATAC-seq (grouped by cell types) 
tracks of OR clusters using the R packages circlize (v.0.4.12) and ggplot2  
(v.3.3.3).

ATAC footprinting was performed by the getFootprints func-
tion of ArchR with default parameters on the GIs and candidate peaks 
centered at the composite motif. Figures were generated by the plot-
Footprints function of ArchR with the Tn5 insertion bias normalized 
by subtraction.

Comparison of composite motif score. We kept all results from FIMO 
scanning (without the q value < 0.1 filtering) and compared the distri-
bution of FIMO motif scores of different groups (ATAC peaks outside 
OR gene clusters, ATAC peaks within OR gene clusters, candidate OR 
enhancers and GIs) using Kolmogorov–Smirnov tests.
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scRNA-seq data analysis
10x scRNA data preprocessing. 10x scRNA-seq reads were processed 
and mapped to mm10 genome using CellRanger (v.5.0.1). We used the 
R package Seurat (v4.0.4) for QC and downstream analysis.

Cell filtering. Barcodes with UMI counts over 1,000 and fewer than 
25,000, number of detected genes over 200 and mitochondrial counts 
less than 10% were considered as high-quality cells.

Embedding and clustering. Cells from three batches (P4/P7, P14 
and P28) that passed QC were merged, log-normalized and inte-
grated using the Seurat IntegrateData function with anchors iden-
tified by the FindIntegrationAnchors function to correct batch 
effects. The integrated dataset was scaled and embedded using 
PCA followed by UMAP, using the ScaleData, RunPCA(npcs = 30), 
RunUMAP functions of Seurat, respectively. K-nearest neighbors of 
cells were identified using the Seurat FindNeighbors function and 
Louvain clustering was performed with a resolution of 1.0 using the 
FindClusters function. Then, cell types were annotated manually 
according to their marker genes identified by FindAllMarkers with 
parameters ‘min.pct = 0.25, logfc.threshold = 0.25, only.pos = TRUE’. 
Then, we removed all cells except for GBCs, INPs, iOSNs and mOSNs. 
The remaining subset was scaled by SCTransform(vst.flavor = ‘v2’), 
followed by RunPCA(npcs = 30), RunUMAP(dims = 1:15), and Find-
Neighbors and FindClusters(resolution = 0.5). Six out of the identi-
fied 17 subclusters, which mainly consisted of mOSNs, could not be 
aligned well on the trajectory from GBCs to mOSNs and therefore were  
removed.

Pseudotime analysis. We used slingshot (v.2.2.1) to construct a trajec-
tory on the UMAP of the subset after removing the outlier subclusters, 
and assigned pseudotime values for each cell from GBCs to mOSNs.

Calculation of correlation between METATAC and scRNA-seq. 
To get the correlation between scATAC-seq and scRNA-seq data, we 
used the variable genes identified by Seurat and calculated the gene 
score matrix and the log-normalized UMI count matrix from the ATAC 
and RNA datasets, respectively. We calculated the mean scores or 
log-normalized counts for each cell type. The Pearson correlation 
coefficients between each pair of ATAC and RNA clusters over the 
variable genes were calculated using numpy (v.1.20.3) and visualized 
by pheatmap (v.1.0.12).

LiMCA data preprocessing
The RNA data and Hi-C data were preprocessed separately.

RNA data preprocessing. For RNA data, we followed the Smart-seq2 
processing workflow documented in the Human Cell Atlas Data Portal 
(https://broadinstitute.github.io/warp/docs/Pipelines/Smart-seq2_
Single_Sample_Pipeline/README/). In brief, sequencing reads were 
mapped to transcriptomic references of hg38 (GRCh38) and mm10 
(GRCm38) genome assembly for human and mouse data, respectively, 
using the hisat2 package. We then used RSEM to quantify the RNA reads 
and generate a gene count and fragments per kilobase of transcript per 
million mapped reads (FPKM) matrix.

Single-cell Hi-C data preprocessing. Single-cell Hi-C reads were pro-
cessed as previously described18. In brief, contact pairs and contact maps 
were generated from raw sequencing reads using the hickit pipeline 
(https://github.com/lh3/hickit). The contact pairs files generated with 
hickit were then transformed to a Dip-C format for further analysis with 
Dip-C ‘dip-c/scripts/hickit_pairs_to_con.sh’ script (https://github.com/ 
tanlongzhi/dip-c). As the human eHAP cell line contains the Philadel-
phia chromosome (t(9;22)(q34;q11)) and reconstructions of 3D genome 
structures are sensitive to chromosomal structural variations, for eHAP 

Hi-C data, we extracted the exact breakpoints, generated a customized 
hg38 genome reference accordingly and mapped Hi-C reads to it.

