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Regional brain aging: premature aging of
the domain general system predicts
aphasia severity

Check for updates
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Premature brain aging is associated with poorer cognitive reserve and lower resilience to injury. When
there are focal brain lesions, brain regions may age at different rates within the same individual.
Therefore, we hypothesize that reduced gray matter volume within specific brain systems commonly
associated with language recovery may be important for long-term aphasia severity. Here we show
that individuals with stroke aphasia have a premature brain aging in intact regions of the lesioned
hemisphere. In left domain-general regions, premature brain aging, graymatter volume, lesion volume
and age were all significant predictors of aphasia severity. Increased brain age following a stroke is
driven by the lesioned hemisphere. The relationship between brain age in left domain-general regions
and aphasia severity suggests that degradation is possible to specific brain regions and isolated aging
matters for behavior.

Older age is associated with cognitive decline1–3. Increased age is also
associatedwith a higher incidence of strokes andworse recovery following a
stroke4–7. Aphasia is a common neurological sequela following a left-
hemisphere stroke and older individuals are more likely to have severe
aphasia immediately following a stroke6 and long-term severe language
deficits4.

Despite the overall, group level relationship between cognition, stroke
recovery, and age, there are large interindividual differences in age-related
cognitive decline and recovery trajectories following a stroke8–10. This is
commonly recognized in the clinical setting, and the concept of cognitive
reserve is often postulated as the potential mechanism underlying variable
personalized clinical trajectories. Cognitive reserve is grossly defined as the
capacity to preserve cognition despite aging or the increased resilience to
neurological injury11,12. A potential marker for cognitive reserve is the pre-
servation of structural brain integrity, which is defined as the rate of gray
matter atrophy. Indeed, whole brain volume decline is associated with
worsening cognitive skills such as working memory or processing speed1–3.
Graymatter atrophy is also a possible contributing factor to the relationship
between increased age and poorer recovery following a stroke, with the
integrity of the spared brain tissue being a marker for cognitive reserve and
the capacity for recovery13–17.

Indeed, gray matter integrity across individuals of the same chron-
ological age can vary substantially, with some individuals exhibiting gray
matter decline at levels observed in much older individuals and others
exhibit preserved brain structure well into advanced age18. Whereas whole
brain volumecanbeused as apersonalizedmeasure of brain integrity, recent
studies have demonstrated that age-related brain changes can be better
estimated by assessing the weighted distributed atrophy of brain regions,
since some regions can exhibit more atrophy compared with others19,20. For
example, Hedden and Gabrieli (2004) found that the largest age-related
volumetric changes occur in the prefrontal cortex whereas pathological
aging, which they define as those which accompany Alzheimer’s disease,
typically affect hippocampal regions1. Similarly, regional atrophydifferences
have been found following a stroke, with ref. 21. finding reductions in
ipsilateral thalamic volume in the first three months post-stroke21, and
Seghier and colleagues finding accelerated atrophy across the whole ipsi-
lateral hemisphere in the years following a stroke22.

This new field of research leverages quantitative neuroimaging to
determine age-like changes in brain or other tissues tomeasure the observed
effects on aging at the organ level. Thus, the novel concept of brain age has
recently emerged in neurology and neurosciences, and it is becoming
increasingly recognized as a marker for cognition and cognitive reserve.
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Brain age is estimated at the individual level by comparing regional gray
matter tissue volumes from one individual against a normative database of
healthy individuals15,23. Brain age calculation depends on multivariate
models, where atrophy (i.e., reduced gray matter volume) of different brain
regionshas a distinctweight as a predictor of age-relateddecline, the result is
an estimate of the expected age of the individual based on the integrated
brain tissue information.

The difference between an individual’s chronological age and the esti-
mated brain age provides information about the health of the brain tissue
relative to typical brain aging. Premature brain aging (defined as higher esti-
mated brain age compared with chronological age) is an important predictor
of lower cognition among older adults in general12,24. Premature brain aging is
associated with poorer cognitive reserve and lower resilience to injury15.

Importantly, strokes are associated with advanced brain age likely due
to amultifactorial phenomenon. That is,many stroke survivors have at least
one cardiovascular risk factor, which are independently associated with
higher brain age. However, the stroke lesion may also be independently
associated with decline in brain integrity and advanced brain age. For
example, stroke survivors typically have a higher brain age compared to age-
matched controls when measured as early as six weeks post-stroke and this
difference remains one-year post-stroke25. However, increased brain age
may be a consequence of the stroke, or a pre-morbid factor associated with
an increased risk of stroke25. Nonetheless, among individuals with aphasia,
increased brain age (in the acute and chronic stages) is associatedwithmore
severe aphasia15.

