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Abstract 

Objectives  Reliable detection of disease-specific atrophy in individual T1w-MRI by voxel-based morphometry 
(VBM) requires scanner-specific normal databases (NDB), which often are not available. The aim of this retrospec-
tive study was to design, train, and test a deep convolutional neural network (CNN) for single-subject VBM with-
out the need for a NDB (CNN-VBM).

Materials and methods  The training dataset comprised 8945 T1w scans from 65 different scanners. The gold stand-
ard VBM maps were obtained by conventional VBM with a scanner-specific NDB for each of the 65 scanners. CNN-VBM 
was tested in an independent dataset comprising healthy controls (n = 37) and subjects with Alzheimer’s disease (AD, n = 
51) or frontotemporal lobar degeneration (FTLD, n = 30). A scanner-specific NDB for the generation of the gold standard 
VBM maps was available also for the test set. The technical performance of CNN-VBM was characterized by the Dice coef-
ficient of CNN-VBM maps relative to VBM maps from scanner-specific VBM. For clinical testing, VBM maps were categorized 
visually according to the clinical diagnoses in the test set by two independent readers, separately for both VBM methods.

Results  The VBM maps from CNN-VBM were similar to the scanner-specific VBM maps (median Dice coefficient 0.85, 
interquartile range [0.81, 0.90]). Overall accuracy of the visual categorization of the VBM maps for the detection of AD 
or FTLD was 89.8% for CNN-VBM and 89.0% for scanner-specific VBM.

Conclusion  CNN-VBM without NDB provides a similar performance in the detection of AD- and FTLD-specific atro-
phy as conventional VBM.

Clinical relevance statement  A deep convolutional neural network for voxel-based morphometry eliminates 
the need of scanner-specific normal databases without relevant performance loss and, therefore, could pave the way 
for the widespread clinical use of voxel-based morphometry to support the diagnosis of neurodegenerative diseases.

Key Points  • The need of normal databases is a barrier for widespread use of voxel-based brain morphometry.

• A convolutional neural network achieved a similar performance for detection of atrophy than conventional voxel-based 
morphometry.

• Convolutional neural networks can pave the way for widespread clinical use of voxel-based morphometry.
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Introduction
Voxel-based morphometry (VBM) is a powerful tech-
nique of computational neuroanatomy based on brain 
MRI. It allows fully automatic, reader-independent 
identification of regional alterations of tissue concen-
trations throughout the whole brain without a priori 
hypotheses [1–6]. The output of the VBM is a map 
(VBM map) specifying the statistical significance of the 
tested effect on tissue concentration on the voxel level, 
e.g., regional gray matter (GM) loss in a patient or a 
group of patients compared to healthy controls.

VBM has been identified as an imaging biomarker to 
support the diagnosis and differential diagnosis of Alz-
heimer’s disease (AD) and other neurodegenerative dis-
orders [7–9], for the identification of structural correlates 
of specific symptoms/syndromes [10–13], the predic-
tion of cognitive decline [14], detection of brain struc-
tural changes associated with the exposure to potentially 
harmful substances [15], and brain involvement in non-
neurological/non-psychiatric diseases [16, 17].

Reader-independent detection (or exclusion) of disease-
specific atrophy patterns in the brain MRI of individual 
subjects has high potential to support diagnostics in clini-
cal routine. Single-subject VBM, that compares the MRI 

scan of a single patient to a database of normal MRI scans, 
has proven promising for this purpose [18–22]. Hedder-
ich and co-workers recently demonstrated that support-
ing visual analysis of brain MRI by single-subject VBM 
improves between-rater agreement and accuracy of MRI-
based diagnosis and differential diagnosis of AD and fron-
totemporal lobar degeneration (FTLD) [22].

