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Clonal associations between lymphocyte
subsets and functional states in rheumatoid
arthritis synovium

Garrett Dunlap 1,39, Aaron Wagner2,39, Nida Meednu 3,39, Ruoqiao Wang 4,
Fan Zhang 1,5,6,7,8,9, Jabea Cyril Ekabe3, Anna Helena Jonsson 1, Kevin Wei 1,
Saori Sakaue 1,5,6,7,8, Aparna Nathan 1,5,6,7,8, Accelerating Medicines Partner-
ship Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMPRA/
SLE) Network*, Vivian P. Bykerk10,11, Laura T. Donlin 10,11,
Susan M. Goodman 10,11, Gary S. Firestein12, David L. Boyle12,
V. Michael Holers 13, Larry W. Moreland13,14, Darren Tabechian3,
CostantinoPitzalis 15,16,17,AndrewFiler 18,19,20, SoumyaRaychaudhuri 1,5,6,7,8,
Michael B. Brenner 1, Juilee Thakar 2,4, Andrew McDavid2,40,
Deepak A. Rao 1,40 & Jennifer H. Anolik 3,4,40

Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific
T and B cells. Here, we perform single-cell RNA and repertoire sequencing on
paired synovial tissue and blood samples from 12 seropositive RA patients. We
identify clonally expanded CD4 +T cells, including CCL5+ cells and T periph-
eral helper (Tph) cells, which show a prominent transcriptomic signature of
recent activation and effector function. CD8 +T cells show higher oligoclon-
ality than CD4 + T cells, with the largest synovial clones enriched in GZMK+
cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across
transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells,
and plasma cells are enriched in the synovium and demonstrate substantial
clonal expansion. We identify synovial plasma cells that share BCRs with
synovial ABC, memory, and activated B cells. Receptor-ligand analysis pre-
dicted IFNG and TNFRSF members as mediators of synovial Tph-B cell inter-
actions. Together, these results reveal clonal relationships between
functionally distinct lymphocyte populations that infiltrate the synovium of
patients with RA.

Synovial inflammation in rheumatoid arthritis (RA) involves a complex
set of interactions between immune and non-immune cell subsets. A
core feature of the immune response in seropositive RA is an adaptive
immune response against citrullinated proteins involving both
antigen-specific B cells and T cells1 The activation of B cells in RA has
long been appreciated, given the characteristic production of disease-
associated autoantibodies, including rheumatoid factor (RF) and anti-

cyclic-citrullinated peptide (anti-CCP) antibodies2–5. B cells may be
activated locallywithin RA synovium, as studies on synovial tissue have
provided evidence of somatic hypermutation (SHM) and clonal
expansion6,7. Furthermore, CCP- and RF-specific B cells may undergo
distinct activation pathways8. Synovial B cells can contribute antibody-
independent functions as well, including antigen presentation and
cytokine secretion, which involve interactions with other cell types9–12.

Received: 4 June 2023

Accepted: 20 May 2024

Check for updates

A full list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper.
e-mail: darao@bwh.harvard.edu; jennifer_anolik@urmc.rochester.edu

Nature Communications |         (2024) 15:4991 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2627-0506
http://orcid.org/0000-0002-2627-0506
http://orcid.org/0000-0002-2627-0506
http://orcid.org/0000-0002-2627-0506
http://orcid.org/0000-0002-2627-0506
http://orcid.org/0000-0002-2868-3339
http://orcid.org/0000-0002-2868-3339
http://orcid.org/0000-0002-2868-3339
http://orcid.org/0000-0002-2868-3339
http://orcid.org/0000-0002-2868-3339
http://orcid.org/0000-0003-2013-4850
http://orcid.org/0000-0003-2013-4850
http://orcid.org/0000-0003-2013-4850
http://orcid.org/0000-0003-2013-4850
http://orcid.org/0000-0003-2013-4850
http://orcid.org/0000-0002-6102-2970
http://orcid.org/0000-0002-6102-2970
http://orcid.org/0000-0002-6102-2970
http://orcid.org/0000-0002-6102-2970
http://orcid.org/0000-0002-6102-2970
http://orcid.org/0000-0002-9558-2474
http://orcid.org/0000-0002-9558-2474
http://orcid.org/0000-0002-9558-2474
http://orcid.org/0000-0002-9558-2474
http://orcid.org/0000-0002-9558-2474
http://orcid.org/0000-0002-1821-167X
http://orcid.org/0000-0002-1821-167X
http://orcid.org/0000-0002-1821-167X
http://orcid.org/0000-0002-1821-167X
http://orcid.org/0000-0002-1821-167X
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0002-5975-2851
http://orcid.org/0000-0002-5975-2851
http://orcid.org/0000-0002-5975-2851
http://orcid.org/0000-0002-5975-2851
http://orcid.org/0000-0002-5975-2851
http://orcid.org/0000-0002-1428-090X
http://orcid.org/0000-0002-1428-090X
http://orcid.org/0000-0002-1428-090X
http://orcid.org/0000-0002-1428-090X
http://orcid.org/0000-0002-1428-090X
http://orcid.org/0000-0003-1197-7864
http://orcid.org/0000-0003-1197-7864
http://orcid.org/0000-0003-1197-7864
http://orcid.org/0000-0003-1197-7864
http://orcid.org/0000-0003-1197-7864
http://orcid.org/0000-0002-5634-7746
http://orcid.org/0000-0002-5634-7746
http://orcid.org/0000-0002-5634-7746
http://orcid.org/0000-0002-5634-7746
http://orcid.org/0000-0002-5634-7746
http://orcid.org/0000-0003-1326-5051
http://orcid.org/0000-0003-1326-5051
http://orcid.org/0000-0003-1326-5051
http://orcid.org/0000-0003-1326-5051
http://orcid.org/0000-0003-1326-5051
http://orcid.org/0000-0001-8164-6249
http://orcid.org/0000-0001-8164-6249
http://orcid.org/0000-0001-8164-6249
http://orcid.org/0000-0001-8164-6249
http://orcid.org/0000-0001-8164-6249
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0001-6202-8445
http://orcid.org/0000-0001-6202-8445
http://orcid.org/0000-0001-6202-8445
http://orcid.org/0000-0001-6202-8445
http://orcid.org/0000-0001-6202-8445
http://orcid.org/0000-0003-4479-4183
http://orcid.org/0000-0003-4479-4183
http://orcid.org/0000-0003-4479-4183
http://orcid.org/0000-0003-4479-4183
http://orcid.org/0000-0003-4479-4183
http://orcid.org/0000-0001-9672-7746
http://orcid.org/0000-0001-9672-7746
http://orcid.org/0000-0001-9672-7746
http://orcid.org/0000-0001-9672-7746
http://orcid.org/0000-0001-9672-7746
http://orcid.org/0000-0002-1450-1549
http://orcid.org/0000-0002-1450-1549
http://orcid.org/0000-0002-1450-1549
http://orcid.org/0000-0002-1450-1549
http://orcid.org/0000-0002-1450-1549
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49186-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49186-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49186-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49186-0&domain=pdf
mailto:darao@bwh.harvard.edu
mailto:jennifer_anolik@urmc.rochester.edu


Populations of T cells have likewise been strongly implicated in
the initiation and maintenance of synovial inflammation in RA13.
Genetic associations indicate a critical role for antigen presentation to
CD4 + T cells via MHC class II in the development of RA14,15. Cellular
profiling studies of RAsynovial tissue andfluid havehighlighted a large
population of T peripheral helper (Tph) cells, as well as T follicular
helper (Tfh) cells, both of which provide help to B cells through the
production of IL-21 and CD40L16–19. Tph cells differ from Tfh cells in
their migratory patterns, expressing chemokine receptors such as
CCR2 and CCR5 to home to sites of peripheral inflammation such as
the rheumatoid joint20,21. Large populations of CD8+ T cells also
accumulate within RA synovium, including a prominent granzyme
K-expressing population, which may contribute to synovial inflam-
mation through inflammatory cytokine production rather than
cytotoxicity22.

Complementing studies of specific subsets of immune cells, a
holistic picture of both immune and non-immune populations in RA is
emerging through single-cell RNA-sequencing (scRNA-seq) atlases of
synovial tissue samples23–26. These studies have highlighted the diver-
sity of cell states present in the inflamed tissueof thesepatients, aswell
as how the presence and effects of these states may differ among
patient subpopulations25,26. For lymphocytes, analyses of the T cell
receptors (TCR) or B cell receptors (BCR) can provide unique insights
into the expansion and developmental relationships of lymphocyte
subsets, leveraging the feature that each new lymphocyte generates a
unique TCR/BCR that is shared with its progeny. Further, BCR genes
undergo somatic hypermutation during antigen selection which can
reveal B cell developmental lineages. Studies tracking TCRs across
tissues or longitudinally in RA patients have identified shared T cell
clones in different joints27,28, clonal expansion of specific cell subsets29,
persistenceof expanded clones over time30, andoverrepresented gene
rearrangements that may suggest shared antigenic targets28,31,32; how-
ever, reactivity of expanded TCRs from RA synovial CD4 +T cells to
citrullinated peptides has been difficult to demonstrate33. Studies of
BCR repertoires of RA patients have indicated somatic hypermutation
in RA synovial B cells and identified potential specificities across B cells
collected from synovial tissue or fluid6,34–36. A comprehensive exam-
ination of both the TCR and BCR repertoires of synovial tissue lym-
phocyte populations and across tissue andblood at the single-cell level
has not been described. Such studies have the potential to directly link
clonal features to the functional roles, developmental relationships,
and cell–cell interactions of specific lymphocyte phenotypes, as has
been achieved in studies of cancer immunotherapy and infectious
disease37–40.

Here, we use 5’ droplet-based scRNA-seq on T and B cells of
synovial tissue andmatchedperipheral blood samples from 12patients
with RA to simultaneously study their transcriptomes and antigen
receptor repertoires. Our study provides a high-resolution landscape
of the clonal relationships within and between cell states, and further
between inflamed synovial tissue and peripheral blood.