Notably, brain aging is a concept that has been largely defined based on
healthy individuals without focal brain lesions. It is however possible that
focal brain lesions (e.g., strokes) are associated with differential levels of
brain aging within the same person, as focal injury may lead to a directed
injury to a group of regions or to a neuroanatomical system. More speci-
fically, some regions of the brain may age faster than others26. Accelerated
brain aging in certain regions of the brain such as temporal gray matter has
been associated with the development of mild cognitive impairment27. In
stoke, injury from disconnection or from reduced cognitive engagement
may be associated with worse progressive atrophy and regional aging.
Importantly, we hypothesize that atrophy (i.e., reduced graymatter volume)
within specific brain systems commonly associated with language recovery
may be important determinants of variance in long-term language deficits,
controlling for the stroke lesion, chronological age, or non-specific brain
atrophy (i.e., graymatter volume). In this study, we tested our hypothesis by
applying a brain agemethod to estimate global and regional brain age based
on a large normative cohort of healthy controls, which was used to inves-
tigate the relationship between regional brain aging and aphasia severity.

Results
Stroke participants
See Fig. 1 for lesion overlay of all stroke participants. Demographic infor-
mation describing these participants are provided in Supplementary
Table 1. Stroke participants were, on average, 60.60 years (SD = 11.27 years)
which was significantly older than within-range (t =−7.082, p < 0.001) and

out-of-range controls (t = 7.381, p < 0.001). Participants had an average of
15.49 years of educations (SD = 2.28) which was significantly less than
within-range controls (t = 3.079, p = 0.002) but there was no significant
difference compared to out-of-range controls (t = 0.229, p = 0.820). There
were more males than females (males: 60.67%, females: 39.33%) which was
significantly different to within-range controls (males: 29.37%, females:
70.63%, t =−4.274, p < 0.001) and out-of-range controls (males: 82.08%,
females: 17.92%, t =−6.262, p < 0.001). Finally, the majority of participants
with strokewere right-handed, (left-handed: 10.23%, right-handed: 89.77%)
which was not significantly different to within-range controls (left-handed:
6.35%, right-handed = 89.68%, ambidextrous = 3.97%, t = 1.629, p = 0.105)
but was significantly different to out-of-range controls (4.7% left-handed,
91.5% right-handed, 3.77% ambidextrous, t = 1.984, p = 0.048). See Sup-
plementaryTable 1 for a full list of demographics for strokeparticipants, and
Supplementary Table 2 for control participant demographics.

Healthy controls
Data from healthy controls with an estimated brain age within 5% of their
chronological brain age (i.e., within-range controls, n = 126) were entered
into linearmodels. Demographic information describing these participants,
along with those excluded at this stage (i.e., out-of-range controls, n = 106)
are provided in Supplementary Table 2.

Mixed effects ANCOVA between hemispheres and controls vs
stroke participants
The two-way mixed-effects ANCOVA within the domain general regions
revealed that there was no significant main effect of group (out-of-range
control vs. stroke aphasia), F (1,263) = 0.039, p = 0.844. Age and education
were significant predictors (F(1,263) = 45.300, p < 0.001, and
F(1,263) = 12.259, p < 0.001 respectively). There was also a significant
interaction between hemisphere and group, F (1,263) = 18.178, p < 0.001,
where participants with stroke aphasia had an increased regional brain age
in the left hemisphere ROIs compared to out-of-range controls, see Fig. 2. It
is important to note that these analyses and Fig. 2 show only out-of-range
controls (i.e., control participants who had a whole brain age of >5% higher
or lower than chronological age). Regional brain age could not be computed
for in-range controls because they were used to create the model used to
estimate brain age.

Independent samples T-Test between controls and stroke
participants
Participants with stroke aphasia were older (M = 60.60, SD = 11.27) than
controls (M= 46.80, SD = 17.08, t(193) =−6.517, p < 0.001). However, the
range of both is similar: controls 20−79 years, stroke aphasia 29−80 years.

Correlational analysis between regional brain age and gray
matter volume
Pearson correlations between the brain age of the left and right hemisphere
were calculated for all regions. A strong positive correlation was found
between the left and right hemisphere for all regions (ranging from r = 0.61

Fig. 1 | Lesion overlay for participants with aphasia (n= 89). Lesion overlay where brighter yellow regions indicate more participants have a lesion, and darker red and
black regions indicate that less people have a lesion.
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Fig. 2 | Box plots showing chronological age alongside brain age and BrainGAP.
Box plots showing chronological age (black dots) then brain age (a, b) andBrainGAP
(c, d) for left (blue dots) and right (red dots) hemisphere in the following brain
regions: whole brain, language-specific regions, domain-general regions, frontal
regions, temporal regions, parietal regions, and occipital regions. a, c show

participants with aphasia, (b, d) show out-of-range controls. Note that graphs
showing control participants include only out-of-range controls (i.e., control par-
ticipants who had a brain age >5% higher or lower than their chronological age). LS
language-specific, DG domain-general.
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to 0.87), seeFig. 3. To account formultiple comparisons,we use the adjusted
p-value of 0.007 (0.05/7). It should be noted that correlations involving
language-specific regions may not be accurate due to the limited number of
participants with intact language-specific ROIs. Correlation analysis also
revealed a significant negative relationship between regional brain age and
regional gray matter volume in both hemispheres in every tested region
(ranging from r =−0.80 to −0.98), see Fig. 4. We account for multiple
comparisons by using an adjusted p value (0.05/14 = 0.0036). It is important
to note that these two scores (regional brain age and regional gray matter
volume) are not exactly the same as calculating regional brain age using the
linear regression equation, each ROI contributes differently to the overall
brain age estimation (i.e., gray matter volume in some ROIs is very
important and graymatter volume in other ROIsmay not be as important).
However, there would be a perfect correlation between gray matter volume
and brain age if we calculated it using only one ROI at a time.