Haplotype imputation of contacts. We used the Dip-C method to 
determine the haplotypes of contacts18. In brief, for each read of a 
contact pair (a leg), we assigned a haplotype if the read segment over-
lapped with a phased SNP and had a base quality >20. We then per-
formed haplotype imputations of contacts. Specifically, contacts with  
known haplotypes were used to vote the haplotype of contacts with 
unknown haplotype; if the majority of voted haplotypes are consistent, 
then the haplotype of the contact is assigned confidently.

Juicebox (v.1.11.08) or cooltools (v.0.5.1) was used for contact map 
visualization.

Criteria for cell exclusion
For human cell line data, cells with <100,000 unique contacts (5 of 
389 cells) were excluded. For mouse OSN data, only 3 of 411 cells had 
<100,000 unique contacts, and so we kept all cells.

LiMCA RNA data analysis
Cell embedding and clustering. The Seurat package (v.4.2.0) 
was used for QC and downstream analysis of RNA count matrices. 
We filtered cells with fewer than 200 genes detected and genes 
expressed in fewer than three cells. The filtered count matrices 
were then normalized using the NormalizeData (for human data) 
or SCTransform (for mouse data) function. We then performed 
PCA and UMAP embeddings and Louvain clustering with the fol-
lowing parameters: RunPCA(dims = 1:20), RunUMAP(dims = 1:15), 
FindNeighbors(dims = 1:10) and FindClusters(resolution = 0.4) 
for human data; RunPCA(dims = 1:15), RunUMAP(dims = 1:10), 
FindNeighbors(dims = 1:10) and FindClusters(resolution = 0.4) for 
mouse data. For each human cell, we calculated cell-cycle phase scores 
based on known cell-cycle markers and annotated cell-cycle phase 
using the CellCycleScoring function. Marker genes were identified 
using the FindMarkers function.

Determination of active ORs in single neurons. For olfactory recep-
tor expression detection, the expression matrix was not filtered with 
the parameter ‘genes expressed in fewer than three cells’. Genuine OR 
expression was determined by two criteria. First, we filtered out OR 
genes with an expression level <10 FPKM, as previously described20. 
Second, only OR genes with >90% of the exon region covered were 
kept, which is necessary to exclude map artifacts and truncated OR 
transcripts. For OR genes with multiple exons, it was required to detect 
splicing junctions. This was further confirmed by visual inspection in 
the Integrative Genomics Viewer (v.2.16.2).

The allele of the expressed OR genes was determined by the 
phASER package (v.0.9.8) (https://github.com/secastel/phaser).

Pseudotime analysis. Monocle3 was used to construct the continuous 
developmental trajectory from progenitors to mOSN; pseudotime 
values were assigned to individual cells.

Analysis of contact maps
Calculation of scA/B values. The scA/B values were calculated from 
the single-cell contact map with the ‘dip-c color2’ function (with param-
eters ‘-b1,000,000 -H -c color/mm10.cpg.1m.txt’). The sex of the mouse 
MOE cells was confirmed by dissection of adult mice and inferred by 
analyzing the copy number of sex chromosomes for newborn mice.

Structural cell typing. We only retained autosomal bins that 
were present in all cells. The raw single-cell A/B values were 
rank-normalized to 0–1 in each cell with the scipy rankdata func-
tion. Then the rank-normalized scA/B value matrix was used for PCA 
and UMAP embedding analysis using the Python sklearn and UMAP 
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packages with the following parameters: PCA(n_components = 20) 
and UMAP(n_neighbors = 10).