MRI-based volumetry including VBM is sensitive to the 
MRI scanner platform and to details of the acquisition 
sequence [23–28]. Thus, to achieve clinically useful sensi-
tivity at low risk of false-positive findings, single-subject 
VBM requires a normal database (NDB) of MRI scans 
from control subjects acquired with the same MRI scan-
ner and with exactly the same acquisition sequence as the 
individual scan to be analyzed. A scanner- and sequence-
specific NDB consisting of 20–30 controls can be used, but 
NDB with two to three times larger size might provide bet-
ter sensitivity [29] and/or better specificity [30]. The need 
for a sufficiently large scanner- and sequence-specific NDB 
(that has to be replaced after each relevant hardware and/
or software update of the MRI scanner) is a major barrier 
for widespread clinical use of single-subject VBM.

This study trained and tested a convolutional neural 
network (CNN) for single-subject VBM without a NDB. 
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For comparison, conventional VBM was tested with a 
non-scanner-specific NDB comprising normal scans 
from numerous different MRI scanners, which might be 
a rather unbiased conventional approach.

Materials and methods
The MRI data of the training set and of the multiple-
scanner NDB had been transferred to jung diagnostics 
GmbH under the terms and conditions of the European 
General Data Protection Regulation for remote image 
analysis. Subsequently, the data had been anonymized. 
The need for written informed consent for the retrospec-
tive use of the anonymized data in the present study was 
waived by the ethics review board of the General Medical 
Council of the state of Hamburg, Germany.

The MRI data of the test set were included retro-
spectively from previous studies [22, 31]. The use of 
the data for retrospective analyses was approved by 
the ethics committee of the Technical University of 
Munich (reference number 176/18s). Written informed 
consent was waived due to the retrospective nature of 
the analyses.

All procedures performed in this study were in accord-
ance with the ethical standards of these ethics review 
boards and with the 1964 Helsinki Declaration and its 
later amendments.

All MR images included in this study had been acquired 
with the sequences for 3D gradient-echo T1w imaging of 
the brain provided by the scanner manufacturers. A sum-
mary of the datasets is given in Table 1.

Training dataset
The training dataset comprised 8945 consecutive clini-
cal T1w-MRI scans from 8945 different patients acquired 
with 65 different MRI scanners for various indications 
(Table 1). No eligibility criteria were applied to guarantee 
that the training set covered the whole range of T1w-MRI 
encountered in VBM in clinical routine. A separate scan-
ner- and sequence-specific NDB of 25–120 MRI scans 
was available for each of the 65 scanners (total number of 
scans in the 65 NDB: 2150).

Test dataset
The independent test dataset comprising T1w-MRI from 
118 subjects was acquired with a hybrid PET-MRI scan-
ner (Siemens Biograph MR, Siemens) that was not among 
the 65 scanners of the training dataset. The test dataset 
comprised 51 patients with AD (22 with mild cognitive 
impairment due to AD, 18 with typical AD dementia, 11 
with posterior cortical atrophy), 30 patients with FTLD 
(20 with behavioral frontotemporal dementia, 10 with 
semantic primary progressive aphasia), and 37 healthy 
controls (Table  1). The ground truth diagnoses were 
established by experts based on biomarkers (FDG-PET, 
amyloid PET, cerebrospinal fluid), clinical examination, 
neuropsychological testing, and clinical follow-up.

Twenty-six healthy controls from the test dataset were 
used as scanner- and sequence-specific NDB for the 
test dataset. These healthy controls were not removed 
from the test dataset in order to avoid strong imbalance 
between patients with neurodegenerative disease and 
normal subjects in the test dataset.

Table 1  Training and test dataset

Dataset Number of 
subjects

Diagnoses Number of different 
scanners

Scanner manufacturers Age [years] 
(mean ± std, 
range)

Training 8945 Unknown 65 Siemens: 44
Philips: 15
GE: 6

59.5 ± 17.5
15–99

Test 118 Healthy control: 37
Mild cognitive impair-
ment due to Alzheimer’s 
disease: 22
Alzheimer’s disease 
dementia: 18
Posterior cortical atrophy: 
11
Behavioral variant fronto-
temporal dementia: 20
Semantic variant primary 
progressive aphasia: 10

1 Siemens (Biograph PET-MRI) 63.4 ± 9.8
40–82

Multiple-scanner nor-
mal database

136 Normal T1w scan accord-
ing to visual inspection

136 Siemens: 86
Philips: 34
GE: 4
Toshiba: 2

64.5 ± 8.2
45–83
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CNN‑based VBM
The aim was to train a 3-dimensional (3D) CNN to gen-
erate full (non-thresholded) VBM maps in anatomical 
patient space without the need of a NDB (CNN-VBM).