Number of ROIs used in the linear model
Therewas variation in the number of ROIs used in the linearmodel for each
stroke participant, depending onwhich ROIs were lesioned andwhichwere
intact. Of the 8 domain-general regions, 3 stroke participants had 0 intact
regions so were excluded from this analysis. Of the remaining included
participants, the minimum intact ROIs was 1 and the max was 8, with
participants having an average of 4.45 intact regions (standard deviation =
2.04, median = 4).

We investigated the dispersion of the residuals to determine whether
thenumber ofROIsused to estimate regional brain age affected the accuracy
of the brain age prediction (i.e., if the domain-general regional brain age
predictionwould beworse for ParticipantAwhohad a lesionwhich covered
6 ROIs in the left domain-general region [i.e., 2 spared ROIs] vs Participant
B who had a lesion covering no ROIs in the left domain-general region [i.e.,
8 spared ROIs]). For the left domain-general region, there was a negative
correlation between the number of ROIs used and the standard deviation of
the residuals (R =−0.79, p < 0.001). However, there was not a significant
correlation between the number of ROIs used and themean of the residuals
(R =−0.17, p = 0.1114). Similarly, for the whole left hemisphere region,

there was a negative correlation between the number of ROIs used and the
standard deviation of the residuals (R =−0.94, p < 0.001). However, there
was not a significant correlation between the number of ROIs used and the
mean of the residuals (R =−0.11, p = 0.308).

Multiple linear regression analysis between regional brain age
and behavior
Multiple linear regression analysis between left domain-general regions and
WAB AQ revealed that BrainGAP (p = 0.008), gray matter volume
(p = 0.009), lesion volume (p < 0.001), and age (p < 0.001) were significant
predictors of WAB AQ. Similarly, BrainGAP (p = 0.001), gray matter
volume (p = 0.001), and lesion volume (p < 0.001) were significant pre-
dictors of theWABcomprehension subscore, see SupplementaryTable 3 for
a full breakdown of the results. Number of ROIs used to generate the brain
age estimation model was only a significant predictor of the spontaneous
speech subtest (p = 0.007).

Discussion
To investigate the relationship between regional brain aging and aphasia
severity, we created a model based on healthy participants to estimate
regional brain age.Although therewas a strong relationshipbetweenaging in
the left and righthemispheres, for participantswith stroke aphasia, estimated
brain agewashigher for left-sided structures. Therewas also a strong, but not
complete, relationship between BrainGAP and gray matter volume. As the
strokeparticipants in this studyhad large lesions to language-specific regions
in the left hemisphere,we focuson left domain-general regions.Ourmultiple
linear regression analysis revealed that for left domain general regions,
BrainGAP, gray matter volume, age, and lesion volume were significant
predictors of aphasia severity and language comprehension.

It has been previously reported that following a stroke, individuals
typically have an increased brain age compared to chronological age-
matched controls25. Although the current finding did not find that partici-
pants with aphasia had an older brain age across the entire brain, it does
extend this notion by demonstrating that the brain does not age in the same
way across all regions, particularly if there is a lesion. This is highlighted by

Fig. 3 | Brain age estimations for participants with aphasia. Scatterplots showing brain age estimations for participants with aphasia across different brain regions: (a)
whole brain, (b) language-specific regions, (c) domain-general regions, (d) frontal regions, (e) temporal regions, (f) parietal regions, (g) occipital regions.
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our finding that for left hemisphere stroke participants, but not controls,
intact left hemisphere regions had an increased brain age (i.e., premature
brain aging) compared to right hemisphere homologues, though it is
important to note that only out-of-range controls were used for this com-
parison. By calculating brain age separately for different regions, we were
able to demonstrate that the perilesional hemisphere (excluding the lesion)
has an increased BrainGAP in participants with aphasia, where individuals
with a left hemisphere stroke have an increased brain age in the left hemi-
sphere. One possible explanation for this is that both hemispheres are aging

at the same rate, but due to the stroke, the left hemisphere ages faster than
the right. An alternative is that prior to the stroke, left hemisphere regions
were already affected andmay have had an increased brain age. It is possible
that we did not find an increased brain age across both hemispheres in
stroke participants compared to controls becausewe usedonly out-of-range
controls for comparisons (i.e., control participants with a brain age >5%
higher or lower than chronological age). Thiswas because itwasnot possible
to use within-range controls for this comparison, as they are used in the
model to estimate regional brain age.