Analysis of ensemble contact maps. Single-cell contact maps were 
pooled to obtain ensemble maps using the pairtools package (v.0.3.0) 
(https://github.com/open2c/pairtools). The .hic and .mcool formatted 
contact matrices were then generated and balanced with iterative cor-
rection or Knight–Ruiz, using the cooler (v.0.8.11) (https://github.com/
open2c/cooler) and Juicer (v.1.19.02) (https://github.com/aidenlab/
juicer/) package. We used the cooltools eigs-cis function (https://github. 
com/open2c/cooltools) to calculate A/B compartments at a 500-kb 
resolution and the cooltools insulation function to calculate insulation 
scores at a 100-kb resolution with a 1-Mb window. Chromatin loops 
were identified at a 10-kb resolution using the Chromosight (v.1.6.1) 
package (https://github.com/koszullab/chromosight) with ‘–min-dist 
20,000–max-dist 20,000,000’. The same analyses as above were per-
formed on a published in situ Hi-C dataset for benchmark analysis. 
We further generated ensemble maps randomly sampling different 
numbers of cells (n = 25, 50, 75, 100, 125, 150, 175 and 200) and called 
chromatin loops. We used the Bedtools (v.2.26.0) pairtopair function 
to overlap chromatin loops between datasets.

Virtual 4C analysis
We grouped cells into sets with high (above the median) or low (below 
the median) expression of specific genes such as NFKB1 and performed 
virtual 4C analysis. For each set of cells, we combined contact maps to 
generate a pseudobulk contact matrix. Contacts with the gene locus 
were extracted and normalized by the total number of contacts with 
the locus.

Single-cell chromatin looping analysis
We first identified cell-type-specific chromatin loops at a 10-kb resolu-
tion from published bulk Hi-C or Micro-C maps with the diff_mustache.
py script from the mustache package. We then iteratively compared 
one cell type to others and retained calls unique in that cell type as its 
cell type-specific chromatin loops. The coolpuppy package (v.0.9.7) 
was used to generate pileups of merged single-cell maps for each set of 
loops. We calculated the total contact count for each set of chromatin 
loops in individual cells using ‘dip-c ard’ function and combined the 
counts into a matrix. We noted that the number of chromatin loops 
was inconsistent across groups due to varying sequencing depths. 
To eliminate this impact, for each group of loops, we normalized the 
contact counts by the number of contacts used for loop calling.

Mouse olfactory cell type annotation
For mouse olfactory data, we annotated cell types in two steps. In the 
first step, based on RNA counts of known marker genes of mouse olfac-
tory epithelium, we manually annotated the four clusters into OSN 
progenitors, iOSNs, mOSNs and non-neuronal cells. In the second step, 
we visualized the above-mentioned cell type assignment on the UMAP 
plot of scA/B values derived from Hi-C data. Based on structural cell typ-
ing, the progenitor cluster in RNA embedding was segregated into two 
discrete clusters that we named progenitor1 and progenitor2, respec-
tively. These two progenitor clusters did not overlap with each other 
on the UMAP plot of RNA data, further confirming our assignment.

3D genome structure analysis
Generation of 3D genomes. Single-cell 3D genome structures were 
reconstructed on haplotype-imputed contact maps using the hickit 
package (with parameters -M -i impute.pairs.gz -Sr1m -c1 -r10m -c2 -b4m 
-b1m -b200k -D5 -b50k -D5 -b20k). Then, the 3dg files were converted 
to Dip-C format (with scripts/hickit_3dg_to_3dg_rescale_unit.sh). The 
transformed 3dg files were further cleaned with the ‘dip-c clean3’ func-
tion to remove repetitive regions. For eHAP, no homolog imputation 
was needed due to it being a haplotype cell line. For K562 and BJ cells, 

reconstructions were impractical due to gross chromosomal aberra-
tions or lack of phased SNP information.

3D genome structure alignment and uncertainty estimation. For 
each single cell, three independent replicate structures were gener-
ated. Then, the ‘dip-c align’ function was used to calculate the median 
and root-mean-square (r.m.s.) of r.m.s.d. of the single-cell 3D genome 
structures over all 20-kb particles from three independent replicates. 
This calculation involved two steps; first, the r.m.s.d. was calculated 
for each 20-kb particle over three replicate pairs (1–2, 1–3 and 2–3), fol-
lowed by calculating the median or r.m.s. value over all 20-kb particles. 
Only r.m.s.–r.m.s.d. < 1.5 cells were considered as low uncertainty and 
kept for downstream 3D genome structure analysis. The Y chromosome 
was excluded from further analysis due to its short genomic length 
and low mappability.

3D genome structure visualization. The 3dg files were transformed 
into a PyMol-compatible cif format with the ‘dip-c color’ function and 
visualized by PyMol (https://pymol.org/2/).

