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Summary
Background Dengue epidemics impose considerable strain on healthcare resources. Real-time continuous and non-
invasive monitoring of patients admitted to the hospital could lead to improved care and outcomes. We evaluated the
performance of a commercially available wearable (SmartCare) utilising photoplethysmography (PPG) to stratify
clinical risk for a cohort of hospitalised patients with dengue in Vietnam.

Methods We performed a prospective observational study for adult and paediatric patients with a clinical diagnosis of
dengue at the Hospital for Tropical Disease, Ho Chi Minh City, Vietnam. Patients underwent PPG monitoring early
during admission alongside standard clinical care. PPG waveforms were analysed using machine learning models.
Adult patients were classified between 3 severity classes: i) uncomplicated (ward-based), ii) moderate-severe
(emergency department-based), and iii) severe (ICU-based). Data from paediatric patients were split into 2 classes:
i) severe (during ICU stay) and ii) follow-up (14–21 days after the illness onset). Model performances were
evaluated using standard classification metrics and 5-fold stratified cross-validation.

Findings We included PPG and clinical data from 132 adults and 15 paediatric patients with a median age of 28 (IQR,
21–35) and 12 (IQR, 9–13) years respectively. 1781 h of PPG data were available for analysis. The best performing
convolutional neural network models (CNN) achieved a precision of 0.785 and recall of 0.771 in classifying adult
patients according to severity class and a precision of 0.891 and recall of 0.891 in classifying between disease and post-
disease state in paediatric patients.

Interpretation We demonstrate that the use of a low-cost wearable provided clinically actionable data to differentiate
between patients with dengue of varying severity. Continuous monitoring and connectivity to early warning systems
could significantly benefit clinical care in dengue, particularly within an endemic setting. Work is currently underway
to implement these models for dynamic risk predictions and assist in individualised patient care.
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Introduction
Dengue has emerged in the last two decades as the most
common vector-borne viral infection globally. It has
been estimated that 96 million clinically apparent
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dengue infections occur worldwide each year, as well as
a further 300 million asymptomatic infections.1 This
disease imposes a considerable strain on healthcare re-
sources in endemic countries. Dengue causes a wide
perial.ac.uk (S. Karolcik).
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Research in context

Evidence before this study
We searched Google Scholar for published articles available in
English using the keyword groups (“deep learning” or
“machine learning” or “artificial intelligence”) and
(“photoplethysmography” or “PPG”) and (“dengue” or
“hemorrhagic fever”) up to May 1st, 2023. While the field of
applying machine learning to interpret PPG waveforms has
been on the rise, there is only a limited amount of
publications exploring the specific relationship between
dengue and PPG. The identified publications focused on
extracting dengue surrogates like haemoglobin concentration
from the PPG data and did not fully explore the link with
dengue.

Added value of this study
In this study we leverage photoplethysmography, a cost-
effective and non-invasive optical monitoring technology, to
perform a large-scale investigation into the monitoring of
dengue fever and its subsequent severity classification. With

more than 1700 h of continuous waveform data from over
150 patients with dengue, we have compiled a dataset to
tackle the burden of this disease with cost-effective solutions.
Through a series of experiments, we have developed a set of
machine learning models capable of accurate classification of
dengue severity states using segments of PPG waveform
alone.

Implications of all the available evidence
The achieved performance of the models indicates exceptional
accuracy in selecting between ill states and has the potential
to significantly improve the current standard of care for this
difficult-to-manage disease. Its large, hospital-acquired
dataset puts it in a unique position to deliver a modern and
cost-effective patient management tool to LMIC countries
suffering from endemic dengue infections. Accurate severity
state classification has the potential to inform attending
clinicians of the effectiveness of delivered care and identify at-
risk patients in already overcrowded health systems.
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spectrum of clinical syndromes with the majority of
patients experiencing a mild self-limiting febrile illness
which does not require hospital admission. A minority,
however, develop severe dengue, which is characterized
by vascular leak, and hypovolaemic shock and requires
urgent medical treatment.2 No effective antiviral agents
or definitive therapeutics are available to treat dengue,
and current management strategies rely on close
monitoring of disease progression in order to provide
prompt supportive treatment.3

Predicting the individual patients who go on to
develop severe dengue is challenging. Clinical evalua-
tion of patients with dengue in early illness can help
identify signs which are associated with severe disease.3

The patients who are at increased risk of severe dengue
are commonly hospitalized in order to undergo frequent
clinical assessments in anticipation of the development
of shock, bleeding and/or organ impairment.3 Evalua-
tion of vital signs parameters including heart rate, blood
pressure, pulse pressure and blood hematocrit is crucial
in dengue monitoring since they provide information
regarding volume distribution and hemoconcentration.2

However, the processes of clinical monitoring are
inherently demanding on healthcare resources in terms
of time and staffing. During the peak season of dengue,
high-quality medical equipment required to collect these
parameters can often be in short supply within low-
income and middle-income (LMIC) settings, limiting
the timeliness and effectiveness of healthcare in-
terventions. Alternative approaches which can closely
monitor patients and give timely warnings of physio-
logical deterioration in dengue are needed.