Results
Single-cell profiling of synovial tissue and peripheral blood
lymphocytes
We collected synovial tissue (n = 12) and matched peripheral blood
(n = 10) from individuals with RA that comprised a subset of a larger
cohort analyzed as part of the Accelerating Medicines Partnership
Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus
(AMP RA/SLE) Network, prioritizing samples with high synovial cell
yields and evident lymphocyte populations by flow cytometry26.
Donors had a mean age of 63.6 years (range 28–80) and were pre-
dominantly female (n = 11). Patients in the cohort had a Clinical Disease
Activity Index (CDAI) classification of moderate or high with a mean
score of 26.4 (range 10.5–64.0), and were mainly lymphoid in patho-
type, but otherwise had a range of disease duration, treatment, and

cell-type abundance phenotype (CTAP) (Supplementary Fig. 1A and
Supplementary Data 1)26,41,42.

Tissue samples were previously disaggregated into single-cell
suspensions for an unbiased analysis of the cell states present in RA
synovium using RNA and cell-surface protein profiling26. Cryopre-
served synovial cells remaining after the initial analysis were thawed
and sorted to isolate CD45 + CD3+ and CD45 +CD19+ populations,
which were subsequently encapsulated into droplets and used to
generate gene expression, cell-surface protein, and TCR/BCR single-
cell sequencing libraries (Fig. 1A and Supplementary Fig. 1B). Sorted
CD3 + T cells and CD19 + B cells were loaded in order to maximize the
numbers of both cell lineages captured (Fig. 1E) and minimize sample
bias based on varying lymphocyte abundance (Supplementary
Fig. 1C, D). Cryopreserved PBMCs were thawed and sorted in parallel.
Following a unified single-cell analysis pipeline of all samples, we
recovered a total of 84,750cells. After applyingQCcriteria, 83,159 cells
remained, which we used to perform an initial round of unsupervised
clustering at low resolution (Fig. 1B and Supplementary Fig. 2). On
average, we obtained 2888 cells per synovial tissue sample (range
804–5188) and 4851 cells per blood sample (range 3442–6601) (Fig. 1C
and Supplementary Fig. 1A).

Through parallel examination of gene expression and protein
detection, we identified several populations of T cells expressing
markers such as CD3E and IL7R, as well as a cluster containing B and
plasma cells expressing CD79A and MS4A1 (CD20) (Fig. 1D and Sup-
plementary Fig. 3A, B). Cells from both lineages could be found in all
samples (Fig. 1E, F). We further identified a cluster containing pro-
liferating T and B cells, characterized by the expression of markers
including MKI67 and TYMS. Lastly, we identified two rare populations
of contaminating cells expressing markers of fibroblasts (PRG4 and
FN1) and monocytes (S100A8 and LYZ), which were excluded from
subsequent analyses (Fig. 1D and Supplementary Fig. 3A, B).

Of the 81,708 lymphocytes captured across all samples, we
obtained paired TCR or BCR information for 73,185 cells. In the syno-
vial tissue, an average of 84.7% of lymphocytes per sample had an
associated TCR or BCR (range 72.9–96.1%), while in the blood, 93.1% of
lymphocytes per sample had this information on average (range
89.3–96.8%) (Fig. 1G and Supplementary Fig. 3C).

Differential abundances of CD4+T cell populations in synovial
tissue and blood
Subclustering of the 35,301 CD4 + T cells obtained from synovial tissue
and blood samples identified 14 CD4 +T cell subsets (Fig. 2A, B, Sup-
plementary Fig. 4A, and Supplementary Data 2). We identified two
clusters expressing the B cell chemoattractant CXCL13, one of which
was composed solely of Tph cells, while the other included some cells
with detectable CXCR5, suggesting the cluster contained a mixture of
Tfh and Tph cells (Supplementary Fig. 4B, C)16,24,26. Both clusters
expressed genes associated with B cell help, such as MAF, and both
scored highly for a Tfh cell gene signature (Supplementary Fig. 4B, D
and Supplementary Data 3). While the Tfh/Tph cluster displayed
higher expression of markers such as IL7R and CD69 compared to the
Tph cluster, the Tph cluster had significantly elevated expression of
PDCD1, CTLA4, LAG3, and others. Further, the pure Tph subset pro-
duced higher gene scores of TCR signaling and T cell activation com-
pared to other CD4+ clusters, suggesting that the cells in this cluster
are activated (Fig. 2C, Supplementary Fig. 4D, E, and Supplemen-
tary Data 3).

Several other clusters of memory cells with distinctive expression
of chemokines, chemokine receptors, and granzymes were present,
including CCR7+ (which may represent central memory cells), IL7R+
CCL5+, GZMA+CCL5+, and GZMK+ populations. In addition, we identi-
fied a population of cytotoxic CD4+T cells, marked by the expression
ofGNLY, PRF1, and GZMB, as well as a cluster characterized by a strong
interferon-response signature. A small population likely containing a
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mix of naive and memory cells was distinguished primarily by
increased expression of members of the GIMAP family (e.g., GIMAP4,
GIMAP5), which has been associated with survival and quiescence in
lymphocytes (Supplementary Data 2)43.

Subclustering also revealed two populations of regulatory T cells
(Tregs). Both expressed FOXP3, CTLA4, and TIGIT, though one popu-
lation was marked by stronger expression of IL2RA (encoding CD25)

and IL32, while the other displayed higher CCR7 and TCF7, suggesting
the presenceof populations of effector and centralmemory-like Tregs,
respectively44. A large cluster containing naive T cells expressing SELL,
TCF7, and CCR7 displayed the strongest expression signature for a
previously identified naive T cell gene set45 (Supplementary Fig. 4B–E).
Lastly, an actively proliferating cluster of cells, as well as a subset with
elevated mitochondrially encoded RNAs, could be detected

Fig. 1 | Sorting and single-cell analysis of matched blood and synovial tissue
T cells and B cells. A Schematic showing the overall study design. T and B cells
were isolated from synovial tissue biopsies (n = 12) and matched peripheral blood
(n = 10). Single-cell libraries for 5’ gene expression and receptor repertoires were
generated using the 10XGenomics platform.BUnsupervised clustering and UMAP
projection of 83,159 cells that passed QC. C Bar plot of the number of cells
recovered for each sample, color denotes tissue origin. D Violin plots showing the

expression distribution of select markers for each identified cell population. E Bar
plot of the cluster composition for each sample. F UMAPs of the combined clus-
tering, separated by synovial tissue (top) and peripheral blood (bottom).G Bar plot
highlighting the recovery of VDJ information for each sample, excluding fibroblast
and monocyte populations. PBL peripheral blood lymphocytes, SYN synovial tis-
sue. Figure 1A, created with BioRender.com, released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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(Supplementary Fig. 4B–E). In total, T cell populations identified by
this present clustering analysis were well aligned with those identified
in analyses of a larger set of synovial tissue samples (of which the
12 synovial samples studied here are a subset), where clustering was
performed through a combination of RNA and cell-surface protein
profiling, (Supplementary Fig. 4F)26.

We next identified T cell subsets that had differential repre-
sentation in either synovial tissue or peripheral blood. Several
memory/effector cell populations were enriched in synovium
compared to blood, including the Tph, Tfh/Tph, CD25-high Treg,

IL7R+CCL5+ memory, GZMA+CCL5+ memory, GZMK+ memory, and
proliferating clusters (Fig. 2D and Supplementary Fig. 4G). In con-
trast, blood samples contained increased abundances of the naive,
GIMAP+, and interferon-stimulated clusters. On average, 45% of the
CD4+ population for each blood sample was composed of cells
from the naive cluster (range 18–66%), while only 5% of synovial
tissue CD4 + T cells had a naive phenotype (range 2–15%). Thus, a
range of memory/effector T cell populations with distinct tran-
scriptomic signatures are enriched in RA synovium compared
to blood.
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Fig. 2 | Differential abundances of CD4 +T cell populations in synovial tissue
and blood. A UMAP projection of CD4 + T cell reclustering. B Bar plot of the
number of cells included in each cluster. C UMAPs of TCR signaling (left) and
activation (right) signatures. D Bar plot of the tissue distribution for cells in each
cluster, with significance determined by two-sided paired T-tests (Naive, p = 2.22E-
08; GIMAP+ naive/memory, p =0.0202; CCR7+ memory, p =0.886; IL7R +CCL5+
memory, p = 2.03E-05; GZMA+CCL5+ memory, p =0.329; GZMK+ memory,
p =0.00571; Tfh/Tph, p =0.000125; Tph, p =0.000666; CD25-low Treg, p =0.0758;
CD25-high Treg, p =0.000205; GNLY+, p =0.808; ISG-high, p =0.00164; Pro-
liferating, p =0.00332; MT-high, p =0.19). E Bar plot of the clone size distribution
for each cluster. F, G Heat map of pairwise clonal overlap values calculated using
Morisita’s index for synovial tissue (F) and blood (G).H Bar plots of the percent of
synovial tissue Tph and Tfh/Tph cells found to be expanded, per donor. I Box plots