Spatial analysis of active genes. For this analysis, we considered 
expressed genes with ≥1 FPKM as active genes. The radial positions 
were calculated using ‘dip-c color -C’ and normalized by setting the 
genome-wide median to 1. First, we extracted genomic loci with active 
genes from 20-kb 3D genome structures and counted the number of 
active genes of each locus. We then calculated the total number of genes 
for different radial distances using ‘dip-c color -R’.

To characterize active gene clustering for each cell, we extracted 
the midpoints of all active genes into a .leg file and then generated a 
.3dg file with the ‘dip-c pos’ function. We calculated the number of 
active genes within 3 particle radii from each active gene with ‘dip-c 
color -r 3’. To investigate whether there was a radial preference or promi-
nent clustering of active genes, we used random controls to evaluate 
background levels.

Specifically, in each single cell, we counted the total number of 
active genes and randomly sampled the same number of genes from all 
genes included in the gene annotation files (GENCODE v.M25) regard-
less of their expression levels. The above analysis was then performed 
on randomly sampled genes and we compared the distribution between 
active genes and random controls with a two-sided Mann–Whitney 
U-test. We used the Dip-C name_color_x_y_z_to_cif.sh script to convert 
the .3dg files of active genes to mmcif-formatted files, which were 
then used for PyMol visualization. Note that for each active gene, 
both parental alleles were included in the analysis because most genes 
express both alleles similarly.

OR–GI 3D structure analysis
3D structure visualization. The 3D position of OR genes and GIs was 
located from the whole-cell 3D genome structure using the ‘dip-c pos’ 
function by providing the corresponding OR genes or GI leg file. Then 
the OR and GI 3dg files were transformed to cif files for visualization 
using PyMol. GIs were colored according to chromosomes.

OR–GI spatial relationship analysis. Pairwise distances between ORs 
or between ORs and GIs were calculated using ‘dip-c pd’. The ‘dip-c net-
work_around.py’ script was then used to record GIs or ORs within 2.5 
or 5 particle radii from each OR. In each cell, we extracted the number 
of GIs from ORs that were actively expressed. OR and GI aggregates 
were identified in single cells as previously described18. For analysis 
of 3D genome structures, we only retained cells in which the allele 
of the dominant OR (the active OR with the highest expression level) 
could be determined based on heterozygous SNPs, as OR expression 
is monoallelic. The second-dominant OR in single cells was defined as 
the active OR that had the next highest expression level, while requiring 
determined allelic information.
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OR and GI interaction quantification. For bulk Hi-C data, the normal-
ized inter-chromosomal contact pileups between ORs and between 
GIs were generated using the coolpuppy package with ‘-trans-flanking 
10,000,000’. We used the ‘dip-c ard’ function to calculate single-cell 
contact pileups between ORs and between GIs with parameters 
‘-d10,000,000 -h100,000’. Contact pileups between active ORs and 
all 90 GIs were also calculated and aggregated across all cells. Note that 
for analysis of contact maps, the dominant and second-dominant ORs 
were defined as the ORs with the highest and second-highest expression 
levels, respectively. This analysis did not take into account whether the 
allelic status of the active ORs can be determined by SNPs. We defined 
the contact strength as the ratio between the mean contact value 
within 200 kb of OR pairs (or 100 kb of GI pairs) and the mean value 
in surrounding regions. A value of 1 indicated no contact enrichment.

Random inactive ORs and permutation of OR expression analysis. 
To test the prominence of chromatin interactions between active ORs 
and inter-chromosomal OR enhancers, we performed two additional 
analyses. The first one was randomly sampling the same number of 
inactive ORs from all 1,138 protein-coding ORs for each cell and the 
second one was permuted gene expressions of cells to mismatch OR 
expression and 3D genome structure, to investigate their interactions 
with inter-chromosomal enhancers.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data generated in this study have been deposited in 
the Sequence Read Archive under accession no. PRJNA1002315. The 
processed data generated during this study have been uploaded to 
the Gene Expression Omnibus under accession code GSE240128. The 
cell type of each cluster was annotated manually with the help of the 
Enrichr database (https://doi.org/10.1093/nar/gkw377). Published 
MOE Dip-C data were downloaded under Gene Expression Omnibus 
accession code GSE121791. Published OSN bulk Hi-C data were down-
loaded from the 4DN database (https://data.4dnucleome.org/). Source 
data files have been uploaded to figshare (https://doi.org/10.6084/
m9.figshare.24547162.v4)45.