Training data were prepared as follows. First, conven-
tional single-subject VBM was applied to each of the 
8945 MRI scans in the training dataset with the corre-
sponding scanner- and sequence-specific NDB as ref-
erence (scanner-specific VBM). The SPM12 software 
package was used for this purpose (“Conventional single-
subject VBM” in the supplementary material and Supple-
mentary Figure  1). The resulting scanner-specific VBM 
maps were warped from template space to the anatomi-
cal space of the individual subjects by using the inverse of 
the individual transformations from patient to template 
space estimated during conventional VBM.

Second, each statistical map from scanner-specific 
VBM in the training dataset was disassembled into four 
disjoint parts (Fig. 1): “low significance,” original t value if 
− 2 ≤ t ≤ 2, otherwise zero; “high GM density,” original t 
value if t > 2, otherwise zero; “low extrahippocampal GM 
density,” original t value if t < − 2 and voxel outside the 
bilateral hippocampus, otherwise zero; “low hippocam-
pal GM density,” original t value if t < − 2 and voxel in the 
bilateral hippocampus, otherwise zero. The hippocampus 

was segmented by an in-house 3D-CNN previously pro-
posed for thalamus segmentation [32] and then validated 
for segmentation of the thalamus and the hippocampi 
simultaneously (unpublished). The rationale for disas-
sembling the t-maps into 4 disjoint parts was based 
on initial experiments in which the whole t-map was 
learned at once. In these experiments, the region of the 
hippocampus was learned well, but other brain regions 
were neglected. This is in line with previous reports that 
sub-classification of “too large” background can stabilize 
CNN training [33].

Third, the individual T1w-MRI (input to the 3D-CNN) 
and the 4 parts of the corresponding t-map from scan-
ner-specific VBM (output) were re-sampled to cubic vox-
els with 1 mm edge length.

Finally, the training data was divided into 6 partially 
overlapping subsets with respect to the subjects’ age: < 40 
years (n = 1388), 30 years < age < 50 years (n = 2070), 
40 years < age < 60 years (n = 2974), 50 years < age < 70 
years (n = 3231), 60 years < age < 80 years (n = 3510), and 
> 70 years (n = 3035). A separate CNN was trained for 
each age range.

The custom 3D-CNN used in the current study follows 
a fully convolutional encoder-decoder (U-net-like) archi-
tecture (Fig.  1). It was trained for 100 epochs using the 

Fig. 1  The proposed network for CNN-based single-subject VBM. The T1w-MRI scan is re-sampled to a 3D volume with cubic voxels of 1 mm edge 
length. The CNN operates patch-wise with a patch size of 160 × 160 × 160 voxels. It uses a fully convolutional encoder-decoder architecture with 3D 
convolutions, residual-block connections, and four reductions of the feature map size. The CNN generates the VBM map in four disjoint parts (GM, 
gray matter)
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“Adaptive-Moment-Estimation” optimizer [34] with Dice 
loss function (sum of Dice similarity coefficient over the 4 
output classes) and batch size 1. An exponentially decay-
ing learning rate α = α0 (1 − e/100 )0.9 was used, where e 
denotes the current epoch. The start value of the learning 
rate was α0 = 0.0004.

More details of the network architecture, data augmen-
tation during training, and application of the 3D-CNN 
are given in the supplementary material.

The 3D-CNN was applied to each of the 118 T1w-MRI 
in the test set. For the T1w-MRI of a patient with a given 
age, the CNN was selected for which the patient’s age was 
closest to the center of the corresponding age range.