of the effector signature (left), cytotoxicity signature (middle), and Tfh signature
(right) distribution for expanded and non-expanded Tph cells. Each dot represents
a donor (n = 12), and P values were determined by paired T-tests. J Heat map of the
average expression of effector and cytotoxicity signature genes, comparing
expanded and non-expanded Tph and Tfh/Tph cells. K Box plots of the effector
signature (left), cytotoxicity signature (middle), and Tfh signature (right) dis-
tribution for expanded and non-expanded Tfh/Tph cells. Each dot represents a
donor (n = 12), and P values were determined by paired T-tests. For I and K, box
plots are defined with lower and upper edges corresponding to the first and third
quartiles (the 25th and 75th percentiles), respectively, the upper whisker extends
from the 75th percentile to the largest value no further than 1.5x the interquartile
range (IQR) from the edge, the lowerwhisker extends from the edge to the smallest
value at most 1.5x the IQR of the lower edge, and the median is the center line.
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Clonally expanded Tph cells display increased effector and
cytotoxic signatures
We then sought to examine the TCR repertoire of the CD4+
populations across synovial tissue and blood. Among the CD4+
populations, the GNLY+ cytotoxic cluster displayed the highest
clonal expansion and comprised nearly all clones larger than 20
cells. Though detected clone size can be impacted by the number
of cells analyzed, it is notable that the GNLY+ cluster was of lower
abundance compared to other CD4 clusters (Fig. 2B), and clonal
expansion was still detectable. Clonal expansion, defined as two or
more cells with an identical TCR, was also identified among the
Tph and GZMA + CCL5+ memory clusters (Fig. 2E and Supplemen-
tary Fig. 4H, I). An analysis of clonal sharing among the synovial
tissue clusters revealed a high degree of clonal overlap between
the Tph and Tfh/Tph clusters, suggesting that cells in these clus-
ters are developmentally related despite their transcriptomic dif-
ferences (Fig. 2F, G). By subdividing the Tfh/Tph cluster into cells
with and without detectable CXCR5 transcript, we identified a set
of clones represented in both CXCR5+ Tfh cells and cells within the
Tph cluster (Supplementary Fig. 4J). In addition, the synovial Tph
cluster shared the highest clonal overlap with the cycling cluster
compared to all other subsets, highlighting the active proliferation
of the Tph population within the synovial tissue. We also identified
a small number of T cells from blood with TCRs that matched
synovial Tph or Tfh/Tph cells; these blood T cells were most fre-
quently in the blood Tph or Tph/Tfh clusters (Supplementary
Fig. 4K). The pattern of clonal sharing across blood CD4 + T cell
clusters overall appeared generally similar to that in synovium, but
with a lower degree of overlap, and with the GZMA + CCL5+ subset
showing the highest clonal overlap with the proliferating blood
CD4 + T cells (Fig. 2F, G).

After identifying the Tph population as highly represented in the
synovial tissue, clonally expanded, and actively proliferating, we
sought to identify features that differentiate clonally expanded and
unexpanded Tph cells in the tissue. Across donors, an average of 12.5%
of Tph cells belonged to an expanded TCR clone (range 4–32.5%)
(Fig. 2H). By examining transcriptional differences between these cells
and Tph cells belonging to an unexpanded clone, clonally expanded
Tph cells showed significantly increased expression of signatures of
effector function and cytotoxicity, including elevated expression of
IFNG, PRF1, CD40LG, and CCL5 (Fig. 2I, J). In contrast, no difference in
the Tfh gene signature score was present between expanded and
unexpanded cells, suggesting that clonally expanded Tph cells do not
lose their B cell-helping functions. Interestingly, a similar comparison
using cells from the Tfh/Tph cluster yielded no significant differences
between expanded and unexpanded cells, further suggesting a unique
set of features among cells in the Tph clusters (Fig. 2K).

Expanded CD8+T cell clones across tissue types differ by pat-
terns of GZMK and GZMB expression
Next, we isolated and subclustered the CD8 +T cells present in the
synovial tissue and blood samples, which revealed nine CD8 +T cell
populations that could be found across samples (Fig. 3A, B, Supple-
mentary Fig. 5A, and Supplementary Data 2). Among these, three
populations were distinguished by expression patterns of GZMK and
GZMB, all of which had strong corresponding matches to clusters
identified in a recent study of synovial tissue (Supplementary
Fig. 5B, C)26. One of these clusters solely expressed GZMK, while
another expressed GZMK and low levels of GZMB. Both of these
populations also had elevated GZMA and CCL5, while the GZMK/B+
cluster was further differentiated through increased expression of
markers, including CCL4 and HLA-DRA, and decreased IL7R. The third
population, characterized by expression of GZMB only, appeared
highly cytotoxic through gene module analysis and elevated expres-
sion of GNLY and PRF1 (Supplementary Fig. 5B–D). We also isolated a

population of likely resident memory CD8 + T (Trm) cells, character-
ized by increased ZNF683 and XCL1, which was supported more
broadly through examination of a previously published Trm gene list
and consistent with a recent description of synovial Trm cells (Sup-
plementary Data 3)46,47. We identified one naive CD8+ population with
high expression of SELL and LEF1 and a naive gene module signature
(Supplementary Fig. 5B–D). Another population of likely naive cells
was also identified, characterizedby increased expression of IGTB1 and
LMNA. Lastly, we found separate clusters of CD8+ T cells with elevated
interferon-response, proliferation, or mitochondrial gene modules
(Supplementary Fig. 5B–D).

An analysis of cluster representation between synovial tissue and
peripheral blood samples found the GZMK/B+ cluster to be highly
increased in synovial tissue samples (Fig. 3C and Supplementary
Fig. 5F), consistent with a recent report22. Clusters solely expressing
GZMK or GZMB were not significantly different in abundance between
tissue compartments, though theGZMK+memory population trended
higher in synovial tissue, while the GZMB TEMRA cluster appeared
slightly elevated in theblood (Supplementary Fig. 5F). Additionally, the
Trm, proliferating, and mitochondrial-high clusters had elevated
representation in synovial tissue samples. In contrast, the naive and
ITGB1-elevated populations could both be found at higher frequencies
in the blood (Fig. 3C and Supplementary Fig. 5F).

After characterizing the cell states present among the CD8+
population, we sought to connect these clusters’ clonal attributes.
Broadly, we found a much larger degree of clonal expansion in the
CD8+ compartment compared to the CD4+ subsets. We found the
strongest clonal expansion among the GZMK/B+ memory and
GZMB + TEMRA clusters, and also noted cells in the ISG-high and
proliferating clusters to belong to expanded clones (Fig. 3D and
Supplementary Fig. 5G). Comparing the top 50 largest clones across
the synovial tissue and blood revealed striking differences in cluster
composition. Cells from the top 50 clones in the synovial tissue
belonged overwhelmingly to the GZMK/B+ memory population. By
contrast, the top 50 clones in the blood belonged to the
GZMB + TEMRA cluster, with minor representation of other popula-
tions (Fig. 3E, F). This analysis of the largest clones, and a broader
examination of the clonal overlap between subclusters in either
tissue, showed sharing between the GZMK/B+ memory cluster and
proliferating cells of the synovial tissue, while theGZMB + TEMRA was
found to overlap with the proliferating component of the blood
(Supplementary Fig. 5H, I). To further analyze this, we divided the
proliferating cluster into subsets and mapped these cells onto the
other CD8+ cells of this dataset. Compared to the general cluster
proportions, the tissue and blood proliferating cells mapped
heavily to the GZMK/B+ (201/261 tissue proliferating cells) and
GZMB + TEMRA (24/38 blood proliferating cells) clusters, respec-
tively, suggesting an active, though likely differing, role of these
two populations in their distinct tissues (Fig. 3G).

A further examination of clonal overlap across tissues revealed a
small degree of sharing between the tissue and blood components of
either the GZMK/B+memory or GZMB + TEMRA clusters separately, but
clonal overlap between synovial tissue GZMK/B+ cells and blood
GZMB + TEMRA cells was essentially absent (Supplementary Fig. 5J). Of
the top 50 clones in both tissue compartments, only six could be found
in both, nearly all of which were larger in the blood than the synovial
tissue. Notably, four of these clones retained aGZMB+ skew even in the
synovial tissue (Fig. 3E, F). Together, these results suggest functionally
distinct roles for the expanded GZMK/B+ cells of the synovial tissue
and the GZMB + TEMRA cells of the blood. The findings corroborate
recent work suggesting that the GZMK/B+ cells likely do not arrive in
the synovial tissue as GZMB+ cytotoxic T cells that subsequently alter
their phenotype, and instead may enter the synovium as GZMK+ cells
or expand locally in the tissue as they adopt a phenotype that includes
GZMK expression22.
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Fig. 3 | GZMK and GZMB+T cells are not clonally related. A UMAP projection of
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of the proliferation cluster mapping proportions compared to the general cluster
proportions. H Bar plot of the percent of CD8+ cells that are exact viral-reactive
matching, perpatient, split by virus. Box sizedenotes the sizeof the clone. IBarplot
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plot of the clone sizedistribution for GLIPH2motif viral-reactivematching andnon-
matching cells.
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Predicted virus cross-reactive CD8+T cells do not display
altered expansion or phenotypic characteristics
Viral infection has long been connected with the potential for the
development and maintenance of autoimmune diseases48. One possi-
bility that may instigate this phenomenon is the presence of cross-
reactive epitopes between a virus and endogenous proteins, which
may drive the activation and expansion of a set of T cells.We sought to
identify potentially viral-specific T cells in the synovial tissue to eval-
uate the extent of potential viral cross-reactivity among RA synovial
CD8 T cells. To accomplish this, we gathered databases of previously
identified CMV, EBV, and influenza A-specific T cells49,50. We then
identified exact matches with the beta chain CDR3 sequence and HLA
between the RA synovial CD8 +T cells analyzed here and those in the
database (Supplementary Fig. 6A). Although three of the RA patients
(RA04, RA05, and RA07) expressed less common HLA alleles (Sup-
plementary Data 5), precluding the ability to find matches with
previously-discovered specific clones, we were able to identify
matching clones in the majority of patients (Fig. 3H and Supplemen-
tary Fig. 6B). Within and between patients, we further found these
matches to be directed against multiple different epitopes for each of
the viruses tested (Supplementary Fig. 6C). When examining which
cluster these matching T cells belong to, we found a spread across
clusters, with no cluster being significantly overrepresented compared
to non-matching cells (Supplementary Fig. 6D). Further, we noted that
fewmatching clones were expanded (16/56), with the largestmatching
clone comprising only seven cells. For comparison, analysis of
CD8 + T cells from blood yielded similar results, with a comparable
number of viral-reactive T cells, and a similarly broad distribution of
cell phenotypes represented by viral-reactive cells (Fig. 3J and Sup-
plementary Fig. 6E, F).