Fig. 4 | The relationship between gray matter volume and regional brain age.
Scatterplots to show the relationship between graymatter volume and regional brain
age across all regions. a left and right hemispheres, (b) left and right language-
specific regions, (c) left and right domain general regions, (d) left and right frontal

regions, (e) left and right temporal regions, (f) left and right parietal regions, and (g)
left and right occipital regions. Gray matter volume is shown in z-scores. Abbre-
viations: LS Language specific, DG Domain general.
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Followinga stroke, the integrityof the spared tissue is likelyan important
factor influencing recovery trajectories13–17. Indeed, research has demon-
strated that markers of reduced white matter integrity, such as white matter
hyperintensities, have been associated with poorer stroke recovery4,16,17,28.
Similarly, gray matter atrophy (i.e., reduced gray matter integrity) may be
related to recovery trajectories or the capacity for therapy gains13–17. Pre-
viously, global premature brain aging (higher BrainGAP) has been associated
with increased aphasia severity and reduced therapy gains14,15. This paper
demonstrates that there are different patterns of aging across the brain, and it
likely follows that aging in some brain regions may be more important for
predicting behavior than others. For example, it may be that, following a
stroke to language-specific regions of the brain, individuals may rely on
domain general regions to support behavioral recovery. Indeed, the multiple
linear regression results reveal that brain aging, specifically in domain general
regions is independently associated with overall aphasia severity, as well as
specific aspects of language including language comprehension. These results
highlight the notion that isolated agingmatters for behavior, and degradation
to specific brain regions may be associated with behavioral outcomes.

Although in this study regional brain ages are calculated from the gray
matter volume, correlations demonstrate that these estimated regional brain
age scores are not exactly the same measure as gray matter atrophy (i.e.,
volume). As expected, there was a strong correlation between the two;
however, there was variability in the magnitude of the relationship
depending on the brain region (e.g., left hemisphere:R =−0.80, left domain
general: R =−0.94). This suggests that different brain regions contribute
differentially to the brain age calculation. For regions with higher correla-
tions with BrainGAP and gray matter volume (e.g., left or right occipital
regions [R = 0.98]), it is likely that all regions contribute a similar amount to
the brain age estimation. However, for regions with slightly weaker corre-
lations (e.g., left hemisphere:R =−0.80, left domain general:R =−0.94), it is
likely that atrophy (i.e., reduced gray matter volume) in some ROIs is more
closely associated with chronological age in controls.

This is corroborated in the multiple linear regression results where
both BrainGAP scores and atrophy (i.e., reduced gray matter volume)
independently predicted all behavioral scores. Again, this highlights that
aging to some brain regions may be more important than others. Overall
gray matter degradation in older age has previously been associated with
health factors suchas hypertension or diabetes29–31, therefore future research
could investigate if specific health or demographic factors affect graymatter
volume differently across the brain.

In linewith previous research, lesion volumewas a predictor of aphasia
severity (WAB AQ) as well as all WAB subtest scores except spontaneous
speech4–7. Similarly, age was a consistent predictor of WAB scores. Age-
related changes in general cognition, as assessed by tests such as the
MoCA32,33 or the Mini Mental State Exam (MMSE)32,34 are well-
documented8,9,35–37, but the relationship between age and language-specific
aspects of cognition is less clear. Some studies suggest that there is age-
relateddecline inname retrieval, but no correspondingdecline in retrieval of
action-related words38. Similarly, age-related changes in language produc-
tion often appear more notable than those in comprehension37. Research
often suggests that the relationship between age and increased aphasia
severity is driven by gray matter atrophy and potential cognitive reserve.
However, as we found that age was an independent predictor of aphasia
severity separate to both BrainGAP scores and atrophy (i.e., reduced gray
matter volume), it is likely that other factors are also contributing to the
relationship between age and aphasia severity. Other factors affect the
integrity of non-lesioned brain tissue in older age andmay be important for
post-stroke outcomes, such as increased vascular risk factor burden and
small vessel disease. Pathological white matter hyperintensities, a marker of
small vessel disease, have been associated with larger ischemic lesion
volumes39,40, poorer stroke outcomes41,42, and increased likelihood of post-
stroke cognitive decline43–46. Future studies could incorporate measures of
white matter hyperintensities, or other markers of small vessel disease, into
models alongside age, gray matter volume (atrophy), and BrainGAP to
investigate the contribution of small vessel disease.

An important aspect of the methodology in this paper was that each
participant with aphasia had a different lesion volume and location,
therefore the same ROIs were not used to estimate regional brain age for
each participant. For each individual, we noted the number of ROIs used to
estimate regional brain age, and we investigated the dispersion of the resi-
duals to identify whether the number of ROIs affected the accuracy of the
regional brain age prediction. There was a negative correlation between the
number of ROIs used and the standard deviation of the residuals. This
suggests that the number of ROIs used is linearly associated with the
accuracy of the brain age estimation; however, as there was no significant
relationship with the mean of the residuals, it suggests that there is not a
tendency towards a higher or lower brain age estimation, the model is
simplymore accuratewithmore regions.However, in an effort to control for
this, we included the number of ROIs used as an independent variable in the
linear mixed effects models predicting behavior. It was a significant pre-
dictor for the spontaneous speech subtest. Therefore, the results should be
interpreted with caution since the estimated brain age may be less accurate
for participants with fewer ROIs remaining. The fact that the number of
ROIs used was not a significant predictor for any other behavioral score
suggests that the regional BrainGAP scores are predictors of behavior
irrespective of how many ROIs were used to estimate brain age.