Conventional VBM with a multiple‑scanner NDB
Conventional VBM was also performed with reference 
to a mixed NDB comprising T1w-MRI from 136 patients 
scanned for unspecific symptoms (headache, dizziness) 
on 136 different MRI scanners (multiple-scanner VBM; 
Table  1). None of the patients had a history of or cur-
rently ongoing neurological or psychiatric disease. All 
images were free of abnormalities beyond those expected 
for the patients’ age based on visual inspection by an 
experienced radiologist.

Quantitative comparison and visual reading of VBM maps 
in the test set
Conventional VBM maps were thresholded at one-sided 
p = .005 (uncorrected for multiple comparisons), and 
CNN-VBM maps were thresholded at the corresponding 
cutoff 0.4 (“Application of the 3D-CNN” in the supple-
mentary material), both for quantitative comparison and 
for visual reading. There was no threshold on the cluster 
size with any of the VBM methods.

Quantitative agreement of thresholded VBM maps 
from CNN-VBM or from multiple-scanner VBM with 
the gold standard maps from scanner-specific VBM was 
characterized using the Dice similarity coefficient.

For visual interpretation of the thresholded VBM maps, 
a standardized display in a single-page pdf document 
was used (Fig.  2). There were 354 different pdf docu-
ments: 118 test cases × 3 VBM methods. A copy was 
generated from each of these pdf documents to allow the 
assessment of intra-reader variability of the visual inter-
pretation. The 708 pdf documents were presented in ran-
domized order to two independent readers (DH, RB) with 
≥ 7 years of experience in reading VBM maps in patients 
with suspected neurodegenerative disease. The readers 
were blinded for all clinical information except age.

The readers used a two-step approach for visual inter-
pretation. First, the thresholded VBM map was cat-
egorized as indicative of “neurodegenerative disease,” 
“normal” (no neurodegenerative disease), or “uncertain.” 

In the second step, “neurodegenerative disease” cases 
were subcategorized as “mild cognitive impairment 
due to AD,” “AD dementia,” “posterior cortical atrophy,” 
“behavioral frontotemporal dementia,” or “semantic pri-
mary progressive aphasia”.

Intra-reader inconsistencies were resolved separately 
by each reader in a second reading session to obtain an 
intra-reader consensus. Between-readers inconsistencies 
were resolved in a joint reading session of the two readers 
to obtain a between-readers consensus.

The standardized display for visual reading did not 
include a colorbar, because voxel intensities in CNN-
VBM maps cannot be directly interpreted as p values. 
The readers were asked to base their interpretation of 
the thresholded VBM maps on the localization/regional 
distribution pattern of significant clusters without taking 
their color into account.

Fig. 2  Standardized display for visual interpretation 
of the thresholded VBM map. The display combines transversal slices 
of the thresholded VBM map overlaid to the individual T1w-MRI scan 
and a glass brain view of the thresholded VBM map in a single-page 
pdf document. The example shows the CNN-VBM map of a patient 
with semantic variant primary progressive aphasia
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Statistical analysis
Cross tables and Cohen’s kappa were used to assess intra- 
and between-readers agreement of the visual interpreta-
tion and to assess the accuracy of the between-readers 
consensus relative to the clinical ground truth diagnoses, 
separately for each VBM method. The three AD subtypes 
were combined into one single AD category for this pur-
pose, and the two FTLD subtypes were combined into a 
single FTLD category. “Uncertain” was considered a dis-
tinct category for the assessment of intra- and between-
readers agreement. For the comparison with the ground 
truth diagnoses, the “uncertain” cases were included in 
the “normal” category.

The statistical analyses were repeated using a binary 
categorization: “any neurodegenerative disease” (AD or 
FTLD) versus “normal.”

Results
Box-and-whisker plots of the Dice similarity coefficient 
of CNN-VBM and multiple-scanner VBM maps relative 
to the scanner-specific VBM maps are shown in Fig.  3. 
The median Dice similarity coefficient relative to the gold 
standard maps was higher for CNN-VBM than for the 
multiple-scanner VBM (median 0.85, interquartile range 
[0.81, 0.90], versus 0.74 [0.51, 0.84], Wilcoxon’s signed-
rank test p < .001).