Requiring an exact match of clone sequence and HLA can provide
strong evidence of the capacity for reactivity against a virus; however,
identifying sharedmotifs between viral-specific T cells and those in our
dataset may allow the identification of a larger set of T cells with the
potential to detect viral epitopes. Thus, we employed GLIPH2 to
identify motifs within the beta chain CDR3 sequence enriched in viral-
specific T cells and our CD8 +T cells51. After running the GLIPH2
algorithm individuallywith each virus (CMV, EBV, and influenza) forRA
synovial T cells, we filtered motifs that contained both virus and RA
clones, andonly thosewith anHLAmatch (Supplementary Fig. 6G).We
obtained a larger number of clones belonging to a viral-associated
GLIPH motif (369 unique clones) compared to our exact matches (56
unique clones), which was variable across donors (Fig. 3I and Supple-
mentary Fig. 6H, I). To strengthen the association of the hits within our
data, we sought to identify a relationship between patient age and the
percent of CD8 +T cells associated with potential viral reactivity.
Though not significantly correlated, we found trends between donor
age and the percent of potential CMV- and EBV-reactive clones, con-
sistent with the dynamics of the anti-viral repertoire with age52,53

(Supplementary Fig. 6J). Similar to results with exact matches, a
breakdown of the cluster makeup of motif-matching cells and non-
matching cells again revealed no significant differences among syno-
vial CD8+ T cells, with similar results also obtained for CD8 +T cells
from blood (Fig. 3J). Further, we identified no differences in the clone
size distributions between these two groups, and also found no clones
belonging to viral GLIPH motifs among the 50 largest synovial tissue
clones (Fig. 3K).

Identification of activated innate T cell populations in RA
synovium
Populations of innate T cells have previously been associatedwithRA,
including natural killer (NK), γδ, and mucosal-associated invariant T
(MAIT) cells, though clear roles for many of these subsets in RA
remain elusive54–57. We identified and subclustered innate T cells in
the synovial tissue and blood samples, resulting in seven subsets

representing multiple innate lineages (Fig. 4A, Supplementary
Fig. 7A, B, and Supplementary Data 2). Two populations of γδ T cells,
including a Vδ1 subset characterized by expression of TRDV1 and a
Vδ2 subset expressing TRDV2 and TRGV9 (the TCR γ variable gene
commonly paired with TRDV2), were retrieved58. The Vδ1 population
had an elevated expression of GZMB and TIGIT, while Vδ2 cells had
higher levels of TYROBP. MAIT cells were also identified among the
innate cells, expressing markers including SLC4A10, AQP3, and
ZBTB16 (Fig. 4B and Supplementary Fig. 7C). Two populations of NK
cells were detected, including CD56-dim and CD56-bright subsets,
that aligned with corresponding NK populations in a scRNA-seq
reference (Supplementary Fig. 7D)26. These CD3- subsets were not
intended tobe included in the sorting schemeused in this study; thus,
their frequency may not reflect the true representation in these
samples. In addition to these clusters, we also found a population
characterized by the expression of ZNF683 (encoding Hobit), which
appears to contain both γδ and NK cells and a population of innate
cells with elevated mitochondrial gene expression (Supplementary
Fig. 7C). When comparing the frequency of these populations
between synovial tissue andperipheral blood, only the Vδ1 subset had
significantly increased representation in the synovium, comprising a
mean of 2.1% of T cells in the tissue (range 0.1–4.5%) and 0.5% (range
0.1–1.4%) in the blood (Fig. 4C and Supplementary Fig. 7E).

Leveraging the dataset’s repertoire information, we confirmed the
presence ofMAIT cells through an examination of the TCR alpha chain
rearrangements. The MAIT population was characterized by its use of
TRAV1-2, often accompanied by TRAJ33, TRAJ20, or TRAJ12
rearrangements59. The pairing of the TRAV1-2 and TRAJ33/20/12 gene
rearrangements could be detected in over half of the cells with an
associated TCR in the cluster, while it was largely absent across other
T cells in the dataset (Fig. 4D and Supplementary Fig. 7F, G). We then
sought to clonally track theseMAIT cells between tissue and blood and
found expanded clones uniquely represented in either tissue, aswell as
a subset of clones that were present in both synovium and blood
(Fig. 4E and Supplementary Fig. 7H).

To characterize transcriptional differences between the clonally
expanded and non-expanded MAIT across these tissues, we examined
signatures of activation. Synovial MAIT cells had elevated activation
scores compared to MAIT cells in the blood (Fig. 4F). A similar pattern
was observed with Vδ1 and Vδ2 cells (Supplementary Fig. 7I). Because
MAIT cells are known to become activated through both TCR-
dependent and -independent mechanisms60, understanding how this
relates to differences between tissues is relevant to better decipher the
potential role of these cells in RA synovium. Gene signatures of TCR-
dependent and -independent MAIT activation from multiple inde-
pendent sources showed significantly enriched scores for both
mechanisms in synovium compared to blood61,62. Both clonally
expanded and non-expanded MAIT cells from synovial tissue had
higher signatures for both mechanisms compared to their blood
counterparts, but no significant difference could be detected between
the expanded and non-expanded subsets of either tissue, suggesting
subsets ofMAIT cells in synovial tissuemay becomeactivatedby either
TCR-dependent and independent mechanisms (Fig. 4G, H, Supple-
mentary Fig. 7J, K, and Supplementary Data 3). Together, these tran-
scriptomic and repertoire data provide strong evidence for the
presence of a defined MAIT cell population within RA synovium that
appears activated.

Activated B cells are enriched in the synovium
Analogous to the T cell analysis, we characterized 27,869 B cells
through subclustering to obtain eight B cell and two plasma cell
populations (Fig. 5A–C, Supplementary Fig. 8A–C, and Supplementary
Data 2).We annotated four of thesepopulations as naive subsets based
on relatively higher expression of naive markers such as IgD and
TCL1A, strong mapping to naive B cells from blood and tonsil in the
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published literature (Fig. 5E) and recently identified in RA synovial
tissue using RNA and surface protein expression (Supplementary
Fig. 8B)26. Two of the naive B clusters were distinguished by relative
levels of IgD expression (Naive-IgD-low, Naive-IgD-high). The Naive-
IgD-low is also distinguished by higher FCER2 (CD23). The other two
naive clusters had elevated expression of HSPA1B (Naive-HSPA1B+) or
higher mapped mitochondrial reads (Naive-MT-high) and had weaker
mapping to a naive B cell state (Fig. 5E and Supplementary Fig. 8B, D).
These latter two clusters were the dominant naive population in the
synovium. Naive-HSPA1B+ has an activated phenotype with upregula-
tion of NR4A1 and DNAJB1 in addition to HSPA1B. Given the upregula-
tion of ZEB2 and ITGAX (CD11c) (Supplementary Fig. 8D, E), this subset
resembles an activated naive B cell described as expanded in the blood
of patients with lupus63. The other six clusters are non-naive and
dominate the synovial B cells. On average, 64.5% of the B cells for each

blood sample were composed of cells from the naive clusters (IQR
59.5–86.7%), while only 9.1% of synovial tissue B cells had a naive
phenotype (IQR 5.5–12.0%). We identified a cluster of memory B cells
expressing memory markers, including CD27, TNFRSF13B, S100A10,
and S100A4 (Fig. 5B and Supplementary Fig. 8C–E). This memory
cluster maps to a peripheral blood memory B cell signature (Fig. 5E)
and the switched memory population described by ref. 26 (Supple-
mentary Fig. 8B). Finally, over 60% of blood and over 75% of synovial
memory B cells are class-switched based on V(D)J sequencing (Fig. 5H).

Additional B cell populations included age-associated B cells
(ABCs), activated-, and LILRA4 + B cells. Age-associated B cells
(ABCs) expressed the canonical markers CD11c and FCRL5 as pre-
viously described (Fig. 5B and Supplementary Fig. 8C)24,26,63,64, as
well as other ABC makers such as TBX21 (T-bet) and ZEB2 (Fig. 5B
and Supplementary Fig. 8D). Interestingly, one of the top
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Fig. 4 | Innate T cell populations have increased activation signatures in the
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differentially expressed genes in the ABC cluster is IFI30, high-
lighting activation of interferon signaling as a potential driver of
ABCs in situ (Supplementary Fig. 8C). The B-cell activated cluster
was annotated based on high expression of NR4A1, related early
response and germinal center light zone (GC LZ) genes (Fig. 5B, E
and Supplementary Data 3). Notably, both ABCs and activated B
cells showed evidence of class-switch recombination (Fig. 5H, I),
consistent with previous reports7,63. Another small B cell population

was named clonal-LILRA4+ based on high BCR clonality and high
LILRA4 and G-protein signaling molecules. This small population
only appeared in three PBL samples, with 87 out of 89 total cells
belonging to one sample, and was omitted from downstream ana-
lyses. We used XBP1 and CD27 expression to identify plasmablast
(XPB1+CD27int) and plasma cells (XBP1+CD27hiIgA + IgG+). Plasma-
blasts also mapped to a GC dark zone (GC DZ) signature (Fig. 5E),
likely reflective of a high proliferation state (see Supplementary

B

C

D

F G

B-N
ai

ve
(H

SPA1B+)

B-N
ai

ve
(Ig

D-h
ig

h)

B-N
ai

ve
(Ig

D-lo
w

)

B-M
ito

_h
ig

h
B-A

ct
iv

at
ed

B-A
BC

Pla
sm

ab
la

st
s

Pla
sm

ac
el

ls

B-M
em

ory

B-N
ai

ve
(Ig

D-h
ig

h)
B-N

ai
ve

(Ig
D-lo

w
)

B-N
ai

ve
(H

SPA1B+)
B-M

ito
_h

ig
h

B-A
ct

iv
at

ed

B-A
BC

Pla
sm

ab
la

st
s

Pla
sm

ac
el

ls

B-M
em

ory

B-N
ai

ve
(Ig

D-lo
w

)

B-N
ai

ve
(H

SPA1B+)
B-M

ito
_h

ig
h

B-A
ct

iv
at

ed
B-A

BC

Pla
sm

ab
la

st
s

Pla
sm

ac
el

ls

B-M
em

ory

SYN
 e

ffe
ct

B-N
ai

ve
(Ig

D_h
ig

h)
_P

BL

B-N
ai

ve
(Ig

D_l
ow

)_
PBL

B-N
ai

ve
(Ig

D_h
ig

h)
_S

YN

B-N
ai

ve
(Ig

D_l
ow

)_
SYN

B-N
ai

ve
(H

SPA
1B

+)
_P

BL

B-N
ai

ve
(H

SPA
1B

+)
_S

YN

B-M
ito

_h
ig

h_
PBL

B-M
ito

_h
ig

h_
SYN

B-A
ct

iv
at

ed
_P

BL

B-A
ct

iv
at

ed
_S

YN

B-A
BC_P

BL

B-A
BC_S

YN

B-M
em

or
y_

PBL

B-M
em

or
y_

SYN

B-P
la

sm
ab

la
st

s_
PBL

B-P
la

sm
ab

la
st

s_
SYN

B-P
la

sm
ac

el
ls
_P

BL

B-P
la

sm
ac

el
ls
_S

YN

H
I

PBL SYN PBL SYN PBL SYN

UMAP 1

U
M

A
P

 2 B-Mito_high
B-Activated
B-ABC

Plasmablasts
Plasmacells

B-Memory
B-Clonal(LILRA4+)

BT-doublets

B-Naive(HSPA1B+)

B-Naive(IgD-high)
B-Naive(IgD-low)

A

Article https://doi.org/10.1038/s41467-024-49186-0

Nature Communications |         (2024) 15:4991 9



Fig. 9A for specific genes). Both populations exhibited high levels of
class-switch recombination and SHM (Fig. 5F–I and Supplemen-
tary Data 3).