There are some limitations with the current study. For example, con-
trol participants were younger than participants with aphasia, although the
range of ages for the both groups was broad (healthy controls 20−79 years,
stroke participants 29−80 years). Also, in comparisons of regional brain age
between controls and participants with stroke aphasia, only out-of-range
controls could be used (i.e., those with an estimated whole brain age of >5%
higher/lower than chronological age) as within-range controls were used to
create the model which estimates regional brain age.

Furthermore, because all participants had large left-hemisphere lesions
covering themajority of the language-specific regions,we are unable to draw
any conclusions about specific lesioned regions for each participant, we can
only draw conclusions about non-lesioned regions. Because of this, the
participants in the current study were not an ideal model for language-
specific aging as they all had stroke aphasia and therefore had large lesions in
language regions of the brain. This enabled us to investigate the hypotheses
relating to aging in domain-general brain regions only, meaning we cannot
be sure that the brain age of language-specific regions are not also con-
tributing to behavior. However, future studies could investigate aging spe-
cifically to language regions in different populations, possibly with right
hemisphere lesions, or lesions elsewhere in the left hemisphere. Further-
more, throughout the manuscript we refer to any individual with a positive
BrainGAP score as having premature brain aging, irrespective of the size of
the gap. It is possible that having a small (positive or negative) BrainGAP is
part of individual variability rather than premature brain aging. Future
studies could investigate a potential critical threshold for classifying some-
one as having premature brain aging.

Finally, the data in this study is froma single timepoint following stroke
therefore we are unable to investigate the brain age of participants prior to
the stroke. It is possible that there are changes in brain age before stroke
onset, possibly associated with cerebrovascular disease burden47. Therefore,
it is not possible tomake any conclusions about the rate of brain aging using
the current data. Future studies could address this using longitudinal data.

In this studyweused abrain agemethod to estimate global and regional
brain age based on a normative cohort of healthy controls to investigate the
relationship between regional brain aging and aphasia severity. For domain
general regions, BrainGAP, gray matter volume, age, and lesion volume
were significant predictors of aphasia severity and all WAB-R subtests,
suggesting that isolated aging matters for behavior, and degradation to
specific brain regions may be associated with behavioral outcomes.

Methods
Participants
Healthy controls. Healthy participants (n = 232) were part of the
ABC@UofSC Repository48, an ongoing cross-sectional cohort study at
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the University of South Carolina. Participants were between 20 and 80
years of age and were at least proficient in English. Institutional Review
Board Approval was obtained, followed by written informed consent
provided by all participants at enrollment.

Stroke participants. Stroke participants (n = 89) were part of the
POLAR (Predicting Outcomes of Language Rehabilitation) clinical trial
(NCT0341678), with data collected at the Center for the Study of Aphasia
Recovery (C-STAR) at the University of South Carolina (USC) and the
Medical University of South Carolina (MUSC). Behavioral testing took
place at research laboratories atUSC andMUSC.ASHA-certified speech-
language pathologists with experience working with individuals with
aphasia administered all assessments and treatments. Aphasia type was
determined based on the Western Aphasia Battery Revised (WAB-R49)
classification consistent with published norms.

The following inclusion/exclusion criteria were applied. Inclusion
criteria: (i) incurred a left-hemisphere ischemic or hemorrhagic stroke to the
middle cerebral artery, (ii) had chronic aphasia (≥12 months post-stroke),
(iii) were between 21 and 80 years of age, (iv) had spoken English as their
primary language for at least 20 years, and (v)were able toprovidewrittenor
verbal consent. Participants were excluded if they had (i) severely limited
verbal output (as measured by aWAB-R49 Spontaneous Speech rating scale
score of 0−1), (ii) severely impaired auditory comprehension (as measured
by a WAB-R Auditory Comprehension rating scale score of 0−1), (iii)
bilateral or cerebellar stroke, or (iv) or contra-indications to testing with
magnetic resonance imaging (MRI). Individuals with multiple strokes were
eligible if all lesions were confined to left supratentorial territory.

Behavioral testing
As part of the POLAR protocol, stroke participants underwent extensive
baseline language and neuropsychological testing, including the WAB-R49,
as well as MRI at the time of enrollment50. For each participant, WAB-R
aphasia quotient (AQ) was calculated along with the following WAB-R
subscores: naming, spontaneous speech, repetition, and comprehension.