Code availability
The code used in this study is available at GitHub (https://github.com/
tanlongzhi/dip-c, https://github.com/lh3/hickit, https://github.com/
zhang-jiankun/LiMCA and https://github.com/sunneyxielab/MET-
ATAC_pipeline)46–49. All plots were generated with matplotlib (v.3.7.0) 
and ggplot2 (v.3.3.3).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Validation of LiMCA. a, Comparison between LiMCA 
and Dip-C, scatter-plot for contacts number versus contact ratio (left) and reads 
number versus contact number (right). b, Violin plot showing the proportion 
of cis and trans contacts. c, Scatter-plot showing reads number versus detected 
genes for RNA. d, Insulation score of ensemble LiMCA is high concordant to 
bulk Hi-C, calculated at 50 kb resolution. e, Contact maps comparison between 
ensemble LiMCA and bulk Hi-C at 1 Mb resolution, all chromosomes are shown. 
f, Two selected regions showing ensemble can detect chromatin loops, RNA-seq 
tracks are shown below. g, Venn diagram showing chromatin loops detected by 

ensemble LiMCA and bulk Hi-C, loops are called with HICCUPS. h, Downsample 
analysis showing the relationship between number of detected chromatin loops 
(top panel) or precision rate of detected chromatin loops and downsampled cell 
number (bottom panel). Each cell number were independently sampled 5 times. 
i, Heatmap showing the correlation of A/B compartment score (first eigen value) 
(left) and insulation score (left) between ensemble LiMCA and in situ Hi-C.  
j, A imputed contact map of a representative GM12878 cells and the 
reconstructed 3D structure at 20 kb resolution (Top). Four chromosomes with 
expressed genes projected.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02239-0

Extended Data Fig. 2 | LiMCA accurately detects cell-type-specific gene 
expression and chromatin structures. a, Ensemble contacts maps of four cell 
lines at 1 Mb resolution, translocations are highlighted with red arrow. b, UMAP 
showing four represented markers for each cell type and one maker gene of G2M 
phase. c, Expression of top cell-type-specific marker genes for each cell type, 
top 20 of each cell type are shown. d, Mean scA/B value of cell-type-specific 
marker genes among single cells. For each cell types, the top 200 marker genes 

were identified from the paired transcriptome data. e, Scatter-plot showing the 
mitotic contact band (2–12 Mb) ratio versus short-range contacts (< 2 Mb) ratio. 
f, UMAP visualizing the mitotic band ratio of cell line embedding. g, Represented 
contact maps of cells in metaphase cluster. h, Pile-up of cell-type-specific 
chromatin loops using ensemble interaction profiles from each cell type.  
i, Heatmap showing the enrichment of cell-type-specific chromatin loops among 
single cells.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The relationship between 3D genome organization 
and expression. a, Comparison of pairwise 3D distance matrix measured, 
ensemble LiMCA and bulk Hi-C contact map. b, Histogram of expression level 
distribution for NFKB1 (left), IKZF2 (middle) and MYC (right). c, Histogram 
showing the distribution of detected gene numbers (left), RNA counts (middle) 
and contact numbers between NFKB-high and NFKB1-low group. n.s., no 
significance, two-sided Mann-Whitney U rank test. d, Differential contact matrix 
around NFKB1 (chr4: 102.3–102.8 Mb) between NFKB1-high and low groups. 
e, Downsample analysis for NFKB1 gene. Left: contact matrices around NFKB1 
(chr4: 102.3–102.8 Mb), representing ensemble Hi-C data from NFKB-high (top 
left) and NFKB1-low (bottom right). Middle: Differential matrix between NFKB-
high and NFKB1-low group. Right: Normalized contact frequency plot, centered 
at NFKB1 upstream enhancer. f, The same as e, but cells are randomly grouped. 
g-h, The same as c, showing downsampled groups (g) and randomly assigned 
groups (h). n.s., no significance, two-sided Mann-Whitney U rank test. i, Left: 