Next, we tested each population for enrichment in the blood
versus synovium. All populations were found in both the blood and
synovium and across multiple donors (Supplementary Fig. 8A). Acti-
vated B cells and plasma cells were significantly more abundant in the
synovium. In contrast, Naive-IgD-low, Naive-IgD-high, B-memory, and
Naive-MT-high clusters were significantly enriched in the blood
(Fig. 5D and Supplementary Fig. 10D). We next sought to identify
features that differentiate synovial from blood B cells by performing
GSEA (Supplementary Fig. 10B). Many of the B cell populations in the
synovium showed enrichment for GO pathways associated with cell
activation and cytokine-mediated signaling (Supplementary Fig. 10B).
The former is consistentwith the overall activated state of B cells in the
synovium. It is interesting that the most significant enrichment for
cytokine-mediated signaling in any synovial B cell state is within the
plasmablasts, suggesting that cytokine signaling is a critical mediator
of plasmablast generation in the tissue (Supplementary Fig. 10B).

Accumulation of somatic hypermutation and class switch in
synovial B cells
A unique feature of this dataset is the ability to match the precise BCR
sequence to the transcriptomically defined B cell states in both syno-
vium and paired blood. Thus, we can determine which populations
acquire SHM, the nature of those mutations, and the differences
between tissue and blood. As expected, memory B cells and plasma-
blasts/plasmacells had significant levels of SHM.Of additional interest,
activated B cells and ABCs also had higher levels of SHM compared to
the Naive-IgD-high population as a reference (Fig. 5F).

We then compared the rate of SHM between blood and synovial
cells for each population (Fig. 5G) Interestingly, three naive-like B cell
populations—Naive-IgD-low, Naive-HSPA1B+, and Naive-MT-high— had
significantly higher mutation rates in the synovium compared to
blood, suggesting a spectrum of in situ naive B cell activation as we
recently described7. Notably, ABCs and activated B cell populations
also exhibited significantly higher mutation in the synovium, sug-
gesting in situ activation and selection. The only population that had
significantly higher mutation rates in the blood were plasma cells.
Naive-IgD-high, memory, and plasmablasts did not show significance
for tissue-specific mutation differences (Fig. 5G).

Additionally, we examined the amount of class-switching occur-
ring within each cell population and between blood and synovial cells.
Synovial B cell states exhibited significantly more class-switched BCRs
(IgG or IgA+, IgD−) compared to their blood counterparts across all
populations, except for naive-IgD-high B cells (Fig. 5H). All cell popu-
lations showed a statistically significant increase in the amount of
class-switched BCRs compared to the least class-switched population:
naive-IgD-high B cells (Fig. 5I). Of note, over 50% of the synovial ABCs
showed evidence of class-switching consistent with the emerging
concept that ABCs generated during normal immune response are a

subset of memory B cells65,66. It is also of interest that synovial ABCs,
plasmablasts, and plasma cells have very distinct IgH isotype usage
compared to their blood counterparts, with far fewer IgA and more
IgG (Fig. 5H).

Evidence of in situ antigen exposure and clonal expansion in
synovial B cells
Using the BCRs recovered in our dataset, we identified groups of
clonally related B cells by quantifying the similarity between their IgH
CDR3 sequences. As a first approach to this analysis, we employed a
stringent 96.5% sequence homology to identify clones. This was done
in order to identify identical clones and thus establish developmental
relationships between cell states. Cell populations that were more
highly mutated produced larger B cell clones, as has been reported in
analyses of blood B cell repertoires from healthy individuals
(Fig. 6A, B)67. For example, plasmablast and plasma cells, which were
recovered from nearly all samples (Supplementary Fig. 8A), had a
higher proportion of large clones (20–100 cells) than other popula-
tions, consistent with antigen-driven clonal expansion (Fig. 6A, B). For
plasmablasts/plasma cells, clonal expansion was more prominent in
the blood than in the synovium (Fig. 6B). This suggests that plasma
cells in the synovium are experiencing different selection pressures
than those circulating in the periphery, also supported by the distinct
IgH isotype expression (Fig. 5H). In the synovium, B cell populations
other thanplasmacells hadmostly singletons or,within the activatedB
cells, ABCs, and MT-high, smaller clones (2–5 cells). Overall, the pre-
sence of both clonal expansion and higher SHM is consistent with
stimulation and provision of T cell help within these more activated B
cell populations. Further, consistentwith an antigen-experiencedB cell
repertoire, activated B cells and ABCs had shorter CDR3 length and
higher charge overall in both the synovium and blood (Supplementary
Fig. 10A)68. In the blood, clones were also mostly singletons but with a
proportion of small, medium, and even large clones detected in the
activated,memory,MT-high, ABCs, andNaive-HSPA1B+ B cells (Fig. 6B).

To assess clonal relationships between cell types, co-occurrence
of expanded clonemembers between cell types was reported for each
clone that contained amemberwithin twodifferent cell types. Though
the vastmajority of cloneswerecontainedwithin a specific population,
we did identify clones that were shared between populations. Fig-
ure 6C depicts the clonal sharing across populations within each
compartment. Within the synovium, plasma cells and plasmablasts
share a largenumber of clones (24 clones, Fig. 6C), strongly supporting
a developmental relationship between newly generated plasmablasts
and more mature plasma cells. Notably, we also observed shared
clones between ABCs and activated B cells, as well as between both
these B cell states and the plasma cells. A small number of clones are
also shared between theMT-high B cell state and both activated B cells
and ABCs (Fig. 6C, D). Overall, this data suggests a developmental
relationship from Naive-MT-high (a naive B cell population already
showing some signs of antigenic stimulation based on higher SHM
rates compared to resting naive—Fig. 5F) alternatively down an ABC vs.

Fig. 5 | Accumulation of activated, somatically mutated B cells in the RA
synovium. AUMAPprojection of B cell clustering. Unlabeled gray cells (“NA”) were
called B-T doublets as determined by high expression of CD3E and high doublet
scores; these cells were omitted fromdownstreamanalysis. The population labeled
B-Clonal(LILRA4+) was also omitted from downstream analysis due to having a
small number of cells which were only found in two blood samples. B Dot plots of
salient markers used in annotating clusters. C Bar plot of the number of cells
included in each cluster. D Bar plot of the tissue distribution within each cluster.
Significance determined by a two-sided mixed-effect model using MASC, shown in
Supplementary Fig. 8D.EHeatmap showing the scaledmodule scoreof select gene
signatures. Heatmaps of selected genes for pathways are available in Supplemen-
tary Fig. 10A. F Plot quantifying differences in SHM rate between clusters (blood
and synovial cells combined). P values were assessed through a two-sided linear

mixed-effectmodelwith a randomeffect for donors. Reference population set to B-
Naive(IgD-high). The blue dot represents a median. G Plot quantifying differences
in SHM rate between tissues within each population. P values were assessed
through a two-sided linear mixed-effect model with a random effect for donors.
HBar chart of productive immunoglobulinheavy chain (IgH) isotypeusage for each
cluster split by tissue after QC. I Plot of effect sizes (center of the dot) and 95%
confidence intervals (error bar) for a mixed-effect logistic regression model which
regresses a cell’s class-switch state (IgGor IgA -> “class-switched”, IgMor IgD -> “not
class-switched”) on its phenotype and tissue source. Random effects included for
donors (n = 12 donors), B-Naive(IgD-high) set as the reference population and PBL
set as the reference tissue source. PBL peripheral blood lymphocytes, SYN synovial
tissue.
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activated B cell pathway, as well as between these cell states and then
downstream to plasma cells. It is also of interest that memory B cells
share clones with activated B cells and plasma cells, consistent with
memory B cells participating in synovial immune reactions (Fig. 6C, D).
Within the peripheral blood, there is substantially more clonal sharing
between multiple cell states (Fig. 6C). This is also evident when
examining the cell population composition of the 50 most dominant
clones in the blood compared to the synovium (Fig. 6E, F). As an
example, the 5thmost expanded blood clonewasobserved in the ABC,
plasmablast, Naive-IgD-low, MT-high, and memory B cells (Fig. 6F). In
contrast, the 50 most dominant synovial clones are heavily weighted
toward plasma cells (Fig. 6E). Though clones were shared between the
synoviumandblood, these cloneswere not expanded (Fig. 6G). Tissue-
trafficking clones were found within plasma cells, ABCs, and activated
and memory populations, consistent with some trafficking of these B
cells between the two compartments (Fig. 6H). Interestingly, clones
shared between blood and tissue had distinct phenotypes (Fig. 6H). As
an example, there are multiple cases of memory B cells in the blood
becoming activated B cells or ABCs or plasma cells in the synovium,
again strongly suggesting that memory B cells participate in synovial
immune reactions.