Brain imaging
MRI data acquisition and preprocessing. Both healthy participants
and participants with stroke aphasia underwent high-resolution T1- and
T2-weighted neuroimaging on a Siemens Trio 3 T scanner equipped with
a 12-channel (Trio configuration) or 20-channel (following upfit to
Prisma configuration) head coil using the following parameters: T1-
weighted imaging utilized an MP-RAGE sequence with 1 mm isotropic
voxels, a 256 × 256matrix size, a 9°flip angle, and a 92-slice sequencewith
repetition time (TR) = 2250 ms, inversion time (TI) = 925 ms, and echo
time (TE) = 4.11 ms. T2-weighted scans were acquired using the same
angulation and volume center as the T1 scan. This 3D T2-weighted
SPACE sequence used a resolution of 1 mm3 was used with a field of
view = 256 x 256 mm, 160 sagittal slices, variable degree flip angle,
TR = 3200 ms, TE = 212 ms, x2 GRAPPA acceleration (80 refer-
ence lines).

For individuals with stroke aphasia, lesions were drawn onto each
participant’s T2-weighted image by a neurologist (author LB) or trained
study staff member (author RNN), both of whom were blinded to partici-
pant demographic information and WAB-R scores. Each participant’s T2
imagewas co-registered to theirT1 image, andbinary lesionmapswere then
spatially transformed into native T1 space using the resulting function.
Resliced lesionmapswere smoothedwith a 3mm full-width halfmaximum
Gaussian kernel to remove sharp edges associated with hand drawing.
Enantiomorphic segmentation-normalization was then conducted using
the nii_preprocess pipeline (https://github.com/neurolabusc/nii_
preprocess)51, a series of custom MATLAB-based (R2017b, TheMath-
Works) scripts51 that leverage multiple best-of-breed programs (SPM12;
Functional Imaging Laboratory,WellcomeTrust Centre forNeuroimaging,
Institute of Neurology [www.fil.ion.ucl.ac.uk/spm], FSL v6.0.352, ASLtbx
[http://www.cnf.upenn.edu/~zewang/ASLtbx.php], and MRItrix [https://

www.mrtrix.org/]) to normalize and process MRI data acquired from
participants with lesioned brains. This included creation of a mirrored
image of the right hemisphere, which was co-registered to the native T1
image. A chimeric image (i.e., a healed brain) was then created, based on the
native T1 scan with the lesioned tissue replaced by tissue from themirrored
hemisphere53. SPM12’s unified segmentation-normalization54 warped this
chimeric image to standard space, and the resulting spatial transform was
applied to the native T1 scan as well as the lesion map and the T2/
DWI image.

Brain age for healthy controls. Brain age estimation for control par-
ticipants was performed on T1-weighted images using the BrainAgeR
analysis pipeline (github.com/james-cole/brainageR) and the default
protocol23,55. First, T1-weighted images were segmented into gray and
white matter before being normalized using non-linear spatial
registration23 and SPM12’s DARTEL toolbox54. The BrainAgeR analysis
pipeline uses a customized version of FSL slicesdir to generate a direc-
tory of images and corresponding index.html files for quality control-
ling in a web browser (github.com/james-cole/brainageR). These
probabilistic tissue maps were visually inspected by an expert neurol-
ogist (author LB) to ensure quality of the segmentation. The cere-
brospinal fluid tissue was removed, and the gray and white matter
probabilistic tissues were vectorized, concatenated, and subjected to a
principal components analysis to reduce dimensionality. The compo-
nents explaining the top 80% of the variance were used for brain age
prediction. A machine-learning algorithm using a pretrained Gaussian
regression model implemented in the R package Kernlab was used to
estimate brain age. This pretrained model was based on scans of 3377
healthy individuals from 7 publicly available datasets and tested on 611
different scans of healthy individuals aged between 18 and 90 years23.
See Cole and colleagues formore detail on the BrainAgeR pipeline23. It is
important to note that this is the only time throughout the paper where
a global brain age score is used.

To create accurate baselinemodels of graymatter volume and age, only
controls with an estimated brain age within 5% of their chronological age
were used to create future linear models (n = 126). For example, data from
ParticipantAwith an estimatedbrain age of 82 and a chronological age of 80
would be used in the models, whereas data from Participant B with an
estimated brain age of 85 and a chronological age of 80would not be used in
the linearmodel. Included control participants will be referred to as within-
range controls in future descriptions (n = 126). Those excluded at this step
are henceforth referred to as out-of-range controls (n = 106).

Gray Matter Volume. Both total gray matter volume and gray matter
volume of each region of interest (ROI) in the Johns Hopkins University
(JHU) atlas were also calculated for all controls (n = 216) and participants
with aphasia (n = 89) using the Computational Anatomy Toolbox
(CAT12) for SPM12 (Wellcome Department of Cognitive Neurology).
Voxel-based morphometry was used to estimate the volume of gray
matter using the following steps and default parameters: (1) spatial
registration to a reference brain template, (2) tissue classification (seg-
mentation) into graymatter, whitematter, and cerebrospinal fluid (CSF),
then (3) bias correction of intensity non-uniformities54. For each parti-
cipant, gray matter volume was divided by total intracranial volume to
account for variation in brain volume.