One approach to providing robust physiological
monitoring for patients in LMICs is through the use of
low-cost wearable sensors. The non-invasive nature, low
cost, and ability for continuous real-time monitoring
and connectivity of wearables can lead to improved care
and outcomes of patients admitted to the hospital.4 Such
wearables commonly employ photoplethysmography
(PPG), a well-established technique for obtaining in-
formation about blood volume changes during the car-
diac cycle and monitoring heart rate by measuring light
absorption increases associated with the systolic in-
crease in arterial blood volume.5 Recently, machine
learning algorithms have been developed to measure
fluid volume status using a parameter called the
compensatory reserve index (CRI) before any signs of
hypotension, using PPG alone in patients with hae-
morrhagic shock,6 and dengue.7 As PPG is commonly
employed by wearable devices, this approach could
provide robust physiological monitoring for patients
with dengue.

Deep learning convolutional neural networks have
been the model of choice when analysing raw PPG
datasets,8,9 however, only limited work was done to
explore the specific relationship between infectious
diseases and waveform features.10 To our knowledge,
studies focusing on dengue management generally use
traditional methods such as decision trees,11 multiple
linear regression12,13 and gradient boosting methods.14

These methods are usually applied to manually
collected clinical datasets with low granularity. This
opens opportunities to use continuous PPG data to
explore the link between waveform features and dengue
severity and build paths for approaches to patient
management using low-cost, wearable devices.

The study starts by introducing a continuous PPG
dataset collected from patients with dengue at the
www.thelancet.com Vol 104 June, 2024
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Hospital for Tropical Diseases in Ho Chi Minh City,
Vietnam. The dataset was acquired using a commercial
wearable finger PPG sensor together with timestamped
clinical spot measurements obtained during routine
care. Following the dataset collection, we have developed
an exploratory machine-learning pipeline to investigate
two classification objectives using a set of models with
increasing complexity. The primary objective of the
study focused on showing that continuous, wearable
PPG data acquired from adult patients with dengue
contain enough information to determine the severity
level while the secondary objective focused on dis-
tinguishing between ill and recovered paediatric pa-
tients with dengue. Both of these objectives pave the way
for cost-efficient patient monitoring approaches for
seasonal infections, specifically prevalent in LMIC.
Methods
Study design and participants
This observational clinical study was conducted at the
Hospital for Tropical Diseases in Ho Chi Minh City,
Vietnam and contained 132 adults and 56 paediatric
patients at various stages of the disease. Clinical
recruitment was performed between June 2020 and
April 2022. The sample size for this study was deter-
mined by the constraints of a typical clinical practice,
reflecting the number of patients diagnosed with
dengue available for inclusion.

Continuous waveforms have been collected using a
wearable PPG sensor developed by Smartcare Analytics
(Oxford, United Kingdom), capable of pulse oximetry
with wavelengths at red and IR frequencies. The aim
was to capture continuous data for the first 24 h after
hospital admission as those are the most critical from a
dengue disease progression perspective. The total
recording time was reduced for a subset of emergency
department patients where data acquisition was stopped
before transfer. All raw waveforms were sampled at
100 Hz and saved using the accompanying tablet app.

Patients were recruited within 48 h of admission to
the Hospital for Tropical diseases. Adult and paediatric
patients who met inclusion criteria were approached
and recruited by study staff. Once informed consent
and/or assent form was obtained, patients were enrolled
to the study. Inclusion criteria required patients with a
clinical diagnosis of dengue and aged ≥8 years. Exclu-
sion criteria included: (1) Failure to give informed
consent and (2) contraindications to use of monitoring
equipment (e.g. prone positioning, allergic to electrodes,
could not apply PPG device due to finger/toe disability).

Collected clinical data included clinical examination,
vital signs, laboratory tests, and treatment received at
enrolment, over the first 24 h after enrolment, and then
daily up to 5 days or until hospital discharge, whichever
was sooner. Measurements of blood pressure, pulse
rate, respiratory rate, body temperature and oxygen
www.thelancet.com Vol 104 June, 2024
saturation were taken as part of standard care. These
were recorded from medical notes in the case report
forms (CRFs) for all patients enrolled in the study. In-
formation regarding routine patient fluid intake,
inotropic therapy, results of blood tests (e.g. haematoc-
rit, platelet count) and changes in clinical management
were also captured in the CRFs. For all patients, sex was
determined from medical records.