In order to identify features that differentiate clonally expanded
from unexpanded B cells in the synovium, we performed GSEA. We
focused this analysis on plasmablasts and plasma cells, given the lim-
ited numbers of clones in other cell states. Clonally expanded plas-
mablasts showed increased expression of signatures of BCR signaling,
cytokine-mediated signaling, and response to cytokines as compared
to non-clonally expanded cells (Supplementary Fig. 11).

We repeated the analysis of clonally related B cells using a less
stringent IgH CDR3 DNA sequence similarity of 80%69. The focus here
was to generate and analyze clonal lineages in order to begin to map
in situ immune reactions. Using this approach, more frequent small
clones were detected in multiple cell states in both blood and syno-
vium (compare Fig. 6B to Supplementary Fig. 12A, B). There were also
more shared clones between cell states in the synovium, with sharing
now detected from the naïve IgD-low and frequently across three or
more populations (compare Fig. 6D to Supplementary Fig. 12C). As
with 96.5% homology analysis, the most highly expanded synovial
clones were in the plasmablast and plasma cell compartments (com-
pare Fig. 6E to Supplementary Fig. 12D).With clonal lineages defined at
80% homology, more tissue-trafficking clones were identified (com-
pare Fig. 6G, H to Supplementary Fig. 12E, F), again with examples of
transitions of cell states between blood and tissue clones. Examples of
B cell lineage trees highlight the developmental relationships from
naïve IgD-low to ABC, activated, and plasma cells (Supplementary
Fig. 12G, H).

Identification of altered T cell-B cell communication patterns in
synovium
Given the association of BCR signaling, B cell activation, and response
to cytokines with the enriched and clonally expanded B cells in the
synovial analysis, we next sought to systematically investigate poten-
tial T cell-B cell interactions.We constructed cell–cell communications
networks using CellChat70, with an initial focus on communication
differences between the CD4 +T cell subpopulations and total B cells
to assess the viability of the technique to first decipher well-
characterized interactions. The proliferating, Tph, and Tfh/Tph sub-
sets had the largest numbers of significant interactions identified with
B cells (Fig. 7A). Detection of significant CXCL13-CXCR5 interactions
between Tph-B cell and Tfh/Tph-B cell pairs is consistent with prior
reports and supports the performance of the analysis method16. A
significant IFNG-IFNGR interaction was further detected between Tph-
B but not Tfh/Tph-B pairs, consistent with the increased expression of
IFNG in the Tph cluster compared to the Tfh/Tph cluster (Supple-
mentary Fig. 13A, B). We then generated an inferred communication

network using CD4 +T subpopulations and B cell subpopulations.
Examination of the cumulative incoming and outgoing interactions for
each population identified the Tph population as having elevated
signals for both directions, while the ABCpopulation had the strongest
outgoing signal of any cluster (Supplementary Fig. 13B). A pairwise
analysis of significant interactions between these CD4 +T and B cell
populations found the proliferating cluster to have the largest number
of predicted interactionswith all B cell subsets, though thismay reflect
a heterogeneous nature of proliferating cells. Aside from the pro-
liferating cluster, elevated interactions between Tph cells and the ABC,
plasmablast, memory, and clonal B cell populations were identified.
The number of significant interactions for each of these pairs was
higher than with any other CD4+ population, suggesting an elevated
signaling potential of the Tph cluster (Fig. 7B).

Next, we leveraged the cross-tissue nature of our dataset to
compare T cell-B cell signaling differences between synovial tissue and
blood. We generated a separate communication network for each,
both of which returned roughly similar numbers of significant inter-
actions detected with a slight elevation in the synovium (Supplemen-
tary Fig. 13D). Within the synovial tissue, the TNF, CXCL chemokines,
IL-2, and IFN type II signaling pathway families were elevated, together
highlighting characteristics of an inflammatory and immune-activated
state of the tissue. Among the signaling pathways underrepresented in
the tissue compared to signaling in the bloodwereCCL, SELPLG, ICAM,
and ITGB pathway families, which are often expressed in cells
migrating in the blood (Fig. 7C). Finally, we sought to identify cell–cell
interactions elevated in the synovial tissue between Tph or Tfh/Tph
cells and either ABC,Memory, or Activated B cells. In all analyzed pairs,
BTLA-TNFRSF14 (HVEM) and CXCL13-CXCR5 interactions were elevated
in the synovium compared to the blood. In contrast, ITGB2-ICAM2 and
LGALS9-CD44/45 interactions were higher in most blood pairs. Com-
paring different interactions between Tph-B subsets and Tfh/Tph-B
subsets, LTA-TNFRSF14 (HVEM) was identified in all synovial Tph-B cell
pairings but absent in Tfh/Tph-B cell pairings. In the synovium, IFNG-
IFNGRwasa significant interaction in bothTph/ABCandTph/Activated
B cell pairings, and LTA-TNFRSF1B (TNFR2)was specific to theTph/ABC
pairing only (Fig. 7D).

Discussion
By leveraging paired single-cell RNA and TCR/BCR sequencing and
paired synovium and blood samples, this work provides a detailed
assessment of the relationship between the immune repertoire and
cell state composition, gene expression, blood and synovial lympho-
cyte trafficking, and cell–cell interactions in RA synovium. These data
provide insight into the developmental relationships between specific
synovial lymphocyte populations, for example, demonstrating clonal
links connecting ABC and activated B cells with plasma cells, while
separating clonally distinct Tph/Tfh vs CCL5 +CD4 T cells and GZMK+
vs GZMB +CD8+ T cells (Fig. 8).

Within the CD4 T cell compartment, the Tph cells express among
the highest effector and activation signatures compared to other
subsets and are significantly enriched in synovium compared to the
blood, consistent with prior observations16,71. Here, we leverage the
paired repertoire information of this population, identifying it as one
of the most clonally expanded CD4 T cell populations and clonally
related to both proliferating cells and Tfh cells. We acknowledge that a
potential limitation of our approach is variability in the number of
synovial T cells (and B cells) isolated and analyzed from different
samples, which can affect the clone sizes detected. Nonetheless, we
observed that Tph cells from multiple synovial tissue samples were
clonally expanded and related to CXCR5+ Tfh cells, consistent with
recent work tracking clonal relationships of Tph cells in synovial
fluid29. Analyses of synovial tissue performed here suggest that Tfh
cells, as contained within the Tfh/Tph cluster, may be more abundant
in synovial tissue than in synovial fluid, in which PD-1hi CD4 + T cells
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are predominantly CXCR5- Tph cells. Further, our identification of
some shared clones between Tph in synovium and in blood, even with
small numbers of total T cells analyzed, supports the notion that a
portion of Tph cells in blood have both transcriptomic and clonal
relationships to Tph cells in synovium.

The gene expression patterns in clonally expanded Tph cells,
combined with predicted cell–cell interactions, suggest additional
roles for Tph cells, where upon T cell activation and clonal expansion,
they upregulate factors related to effector function and cytotoxicity,
such as GZMB, IFNG, and CCL5. This result may suggest a direct con-
tribution by this population inpromoting tissue inflammation or injury
through cytotoxic activity in addition to its well-characterized B cell
helper function (Fig. 8). Additionally, the IFNGproduction by activated
and clonally expanded Tph cells could drive ABC production, while
CCL5 production could attract additional effector T cells and
myeloid cells.

While analyses of CD8 T cells have largely focused on the
expression of cytotoxic features such as granzyme B, recent

observations have highlighted a prominent CD8 T cell population in
RA synovium with distinct expression of granzyme K22. Our analyses
further underscore a key distinction between GZMK+ and
GZMB +CD8 + T cells in RA synovium and blood. Whereas in the blood
GZMB-expressing cytotoxic cells formulate the largest clones, CD8+
cells that express GZMK comprise the majority of the most expanded
cells in the tissue. A striking finding through the current and prior
analyses was the near-absence of clonal overlap between GZMK+ cells
and GZMB+ cells across tissues, suggesting that GZMK+ cells do not
arrive at the synovium as GZMB-expressing cytotoxic cells and may
instead receive antigenic stimulation locally that drives clonal expan-
sion and functions such as cytokine production22.

The presence of T cell cross-reactivity between virus and self has
previously been associated with the capacity for driving auto-
immunity, including in RA, yet the potential for virus-reactive T cells to
contribute to synovial inflammation has remained uncertain72–75. Our
analyses identify multiple synovial T cell clones that match those
previously identified to be viral-reactive, a result consistent with the
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recent demonstration of viral reactivity among TCRs from RA synovial
CD4 T cells33. Our paired RNA-seq/TCR analysis enabled interrogation
of the phenotypes of potentially viral-reactive CD8 T cells, yet no
broad-scale difference in the cluster composition or clonal character-
istics of these cells was apparent. Because our methodology relied on
utilizing viral-specific clones that had previously been identified on
definedHLA alleles, there are likely a number of “false-negative” clones
in the dataset that could be viral-reactive yet did not have a match in
the examined databases. Futurework to better define the viral-reactive
capacity of T cells within the joint may rely on isolating viral-specific
cells using viral peptides bound to tetramers and evaluating them for
cross-reactivity to synovial antigens. Still, thiswork shows thepresence
of likely cross-reactive T cells within the synovium, yet with no
enrichment for specific activated or effector phenotypes.

Populations of innate T cells are thought to contribute to RA76,77.
Here, we define the subsets of innate T cells present in the synovium,
including populations of γδ T and MAIT cells, with selective enrich-
ment of Vdelta1 γδ T cells in the synovium compared to blood, con-
sistent with their enrichment in other tissues including gut and
skin78,79. Leveraging paired TCR information, this is the first single-cell
RNA sequencing study in RA to confirm the presence of MAIT cells by
analyzing VDJ gene rearrangements. Our detection of sharedMAIT cell
clones in synovium and blood suggests that these cellsmay traffic into
and out of synovium. Synovial MAIT cells showed an increased

activation signature compared to those in blood, as did γδ T cells,
suggesting an active role for these cells in inflammatory arthritis.