Intra- and between-readers cross tables of the visual 
interpretation of the VBM maps are given in Supplemen-
tary Tables 1 and 2. The resulting kappa values are sum-
marized in Table 2.

Cross tables of the visual consensus interpretation of 
the VBM maps versus the ground truth diagnoses are 
given in Table 3 and Supplementary Table 3. The corre-
sponding kappa values are given in Table 2. For the cat-
egorization according to three classes (AD versus FTLD 
versus normal), the kappa relative to the ground truth 
diagnoses was 0.77 for scanner-specific VBM (95%CI 
0.67–0.87), 0.72 for CNN-VBM (0.61–0.82), and 0.44 for 
multiple-scanner VBM (0.32–0.57). For the detection of 
any neurodegenerative disease (AD or FTLD versus nor-
mal), the kappa relative to the ground truth diagnoses 
was 0.77 (0.65–0.89) for both the scanner-specific VBM 
and the CNN-VBM, and 0.37 (0.21–0.52) for the multi-
ple-scanner VBM. Overall accuracy, sensitivity, and spec-
ificity of the consensus visual interpretation of the VBM 
maps for the detection of any neurodegenerative disease 
were 89.0% (105/118, 95%CI 81.9–94.0%), 84.0% (68/81, 
74.1–91.2%), and 100% (37/37, 90.5–100%) for scan-
ner-specific VBM; 89.8% (106/118, 82.9–94.6%), 90.1% 
(73/81, 81.5–95.6%), and 89.2% (33/37, 74.6%–97.0%) 
for CNN-VBM; and 64.4% (76/118, 55.1–73.0%), 48.1% 
(39/81, 36.9–59.5%), and 100% (37/37, 90.5–100%) for 
multiple-scanner VBM, respectively. The different VBM 

maps of a healthy subject incorrectly categorized as AD 
by the visual interpretation of the CNN-VBM map are 
shown in Supplementary Figure 2. The VBM maps of an 
AD patient incorrectly categorized as normal by the vis-
ual interpretation of the multiple-scanner VBM map are 
shown in Supplementary Figure 3.

Discussion
Conventional single-subject VBM to support the diag-
nosis of neurodegenerative diseases is restricted by the 
need of a scanner- and sequence-specific NDB. To over-
come this barrier, a 3D-CNN for single-subject VBM 
was trained on a large, multi-site dataset of T1w-MRI. 
In an independent test set, CNN-based VBM achieved 
a similar performance as the gold standard VBM with a 
scanner- and sequence-specific NDB both on a technical 
level and with respect to clinical utility. Thus, CNN-VBM 
eliminates the need for “expensive” NDB and, therefore, 
can pave the way for the widespread use of single-subject 
VBM in clinical routine. To the best of our knowledge, 
this is the first study to test a method for single-subject 
VBM without a NDB.

Visual interpretation of CNN-VBM maps resulted in 
balanced sensitivity and specificity whereas visual inter-
pretation of the scanner-specific VBM maps achieved 
perfect specificity at somewhat lower sensitivity. There 
were a few outliers with dissimilar VBM maps (Fig.  3). 
Some outliers were due to false-positive atrophy clusters 
by CNN-VBM (Supplementary Figure  2) that resulted 
in false-positive visual interpretation of the CNN-VBM 

Fig. 3  Quantitative comparison of the VBM maps in the independent 
test set: box-and-whisker plots of the Dice similarity 
coefficient between scanner-specific VBM and CNN-VBM (left) 
and between scanner-specific VBM and multiple-scanner VBM (right)
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map. Other outliers were due to the lack of atrophy clus-
ters in CNN-VBM that were shown by scanner-specific 
VBM. In some of these cases, the CNN-VBM map was 
correctly interpreted as normal whereas the visual inter-
pretation of the gold standard VBM map resulted in a 
false-positive diagnosis. Methods to improve the speci-
ficity of CNN-VBM will be tested in further studies.