Classifying regions of the brain. ROIs (189) from the JHU atlas were
grouped into different brain regions, see Fig. 5. The following groupswere
created; ROIs within the left hemisphere (94 ROIs), right hemisphere (94
ROIs), domain general regions (16 ROIs: left: 8, right: 8), language-
specific regions (18 ROIs, left: 9, right: 9), ROIs in the frontal lobe (32
ROIs, left: 16, right: 16), temporal lobe (26 ROIs, left: 13, right: 13),
parietal lobe (12 ROIs, left:6, right: 6), and occipital lobe (10 ROIs, left: 5,
right: 5). A full breakdown of which ROIs were in each region can be
found in Supplementary Data 2. Graphs to show gray matter volume in
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controls and proportion of lesion in each region can be found in Sup-
plementary Fig. 1. In all subsequent text, ‘ROIs’ will refer to areas in the
JHU atlas (e.g., left superior frontal gyrus, right superior frontal gyrus,
etc.), while ‘regions’will refer to these brain areas comprised of ROIs (e.g.,
domain general regions, language-specific regions).

Calculating regional brain age in participants with Aphasia. For each
participant with aphasia, overlap with the lesion and ROIs in the JHU
atlas was calculated to identify how much of each ROI was lesioned. For
each region (e.g., language-specific region), all ROIs with at least 99%
spared by the lesion were identified. Using those identified ROIs, for each

Fig. 5 | Groupings of ROIs into brain regions.Groupings of ROIs from the JHU atlas into brain regions. a shows domain general regions, (b) language specific regions, (c)
frontal regions, (d) parietal regions, (e) temporal regions, and (f) occipital regions.
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participant with aphasia, a multiple linear regression was calculated
between the intact ROIs and age in the within-range control participants
to estimate the multivariate relationship between the gray matter volume
in these ROIs and regional brain age. Using this model, it was possible to
estimate the regional brain age of the individual with aphasia (i.e., the
combined brain age of the ROIs used in the model e.g., left domain
general regions). For example, for left domain-general regions, if Parti-
cipant A has a lesion covering all left domain-general ROIs except
superior frontal gyrus (SFG) and middle frontal gyrus (MFG), in the
within-range control participants a multiple linear regression would be
calculated where the dependent variable was their estimated brain age
from the BrainAgeR pipeline, and the independent variables were the
gray matter volume of left SFG and left MFG to generate a multivariate
model. Then, the volume of left SFG and left MFG in Participant A could
be entered into the multivariate model to give an estimate of their left
domain-general regional brain age. For Participant B, who may have no
lesioned left domain-general ROIs, the volume of all 8 left domain-
general ROIs would be used to generate the multivariate model in the
within-range controls. Then, the gray matter volume of all of Participant
B’s 8 left domain-general ROIs would be entered into the model to
estimate their left domain-general regional brain age.

It is important to highlight that each participant with aphasia has a
different lesion volume and location, meaning that different ROIs were
affected by the lesion. As each linear equation is derived from the ROIs in
each region which are spared, the same ROIs are not used for each

participant. As described above, Participant A may have only had 2 spared
(i.e., non-lesioned) left domain-general ROIs (therefore 6 lesioned) so for
this participant, only 2 ROIs would be used to create the linear model in
control participants and then to estimate regional brain age of ParticipantA.
Conversely, Participant B may have had no lesioned left domain-general
ROIs, so all 8 left domain-general ROIs would be used to create the linear
model in control participants and then to estimate the regional brain age of
Participant B. For participants with no spared language-specific ROIs, no
linear model was created in control participants, and this individual was
excluded from the future statistics using language-specificROIs.However, if
ROIs in the domain-general region were spared, this individual would be
used for domain-general region statistics, seeFig. 6. For eachparticipant, the
number of ROIs used to generate each regional linear regressionmodel was
recorded, then the dispersion of the residuals was investigated to determine
whether the number of ROIs used in the prediction affected the accuracy of
the brain age prediction (i.e., if the left domain-general regional brain age
predictionwouldbe significantly better orworse forParticipantAwhohada
lesion which covered 6 of 8 ROIs in the left domain-general region versus
Participant B who had a lesion covering no ROIs in the left domain-general
region).

For each set of regions (i.e., left hemisphere gray matter, language-
specific regions, domain-general regions, etc.), brain age was estimated for
each participant. The brain age gap was also calculated using the following
equation: brain age gap=brain age – chronological age. Thiswill henceforth
be referred to as BrainGAP, where a positive BrainGAP suggests that