One of the striking findings of our study is the enrichment of acti-
vated B cell populations in the synovium with evidence of clonal
expansionandclonal sharingbetweendifferentBcell states.Weachieved
unprecedented resolution of discrete B cell states, and in contrast to a
previous study36, ourdatademonstrated clonal sharingbetweenmultiple
B cell states extending beyond memory B cell and PC pools. We further
extend the observation from previous studies34,36 that synovial plasma
cells are generated from locally activated B cells, including activated B
cells, ABCs, and memory B cells. The finding that the ABCs are a pre-
cursorofplasmacells in the synoviumis consistentwith a recent report80.
Further, our work highlights the likely important signals promoting
synovial B cell activation and selection, including antigen (reflected in
upregulationofBCRsignaling), cytokines (mostnotably IFNG), anddirect
cell–cell interactions, mainly involving Tph/Tfh cells.

Our study highlighted a spectrum of B cell activation unique to
the synovium. We identified multiple naïve-like B cell states, with sur-
prising evidence of antigen encounter/activation based on higher
mutation rates. The majority of the synovial B cells in our study are
non-naive, dominated by a B-activated cluster expressing NR4A17,
ABCs, and plasmablasts/plasma cells. The higher mutation rates in
these synovial enriched B cell subsets compared to their blood coun-
terparts suggests that these cells are under different selection

Plasma cell

Naive B
cells

Memory B 
cells

ABCs

CD4 T cellsT CD8 T cellsT

IFNγ

CD8+

GZMB+

CD8+

GZMK+

Tfh

TphCD4 T cell

CD8 T cell

CCL5+

Naive
B cell

IgD

IgG/A(75%)

memory

Memory
B cell

Tfh

Tph

H
V

EM

IFNγ

CXCL13

CXCR5

BTLA

HVEM

B cell-T cell interactions

CD11c

IFNGR

ABC
Tph

CD11c

IgG/A (65%)

ABC

activated

IgG/A (40%)

NR4A1

IFNGR

IFNGR

Activated
B cell

Tfh

Tph

HVEM

CXCL13

Fig. 8 | Clonal associations of lymphocyte subsets and functional states
revealed by single-cell antigen receptor profiling of T and B cells in RA syno-
vium.Multiple B cell and T cell subsets are enriched in the RA synovium including
autoimmune associated B cells (ABC) and Tph cells. Clonal analyses of B cell
repertoire indicate relationships between memory, activated, and ABC B cells with
plasma cells in the synovium. Additionally, memory B cells and ABCs have a high
percentage of class-switched clones (75 and 65%, respectively) (compared to0% for
naive, 40% for activated B cells, and >95% for plasma cells). Specific CD4 and CD8T

cell subsets are enriched in RA synovium. Synovial Tfh cells and Tph cells show
significant clonal relationships. Tph cells uniquely produce both IFNγ and CXCL13.
These cytokines are important for the interactions with various B cell states,
including ABC, activated, and memory B cells. Additionally, receptor-ligand ana-
lysis indicated that B cells and T cells in the synovium may interact through BTLA-
HVEM binding, promoting synovial immune reactions. Figure 8, created with
BioRender.com, released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.
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pressures. Although it is possible that more activated, somatically
mutated B cells preferentially home to the synovium, we favor the
hypothesis that activation and SHM occurs in situ, also supported by
synovial clonal expansion and clonal sharing across cell states.Of note,
the synovial B cell SHM is lower than germinal center B cells in the
tonsil and similar to B cell mutation rates reported in other inflamed
tissues81–83. We have hypothesized that activated B cells are involved in
initiating ectopic lymphoid structures (ELS), as evidenced by their
higher expression of ELS-inducing cytokines like LT and IL67. The data
presented here further highlight that NR4A1+ activated B cells may go
down an extrafollicular pathway as they share clones with ABCs and
have a lower mutation rate compared to tonsil germinal center B cells.
The availability of paired analysis of T and B cells from the same
synovial samples allowed us to directly link clonally expanded T cell
populationswith synovial tissue expandedB cells for thefirst time. The
most striking predicted interactions were identified between pro-
liferating T cells and Tph with activated B cells, ABCs, and plasma-
blasts. Notably, Tph and ABCs had among the largest numbers of
incoming and outgoing interactions, suggesting an elevated signaling
potential for these populations. Signaling pathways enriched in the
synoviumand identified in the Tph-ABC interaction included cytokines
(e.g. IFNG- produced by Tph and IFNGR on ABCs, LTA-TNFRSF14
(HVEM), and BTLA-TNFRSF14 (HVEM) interactions) and chemokines
(see schematic in Fig. 8). Notably, GSEA also identified cytokine-
mediated signaling as prominent in clonally expanded synovial B cells,
including within the ABC population. This subset of B cells has been
previously reported to be expanded in autoimmune disease63 with
accumulation in inflamed tissue24,26, but the signals that promote ABCs
in the synovium remain unclear. Our data strongly point to Tph cells as
a key driver. This is in accordwith a recent report in juvenile idiopathic
arthritis demonstrating that clonally expanded IL21 and IFNG co-
expressing Tph promote CD11c+ double negative B cell
differentiation84.

Together, these findings across T and B cells highlight the altered
cell state composition and clonal characteristics that may work toge-
ther to maintain inflammation in RA. Our study utilized a cross-
sectional cohort unified in high disease activity, but otherwise het-
erogeneous across treatment history, disease duration, and cell-type
abundance phenotype (CTAP). Further studies with a larger cohort of
patients will be necessary to connect clonal characteristics such as
those identified here with patient stratifications, which may serve to
increase our knowledge of the inherent cellular and molecular het-
erogeneity of the disease. It will also be of interest to define the spe-
cificity of the B and T cells that are clonally expanded, including their
reactivity to citrullinated antigens. Citrullinated peptides may be the
main antigenic drivers in the synovium as has been suggested by other
studies6,85. As the understanding of pathogenic roles of B and T cell
subsets in RA continues to evolve, this dataset will be a useful resource
to generate or test insights related to the antigen receptor repertoires
of synovial lymphocytes. The work further highlights specific lym-
phocyte populations, including Tph cells, ABC, and activated B cells,
that show both transcriptomic signatures of antigen activation and
clonal expansion, marking these cell populations as promising ther-
apeutic targets that might be selectively targeted to blunt the patho-
logic adaptive immune response in RA.

Methods
Sample processing
For this study, patients were recruited and consented through the
Accelerating Medicines Partnership (AMP) Network for RA and SLE26.
Samples were collected from 15 clinical sites who are part of the AMP
Network. The study was performed with informed consent in accor-
dance with protocols approved by the Institutional Review Board at
Stanford University. Written informed consent was obtained from all
participants. Synovial tissue samples and matched peripheral blood

mononuclear cells were cryopreserved after collection as described86.
Stored synovial tissue samples were then thawed and disaggregated
into single-cell suspensions by mincing and digesting with 100 µg/mL
LiberaseTL (Roche) and 100 µg/mL DNaseI (Roche) in RPMI (Life
Technologies) for 15min, with occasional inversion during dis-
aggregation. Disaggregated cells were passed through a 70 µm cell
strainer and washed prior to antibody staining with anti-CD235a anti-
bodies (clone 11E4B-7-6 (KC16), Beckman Coulter) and Fixable Viability
Dye eFluor 780 (eBioscience/Thermo Fisher). Live non-erythrocyte
cells (viability dye- CD235-) were collected by fluorescence-activated
cell sorting (BD FACSAria Fusion) and were initially cryopreserved in
Cryostor CS10 (Sigma-Aldrich). The disaggregated synovial tissue cells
and matched cryopreserved peripheral blood mononuclear cells were
then thawed in batches, and both T and B cells were collected by
fluorescence-activated cell sorting (BD FACSAria II) (Supplementary
Fig. 1B). A description of the antibodies used in this study canbe found
in Supplementary Data 4. A maximum of 16,000 of B and T cells
combined were sorted from each sample. We sorted 8000 B cells and
8000T cells for the majority of blood samples. For synovial samples,
the number of B cells and T cells sorted varied depending on cell
abundance (B cell: 107-7472 cells, T cell: 2616-13636 cells) (Supple-
mentary Fig. 1C, D). B cells and T cells from each sample were pooled
prior to loading on a Chromium NextGEM Chip G (10X Genomics).

Single-cell library preparation and sequencing
Cells collected from cell sorting were encapsulated into oil droplets
using aChromiumNextGEMChipG (10XGenomics). Following reverse
transcription and cDNA amplification, 5’ gene expression, immune
repertoire, and feature barcode libraries were constructed following
manufacturer protocols (v1.1). The libraries were finally pooled for
sequencing on an Illumina Novaseq 6000 using an S4 flow cell. Gene
expression libraries were sequenced to obtain a readdepth of 100,000
reads per cell, feature barcode libraries were sequenced at 5000 reads
per cell, and immune repertoire libraries were sequenced at 5000
reads per cell. FASTQ file demultiplexing for gene expression libraries
was performed using the mkfastq function in CellRanger (10X Geno-
mics, v4.0). Following this, alignment to a reference genome (GRCh38)
and counting was completed using the count function to generate
expression matrices for each sample. Immune repertoire FASTQ files
were separately demultiplexed, and the vdj function was used to per-
form sequence assembly and clonotype calling for TCR and BCR
sequences in each sample.

Initial quality control
Gene count matrices were imported in R for downstream analysis.
Quality control was first performed jointly on all cells collected and
sequenced in this experiment. Severalmetrics were explored to assess
the quality of each cell. First, low-quality cells were distinguished from
high-quality cells in each tissue compartment. Cells were kept for
downstream analysis if they had at least 1000 mapped reads in either
the blood or the synovium. After initial filtering, we generated several
metrics to identify doublets using software packages scDblFinder87

and scds88, aswell asmarking cells that coexpressed at least 1 TCRand 1
BCR. At this point, a single synovial sample (AMP ID# 300_0415) was
discarded due to only 12 cells passing these initial QC thresholds. Log-
normalization was then applied to the gene expression counts for the
remaining cells. Final QC thresholding was performed on the log-
normalized counts, keeping cells with greater than 500genes detected
and less than 20percent of detected reads coming frommitochondrial
genes. Additional quality control was performed for T and B cells
separately in downstream analysis.