While intra-reader agreement in the visual interpre-
tation of the statistical VBM maps was substantial to 
almost perfect for all VBM methods, between-readers 
agreement was lower for CNN-VBM compared to that 
for scanner-specific VBM. This was mainly driven by 
a varying fraction of “uncertain” VBM maps according 
to reader 2 between CNN-VBM and scanner-specific 
VBM (15.3%, 18/118 versus 12.7%, 15/118), whereas 
the fraction of “uncertain” maps according to reader 
1 was the same for both VBM methods (9.3%, 11/118). 
Retrospective consultation revealed that reader 2 used 
a more conservative approach for visual interpreta-
tion whereas reader 1 used a more sensitive approach. 
We hypothesize that between-readers agreement can 
be improved by a threshold on the cluster size in the 
VBM maps.

VBM maps from multiple-scanner VBM showed lower 
similarity with the scanner-specific VBM maps than 
CNN-VBM maps with larger between-subject variability 
(Fig. 3). This resulted in considerably lower overall accu-
racy of the visual interpretation of the multiple-scanner 
VBM maps for detection of AD or FTLD. The loss of 
accuracy was entirely driven by loss of sensitivity. Thus, 
multiple-scanner VBM might be useful for enrichment 
of datasets with MRI scans from patients with a neuro-
degenerative disease in research settings. It appears less 
useful for single-subject VBM in clinical routine when 
high sensitivity is required, too.

The 3D-CNN was trained with the full t-map from 
scanner-specific VBM without any threshold. This allows 
to operate the CNN at different significance levels with-
out the need for re-training, similar to conventional 
VBM.

The utility of single-subject VBM has been questioned 
due to a rather high rate of false-positive findings asso-
ciated with normal variability of single subjects’ neuro-
anatomy [20, 35]. However, the use of VBM to support 
the diagnosis of neurodegenerative diseases is based on 
the detection of disease-characteristic atrophy patterns 

Table 2  Visual interpretation of VBM maps: Cohen kappa coefficients (and their 95%CI) for intra- and between-readers agreement and 
for the agreement between the consensus interpretation of the two readers with the ground truth diagnoses. The kappa values are 
given for the categorization according to three classes (AD versus FTLD versus normal) and for the detection of any neurodegenerative 
disease (AD or FTLD versus normal)

AD Alzheimer’s disease, CNN convolutional neural network, CNN-VBM CNN-based VBM without reference to a normal database, FTLD frontotemporal lobar 
degeneration, multiple-scanner VBM conventional VBM with a mixed normal database comprising T1w-MRI images from multiple scanners as reference, scanner-
specific VBM conventional VBM with a scanner- and sequence-specific normal database as reference, VBM voxel-based morphometry

Scanner-specific VBM Multiple-scanner VBM CNN-VBM

Intra-reader
Reader 1

3 classes: AD vs FTLD vs normal 0.82 [0.73, 0.90] 0.79 [0.70, 0.89] 0.82 [0.73, 0.90]

2 classes: AD or FTLD vs normal 0.84 [0.75, 0.94] 0.78 [0.67, 0.89] 0.79 [0.67, 0.90]

Intra-reader
Reader 2

3 classes: AD vs FTLD vs normal 0.86 [0.78, 0.93] 0.94 [0.88, 1.00] 0.85 [0.78, 0.93]

2 classes: AD or FTLD vs normal 0.88 [0.80, 0.96] 0.97 [0.93, 1.00] 0.84 [0.75, 0.93]

Between-reader 3 classes: AD vs FTLD vs normal 0.85 [0.77, 0.93] 0.84 [0.75, 0.93] 0.74 [0.64, 0.84]

2 classes: AD or FTLD vs normal 0.88 [0.80, 0.96] 0.87 [0.79, 0.96] 0.71 [0.59, 0.83]