Ensemble contact maps comparing IKZF2-high and (bottom left) and IKZF2-low 
(top right). Right: 4 C visualization of interactions between enhancer and the 
expressed gene, viewpoint centered at downstream enhancer. The green dot/line 
shows the position of candidate enhancer and the yellow dots/lines represent the 
position of TSS and TTS. j, The same as i but for MYC. k, Expressed genes spatial 
distribution of a representative GM12878 cell, genes are colored by gene number 
within 300 nm. l, Dotplot showing the median gene cluster size within 300 nm for 
expressed genes and randomly selected genes, the same cell was connected with 
line (n = 68). Two-sided Wilcoxon signed-rank test for paired data. m, Scatter-plot 
of expression level versus the normalized radial position at 20 kb resolution of 
a representative GM12878 cells. n, Correlation distribution of normalized radial 
position versus expression level among single cells. o, The same as i, but for mean 
expression level versus median radial position across cell population at 1 Mb 
resolution.
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Extended Data Fig. 4 | Gene expression of the single-cell LiMCA multi-omics 
atlas recapitulate the continuous OSN genesis and marker gene expression. 
a, Expression of top cell-type-specific marker genes. The top 20 maker genes are 
plotted. b, UMAP projection of known maker genes for OSN progenitors, iOSNs 

and mOSNs. c, The same as Fig. 2c (left), colored by mouse age and pseudotime. 
d, Heatmap showing the continuous gene expression change along OSNs genesis 
using pseudotime. e, Scatter-plot showing the dynamic gene expression of 
known maker genes.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | LiMCA recaptures the characteristic 3D genome 
reorganization along OSNs development. a, The same as Fig. 2c, The same 
cell was connected in the two embeddings. b, The same as Fig. 2d (right), cells 
were colored by mouse age. c, UMAP showing the embedding of integrated MOE 
cells of this study and published MOE data (Tan et al.18, Nat. Struct. Mol. Biol. 
2019), cells are colored by cell label in each dataset. d, The same as c, cells are 
labeled by different mouse crosses. e, UMAP visualization of inter-chromosomal 
contact ratio, long-range (> 20 kb) intra-chromosomal ratio and short-range 
(< 20 kb) intra-chromosomal ratio (top), and the boxplot quantification of these 
values, the black horizontal line and the box represent the median and quartiles, 
respectively (bottom). The whiskers indicates minima and maxima. (non-

neuronal, n = 22; progenitor1, n = 47; progenitor2, n = 111; iOSN, n = 85; mOSN, 
n = 146). f, Pile-up of interactions between ORs and GIs of ensemble interaction 
profiles from each cluster (top), and bulk Hi-C datasets from Monahan et al.17, 
(2019) (bottom). g, Boxplot showing the gradual increasing of OR-OR, GI-GI 
interaction strength along OSN development. The box horizontal line and the 
box represent the median and quartiles, respectively. (non-neuronal, n = 22; 
progenitor1, n = 47; progenitor2, n = 111; iOSN, n = 85; mOSN, n = 146). h, Contact 
maps of ensemble interaction profiles of each cell cluster at regions of chr2: 
30–95 Mb and chr9: 3–50 Mb, OR gene clusters are indicated. i, Contact maps of 
ensemble interaction profiles of each cell cluster of chromosome 2 (left).
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Extended Data Fig. 6 | Quality control and overview of MOE METATAC results. 
a, FACS gating strategy to sort single nuclei for METATAC experiment. b, Quality 
control metrics for METATAC dataset, from left to right are Distribution of ratio 
of decontaminated fragments in peaks (FRiP), number of decontaminated 
fragments, percentage of mitochondrial fragments, fragment sizes distribution, 
and TSS enrichment for METATAC cells of four batches, respectively. Numbers 
of cells are 4090, 3146, 2850, 1794, for P3, P4, P14, and P28, respectively. The box 
horizontal line and the box represent the median and quartiles, respectively, and 

the whiskers extends 1.5*interquartile range. c-d, UMAP of MOE METATAC cells 
colored by (c) cell source batches, and (d) gene scores of marker genes.  
e, Proportion of cell types associated with MOE development for cells from P3, 
P7, P14, and P28 mice. f, Tracks of METATAC signals normalized by number of 
reads in TSS near the promoter of marker genes of HBCs, GBCs, INPs, and OSNs. 
g, Heatmap shows the correlation coefficients between cell clusters of MOE 10x 
scRNA-seq and METATAC.
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Extended Data Fig. 7 | METATAC identifies new candidate OR enhancers.  
a, TF-binding motifs enriched in HBCs, GBCs, INPs, and OSNs. b, Numbers of 
detected OR genes in various cell types are shown as a boxplot (n = 11,880, for 
each cluster information is store at source data). An OR gene is considered to 
be detected if it has a gene score > 0 as calculated by ArchR. The box horizontal 
line and the box represent the median and quartiles, respectively, and the 
whiskers extends 1.5*interquartile range. c-d, Lhx2 and Ebf ChIP-seq signals (c) 