Fig. 6 | Brain age estimations for domain-general regions. Brain age estimation of
domain-general regions for 3 example participants to highlight the use of different
ROIs for each individual brain age estimation based on which ROIs were spared by
the lesion. show the first participant, where (a) gives an outline of their behavioral
scores, (b) shows an outline of their lesion (blue line) alongside the left domain
general ROIs, and (c) shows the custom age estimation model based on healthy
controls for the spared domain-general ROIs for this participant (note they are
different for each participant based on which ROIs are lesioned). Similarly, (d, g)
show behavioral scores for 2 other participants, (e, h) show brainmaps of the overlap

between their lesions and the domain general ROIs, and (f, i) show their custom age
estimation models. Note that figures are in neurological orientation so the left
(lesioned) hemisphere is shown on the right. WAB AQ Western Aphasia Battery
Aphasia Quotient, Spont. Speech Spontaneous Speech, DG domain general, ROIs
regions of interest, MFG DPFC L middle frontal gyrus dorsal prefrontal cortex left,
IFG orbitalis L inferior frontal gyrus orbitalis left, PCC L posterior cingulate gyrus
left, SFG L superior frontal gyrus left, PrCG L precentral gyrus left, SMG L supra-
marginal gyrus left, Ins L insular left.
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estimated brain age is older than chronological age (i.e., premature brain
aging). It is important to note that throughout the manuscript, we refer to
any individual with a positive BrainGAP as having premature brain aging,
irrespective of the size of the gap.

Calculating regional brain age in out-of-range controls. Using the
same method as described above for participants with aphasia, regional
brain age was calculated for out-of-range controls (n = 106: healthy
participants whose whole brain age estimated using the BrainAgeR
pipeline was more than 5% above/below their chronological age). We
calculated this is to compare regional brain age in healthy control par-
ticipants compared to stroke participants, and it was not possible to
calculate this for in-range controls as they were used to create the esti-
mation model and therefore regional brain age estimations could not be
generated for this group. It is therefore important to note that all ROIs
were included for each region as these participants had no lesioned
tissue.

Statistics
Statistics and reproducibility. Statistical analyses were conducted using
Matlab (R2017b, TheMathWorks). All participants were included in
statistical analyses where described (PWA: 89 participants, within-range
controls: 126 participants, out-of-range controls: 106 participants). All
scripts used for analysis will be made available on Dr Bonilha and Dr
Rorden’s Github.

Mixed effects ANCOVA between hemispheres and controls vs
stroke participants. To identify if there were differences in BrainGAP
between hemispheres, and between out-of-range controls and stroke
participants, a two-way 2 (group: control or stroke aphasia) x 2 (hemi-
sphere: left or right) ANCOVA was conducted with BrainGAP in the
domain general ROIs as the dependent variable and the following as
covariates: chronological age, years of education, sex and handedness.

Independent sample T-tests between controls and stroke partici-
pants. To investigate whether there was a statistical difference in the age
of control participants and participants with aphasia, independent
sample t tests were conducted.

Correlation analysis between regional brain age and gray
matter volume. To investigate whether there was a significant relation-
ship between regional brain age and regional gray matter volume
(accounting for total intracranial volume) in participants with aphasia,
Pearson correlations were conducted for every region (i.e., left hemi-
sphere, right hemisphere, left language-specific regions, right language-
specific regions, left domain-general regions, right domain-general
regions, left frontal regions, right frontal regions, left temporal regions,
right temporal regions, left parietal regions, right parietal regions, left
occipital regions and right occipital regions).

Number of ROIs used in the linear model. We investigated the dis-
persion of the residuals to determine whether the number of ROIs used to
estimate regional brain age affected the accuracy of the brain age pre-
diction (i.e., if the domain-general regional brain age prediction would be
worse for Participant A who had a lesion which covered 2 ROIs in the
domain-general region vs Participant Bwho had a lesion covering 0 ROIs
in the domain-general region). To do this, we ran correlations between
the number of ROIs used and both the standard deviation of the residuals,
and themean of the residuals. For these analyses, a correlation coefficient
closer to 0 would indicate that the number of ROIs used in the model did
not strongly influence the accuracy of the brain age prediction. A strong
negative correlation might suggest that the brain age prediction was less
accurate when a participant had less intact ROIs, while a strong positive
correlation suggests that the brain age predictions were more accurate
with fewer ROIs.

Multiple linear regression analysis between regional brain age and
behavior. We evaluated the relationship between regional brain age and
aphasia severity (WAB AQ and subscores) using multiple linear
regression models in which the behavioral variable was set as the
dependent variable, and the following variables were used as indepen-
dent variables: BrainGAP, atrophy (average gray matter volume), lesion
volume, participant age, and number of ROIs used in the linear
regression model. Given that the WAB AQ and WAB subscores are
likely correlated, we adjusted alpha levels of the statistical tests to
account for multiple comparisons and to reduce the likelihood of Type 1
errors (0.05/5 = 0.01).

Study approval
This study was approved by the University of South Carolina IRB Com-
mittee. All participants gave informed consent for study participant in
accordancewith theDeclaration of Helsinki. All ethical regulations relevant
to human research participants were followed.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data will be shared upon reasonable request to the corresponding
author. Due to the limitations of our ethics, a request is deemed as rea-
sonable if it does not require identifiable information relating to the parti-
cipants. Data used to create graphs are included in Supplementary Data 1.

Code availability
Preprocessing scripts are available at the following repository: 10.5281/
ZENODO.4027711. All scripts used for analysis will be made available on
Dr Bonilha and Dr Rorden’s Github.
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