Broad cell type identification
After initial QC, unsupervised clustering was performed on the
remaining cells to identify major cell types present in the data.
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Principal components were first generated in order to reduce the
dimensionality of the feature space before clustering. Using Seurat’s
clustering functionalities on the first 30 principal components, a 20
nearest-neighbors network graph was computed. Then, we performed
Louvain clustering with a resolution parameter of 0.3, and visualized
the cells in 2D space using uniform manifold approximation and pro-
jection (UMAP). Differentially expressed genes between clusters were
identified (Student’s T-test) by including only genes exhibiting a
greater-than 0.25 log-fold difference between clusters. In order to
annotate each cluster with a biologically meaningful name, genes with
the highest log-fold changes were considered, as well as marker genes
that are cell-type specific.

T cell subclustering
Cells broadly labeled as “Tcells” and “Proliferating” from the combined
object were subset, and Harmony89 was then used to perform batch
correction at the level of the patient and tissue using theta = 2 and
max.iter.cluster = 20. Using the top 50Harmony embeddings, Louvain
clustering was performed, which was then visualized in UMAP space.
Nearest neighbors were identified using the Harmony embeddings,
and clustering was iteratively performed with a resolution of 1.4 finally
selected. Broad T cell markers (e.g., CD4, CD8, TRDC) were used along
with differential gene expression (Wilcoxon rank-sum test) to identify
the T cell lineages for each of these initial clusters. At this point, a small
number of remaining contaminating cells (such as B cells from the
Proliferating cluster), were removed. Based on gene expression, clus-
ters of CD4, CD8, and innate T cells were separated and individually
clustered using a similar strategy with slightly different parameters for
each subset (CD4: 40 Harmony embeddings, 0.5 cluster resolution;
CD8: 40 Harmony embeddings, 0.4 cluster resolution; innate T: 10
Harmony embeddings, 0.4 cluster resolution).

B cell subclustering
Cells labeled as “B cells” from the broad clustering, we further char-
acterized B cell subpopulations. Before reclustering the B cells, we
discard cells marked as doublets according to scDblFinder and B cells
which simultaneously coexpressed at least 1 BCR and at least 1 TCR.On
the remaining cells, Seurat’s default normalization and scaling was
performed and principal components were generated. Harmony was
used to perform batch correction at the patient level using theta = 2
and max.iter.cluster = 20. From here, the 20 nearest-neighbors net-
work graph was generated using the first 30 harmonized principal
components. We then applied Louvain clustering using a resolution
parameter of 0.5 to identify clusters of similar cells to visualize in the
UMAP space. Differential gene expression was then performed (Stu-
dent’s t-test) to provide markers for cluster annotation. Before
selecting the final set of input parameters, results were explored at
multiple resolutions, variable number of included principal compo-
nents, and using both harmonized and non-harmonized principal
components.

Gene signature analysis
Gene signatures used in this study were obtained from the sources
listed in SupplementaryData 3. TheAddModuleScore function in Seurat
was used to assign a value for each cell for each signature, corre-
sponding to the average expression of the signature subtracted by the
aggregate expression of randomly-selected control genes.

Dataset reference mapping
A reference object was built using Symphony90 with cells from ref. 26
that correspond to the populations being assayed (CD4 T, CD8 T,
innate T, or B cells), integrating at the sample level and using the first
20 PCs. Data from the current study was then projected onto this
reference using the mapQuery and knnPredict functions, to generate
confidence scores for each reference cluster’s mapping, which we

further visualized using pheatmap. The most-likely identities for each
cluster were then cross-referenced with DEG lists from our dataset to
aid in generating final cluster identities.

Single-cell TCR receptor profiling
For each sample, the filtered_contig_annotations.csv file output from
cellranger was used to identify TCR sequences obtained for each cell
barcode using scRepertoire91. Using the filterMulti argument, only the
top 2 expressed chains were retained when a cell barcode was asso-
ciated with more than two chains (e.g., ɑɑβ or ɑββ). This step also
worked to remove TCR informationwhenonly 1 chainwas available for
a specific cell barcode (e.g., ɑ only or β only). These TCRs and their cell
barcodes were then matched with corresponding cell barcodes
obtained from the sample’s RNA library. Combined, 45,096 cells in the
initial T cell subset had available TCR information, including 22,634
cells obtained from synovial tissue and 22,462 cells obtained from
blood. Clones were further characterized into discrete groups for their
extent of clonal expansion for downstream analysis.

Single-cell BCR receptor profiling
Analogous to the TCR profiling, output from CellRanger was used to
identify BCR sequences for each cell barcode. For downstream analy-
sis, we included BCR that were considered high-confidence, full-
length, length of CDR3 amino acid at least 5, and length of CDR3 DNA
at least 15. We also excluded BCR that were associated with more than
two heavy chains or more than two light chains. BCR passing QC were
then matched with cell barcodes from the sample’s single-cell RNA
library. Combined, 38,482 cells in the B cell subset had associated BCR
information, of which, 12,357 cells were from the synovial tissue and
26,125 were from blood. We assigned each BCR sequence to its closest
sequence in the IMGT database using the Change-O tool92. The degree
of somatic hypermutation in each B cell was quantified by determining
the number of V and J substitutions in each B cell’s IgH CDR3 sequence
when compared to its closest IMGT sequence. Clones were char-
acterized in B cells according to the similarity of their CDR3 DNA
regions. A similarity threshold of 96.5%, CD-HIT93 was used to define
discrete clonal groups for downstream analysis. Clonal analysis was
also repeated using a similarity threshold of 80%.

Clonal lineage tree analysis
In exploring the evolutionary relationships among BCR sequences
within B cell clonal lineages, we utilized alignment and identity scores
for both variable (V) and junctional (J) gene segments, along with
somatic hypermutation (shm) levels within these gene segments.
Additionally, we calculated the combined V and J somatic hypermu-
tation rate (V-J shm rate), obtained by dividing the sum of V-shm and
J-shm by the sequence length excluding the CDR3 region, all in com-
parison to the germline. A distance matrix was computed using the
Euclidean method. Subsequently, we applied the ward.D method for
hierarchical clustering to construct the dendrogram plot.

Mixed-effect modeling
A number of mixed-effect models were fit in our analysis, which all
generally took a similar form. To adjust for patient-specific effects in
our data, mixed-effect models were fit using sample_ID as a scalar
random effect and fixed effects for other covariates of interest. Lme494

was used to obtain point estimates for all mixed-effect models, with
95% confidence intervals.

Gene set enrichment analysis
Gene set enrichment analysis was performed using fast gene set
enrichment analysis (FGSEA)95. FGSEA calculates an enrichment score
for each gene set, given a ranked vector of gene-level statistics. A null
distribution of the enrichment score is estimated through random
sampling of gene sets. P values are estimated as the number of random
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gene sets with more extreme enrichment scores than the gene set of
interest, divided by the number of random gene sets generated. Mul-
tiple testing correction is then performed to get adjusted P values. We
first performed differential expression for our comparisons of interest
within each population (SYN vs PBL and clonal vs non-clonal) to obtain
a ranked vector of gene-level statistics. We then sampled 1000 gene
random sets to estimate the null distribution of each gene set’s
enrichment score and calculate adjusted p values.

Cell–cell interactions
Cell–cell interaction inference was performed using CellChat70, which
uses a manually curated database of ligand–receptor interactions
gathered from KEGG signaling pathways and published literature.
Interaction networks are constructed by identifying differentially
expressed genes related to these interactions, computing the average
expression of each ligand–receptor pair across cell cluster pairings,
and finally calculating a communication probability value based on
permutation testing. For finding communication probabilities, we
used the tool’s Tukey triMean method, which performs a weighted
average of themedian and upper and lower quartiles, and further used
100 bootstraps (nboot = 100) to calculate p values.

HLA imputation
To obtain estimated two-fieldHLA alleles in each donor, we performed
HLA imputation from SNP genotype data. We genotyped donors from
this study by using the Illumina multi-ethnic genotyping array. We
performed quality control of genotype by sample call rate >0.99,
variant call rate >0.99, minor allele frequency >0.01, and
PHWE > 1.0 × 10−6. We extracted the extended MHC region (28–34Mb
on chromosome 6) and performed haplotype phasing with
SHAPEIT2 software96(Delaneau, Marchini, and Zagury 2011). We then
performed HLA imputation by using a multi-ancestry HLA reference
panel version 297 and minimac3 software98. From the imputed dosage
of two-fieldHLA alleles of eachHLAgene in eachdonor,we defined the
most likely set of two two-field alleles (Supplementary Data 5).

Virus reactivity analysis
Publically-available datasets of TCRs were obtained from VDJdb50

and McPAS49, and were subsequently filtered to retain only TCRs
associated with Epstein-Barr virus (EBV), cytomegalovirus (CMV),
and influenza (FLU). As the large majority of data uploaded to these
databases are from bulk TCR sequencing with only the β chain
information available, we subsequently focused only on this chain
in our single-cell TCR data. For exact matching, a “match” was
considered when the CDR3 region, as well as the MHC allele, were
the same. For GLIPH2 analysis, the same lists of EBV, CMV, and FLU
reactive cells were input alongside patient CD8 TCRs as input.
Results were filtered to retain GLIPH groups with previously iden-
tified TCRs presented on an MHC that matched an HLA allele from
the patient. GLIPH group results were also filtered for stringency,
with a Fisher score <0.01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Single-cell RNA and TCR/BCR sequencing data generated in this study
are available via the ARK Portal (https://doi.org/10.7303/syn47217489.
1) The data were available under controlled access due to data privacy
laws. To access the data, users need to complete and submit a signed
Data Use Certificate (DUC) to the ARK Portal at https://arkportal.
synapse.org/Data%20Access. Additional data are provided in the
Supplementary Information and as Source Data files. Source data are
provided with this paper.

Code availability
The source code to reproduce analyses used in this study is available at
https://github.com/dunlapg/amp2repertoire/tree/main.
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