and METATAC signals of different MOE cell development stages (d) at previously 
defined 63 Greek Islands and 27 candidate regulatory peaks identified in this 
study. Aggregated signal of all GIs or peaks are shown above or below the 
heatmap, respectively. e, METATAC footprints at composite motif sites in GIs or 
identified peaks. Aggregated normalized METATAC insertions and the Tn5 bias 
corrected are shown.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Quality control and overview of MOE scRNA-
seq results. a, Number of detected genes, UMI counts, and percentage of 
mitochondrial UMIs for cells from P4/P7 (N = 28,303), P14 (N = 24,116), and P28 
(N = 21,158) mice. b-c, UMAP of scRNA-seq data colored by origin batch (b) and 
cell types (c). The box horizontal line and the box represent the median and 
quartiles, respectively, and the whiles extends 1.5*interquartile range.  
d, Heatmap shows the expression of marker genes of each cell type. For cell types 
with more than 1,000 cells, top 1,000 representative cells with the highest UMI 

counts are shown. e, UMAP of the subset of scRNA-seq dataset including GBCs, 
INPs, iOSNs, and mOSNs, colored by previously identified cell types (left), new 
clusters (middle), and pseudotime (right). f-g, Dynamics of the expression of 
Omp (f), and Lhx2, Ebf1, Ebf2 (g) during the development of MOE. h, Proportion 
of cell types associated with MOE development for cells from P4/P7, P14, and 
P28 mice in the scRNA-seq dataset. i, UMAP of the co-embedded METATAC and 
scRNA-seq data from GBC to mOSN, colored by RNA clusters (left) and METATAC 
clusters (right).
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02239-0

Extended Data Fig. 9 | Identification of genuine OR expression with LiMCA 
full-length transcript information. Genome browser views of mRNA read 
coverage profiles for different OR genes in example single cells. Read bars in 
the top panel indicates heterozygous SNP sites of each cross. mRNA coverage, 
junctions, and reads are shown below. Gene annotations are taken from 

GENCODE. Coverage is set to logarithmic scale. The first two columns show 
genuine OR expression and the last two columns show false OR expression. Red 
shades highlight the incomplete read covrages. The identified OR-expressing 
alleles are represented by ♀ (maternal) or ♂ (paternal), respectively.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | The spatial relationship between expressed OR genes 
and their enhancers. a, The same as Fig. 3a, cells are colored according to cell 
identity. b, Pie chats summarize the OR gene expression information. c, OR 
FPKM values within single cells of each stage. Each color represents an individual 
OR, except black, which represents all OR ranked below 8. d, Composition of 
cis or trans GIs within 150 nm or 300 nm from expressed ORs (considering all 
expressed ORs). e, Same as Fig. 3f but for the number of GIs within 2.5 particle 
radii (150 nm) from each expressed OR in single cells. f, Summary of the number 
of nearby cis- and trans-GIs for each OR in different stages. g, Same as f but 
grouped by different cell types. h, Left: Same as Fig. 3g but for within 2.5 particle 
radii (150 nm). Two-sided Wilcoxon signed-rank test for paired sample was used, 
*** indicates P < 0.01. Right: pie chart depicting the number of cells with active 
OR residing the largest GI aggregate, the second largest GI aggregate, and others. 
i, 3D surface plot showing the normalized interaction strength between active 

OR or inactive ORs (100 randomly selected OR genes) and inter-chromosomal 
OR enhancers for bulk Hi-C data on OSNs expressing Olfr1507 (left) and Olfr16 
(right). Data from ref. 17. j, Boxplot showing the quantification of OR-enhancer 
interactions for the highest expressed ORs and second highest expressed ORs 
(stage1 and stage 2 OSNs) and randomly selected inactive ORs, for the random 
OR control, 10 independent sampling was performed. P values are from two-
sided one-sample t-tests. k, 3D surface plot showing the normalized interaction 
strength between active ORs and inter-chromosomal OR enhancers (left) or 
between randomly selected inactive ORs and inter-chromosomal OR enhancers 
(right) of LiMCA data. l, Boxplot showing the zone index of the highest expressed 
ORs and ORs residing within the largest or second largest enhancer hub, only 
stage 2 and stage 3 OSNs harboring a dominant OR were analyzed, the same cell 
was connected with a line. P values are from two-sided Wilcoxon signed-rank 
tests.
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