Reader consensus ver-
sus ground truth

3 classes: AD vs FTLD vs normal 0.77 [0.67, 0.87] 0.44 [0.32, 0.57] 0.72 [0.61, 0.82]

2 classes: AD or FTLD vs normal 0.77 [0.65, 0.89] 0.37 [0.21, 0.52] 0.77 [0.65, 0.89]

Table 3  Visual interpretation of VBM maps: cross tables of the reader consensus versus the ground truth diagnoses for the 
differentiation between AD, FTLD, and normal, separately for each of the three different VBM methods

AD Alzheimer’s disease, CNN convolutional neural network, CNN-VBM CNN-based VBM without reference to a normal database, FTLD frontotemporal lobar 
degeneration, multiple-scanner VBM conventional VBM with a mixed normal database comprising T1w-MRI images from multiple scanners as reference, scanner-
specific VBM conventional VBM with a scanner- and sequence-specific normal database as reference, VBM voxel-based morphometry

Scanner-specific VBM Multiple-scanner VBM CNN-VBM

AD FTLD Normal AD FTLD Normal AD FTLD Normal

Ground truth AD 38 2 11 13 2 36 38 7 6

FTLD 3 25 2 1 23 6 3 25 2

Normal 0 0 37 0 0 37 3 1 33
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that often comprise a rather large network of non-neigh-
boring brain regions (in AD medial temporal lobe, tem-
poroparietal junction, and posterior cingulate cortex). 
The false-positive findings in single-subject VBM often 
consist of rather small clusters in non-disease-specific 
brain regions and, therefore, might not be misinterpreted 
as indication of a neurodegenerative disease by an expe-
rienced reader.

A major strength of (CNN-)VBM is that it is not 
restricted to a predefined set of diseases, in contrast to 
support vector machines or other classifiers that have 
been trained for automatic categorization of MRI scans 
into a predefined set of disease classes [36–38]. VBM 
allows the detection of altered brain tissue concentration 
throughout the whole brain without a priori hypothesis 
about the localization. This is an advantage in clinical 
routine, in which a considerable fraction of patients is 
referred to brain MRI without a specific etiological pre-
scan diagnosis.

It should be noted in this context that the clinical MRI 
scans in the multi-site dataset used for the network train-
ing had been acquired for a large variety of indications, 
not restricted to suspicion of AD or FTLD. This suggests 
that the network might be useful also in other diseases. 
This has to be tested in additional studies.

A limitation of the current study is that the scanner- 
and sequence-specific NDB used to generate the gold 
standard t-maps for CNN training comprised brain MRI 
scans that had been acquired for unspecific symptoms 
such as headache or dizziness. All images were free of 
abnormalities beyond those expected for the patients’ age 
based on visual inspection by an experienced radiologist. 
It cannot be ruled out that some patients had a neuro-
degenerative disease at an early stage without noticeable 
symptoms but mild disease-related atrophy that was not 
detected on visual inspection. This might have resulted 
in reduced sensitivity of the CNN-VBM for detection 
of atrophy, particularly for the detection of AD-typical 
atrophy in the older subjects, since asymptomatic AD 
probably is rather frequent at ≥ 70 years of age [39]. Fur-
thermore, the inclusion of the T1w-MRI scans of the 
normal database for the test dataset in the test dataset 
might have caused some bias. However, the bias most 
likely was small and to the disadvantage of the CNN-
based VBM (overestimation of the performance of con-
ventional VBM would result in underestimation of the 
performance of CNN-VBM compared to conventional 
VBM as benchmark).

In conclusion, CNN-based single-subject VBM can 
provide a similar performance in the detection of AD- 
and FTLD-specific atrophy in brain T1w-MRI as the 
gold standard single-subject VBM with reference to a 
scanner- and sequence-specific NDB. This could pave 

the way for widespread use of VBM in everyday clinical 
routine, as the CNN estimates the VBM maps directly 
from the original MRI without reference to a NDB. The 
need of a scanner- and sequence-specific NDB is cur-
rently a major barrier for the routine use of single-sub-
ject VBM at many sites.
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