Data quality
The raw PPG signal acquired from the wearable is
processed through a 2-stage pipeline to determine if it
has sufficient quality for further analysis. In the first
stage, a 4th order Chebyshev II filter with a 0.15 20 Hz
passband is used. This was determined to be an optimal
bandpass filter type for raw PPG signal in 15. The sec-
ond stage uses two signal quality indices (ZSQI and
MSQI) introduced in 16 to accept or reject each filtered
signal segment. The zero-crossing rate, or (ZSQI), counts
the number of times the signal passes the origin as
defined in Equation (1). A number of zero crosses in a
filtered clean signal segment is directly proportional to
heart rate and therefore a signal is deemed acceptable if
ZSQI lies within the 45–120 bpm range.

ZSQI = 1
N

∑N
n = 1

I{y< 0} (1)

Matching of multiple systolic wave detection algo-
rithms, or MSQI , calculates the agreement between two
different peak detector algorithms following the defini-
tion in.16 The Equation (2) illustrates this approach,
where SPD1, SPD2 represent the set of peaks from the
adaptive threshold method and Billauer’s method
respectively. The acceptable segment threshold for MSQI

was set to 0.9 to allow small disagreements between the
algorithms.

MSQI = (SPD1 ∩ SPD2)
SPD1

(2)

The final decision if the patient data should be
included in the subsequent feature extraction and model
training is made based on the overall proportion of bad-
quality segments. If for a given patient, the proportion
of noisy segments is more than 10%, it is removed from
the cohort.

Machine learning pipeline
Due to the size of the feature space of the dataset, we
have conducted a series of experiments of increasing
complexity to develop a suitable model for the classifi-
cation of disease severity from wearable PPG data as
illustrated in Fig. 1. Furthermore, the same approach
was used to develop a model for classifying the differ-
ence between acute disease and follow-up recordings 3
weeks after the illness onset in paediatric patients. Due
3
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Fig. 1: Illustration of the machine learning pipeline used in this work. It starts by extracting relevant patient data (cleaned and filtered) according
to the clinical question. The data is then passed through 3 separate feature extraction algorithms feeding their respective models. Variable
feature extraction parameters allow further model optimization. In the next stage, the baseline and CNN models are trained. These are done
sub-sequentially to evaluate performance improvements. Lastly, each model is separately validated using 5-fold cross-validation before col-
lecting the final performance metrics.
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to the potentially stressful nature of conventional med-
ical treatments, some intrinsic differences in base mo-
dalities like heart rate were expected between these
classes, pointing to a likely separability of the dataset. By
employing feature extraction pipelines of varying com-
plexities, we were able to investigate the effects of
different signal representations on the classification ca-
pabilities of the model. The work started by imple-
menting baseline machine learning models to evaluate
the performance in the time domain and frequency
domain representation of the PPG signal. We have then
evaluated deep-learning CNN models using the time-
frequency representation of the signal to improve the
performance further.

The primary objective of the study was to develop a
suitable model for dengue severity classification in adult
patients. The secondary research objective was to show
that raw PPG data can be used to differentiate between
the healthy (post-disease follow-up) and ill (severe
dengue) states in paediatric patients.

Feature extraction
Depending on the complexity of the underlying model,
three different FE approaches have been implemented.
In the first iteration of baseline models, the PPG
waveform is used in its time-domain representation
right after the filtering stage. For each of the segments
of length n, the feature map will be an array-like struc-
ture holding n subsequent signal values. This approach
provides a set of baseline performance metrics, high-
lighting the relationship between continuous PPG
signal and the investigated research question.
The frequency-domain signal representation uses
half-spectrum FFT. Given the sampling frequency of
100 Hz, the spectrum is defined for [0–50]Hz. However,
since the signal is band-pass filtered with a cut-off fre-
quency at 20 Hz, only the magnitude of the spectrum in
the range [0–20]Hz is used as illustrated in the
Supplemental Figure S1a.

The last FE approach is using time-frequency rep-
resentations based on the scipy17 short-time Fourier
transform (STFT) implementation. This process splits
the signal into n windows, computing the FFT for each
and then stacking them into a 2D image to form a
feature set. Supplemental Figure S1b illustrates a
computed STFT for a segment of PPG signals limited to
the [0–10]Hz range for better visualisation.

Model architecture
Baseline models
The baseline models aim to give initial performance
metrics of the dataset, allowing comparison-based eval-
uation of the complex CNN-based models. The collec-
tion of baseline models consists of a Decision Tree (DT),
Random Forest (RF), Support Vector Machine (SVM),
and Multi-Layer Perceptron (MLP) classifiers. Each
baseline model has been implemented using the default
parameters from the sci-kit learn18 Python library to
form the first runnable version. We then vary one hyper-
parameter per model architecture to evaluate the dif-
ferences in performance and pave the way for further
model optimisation efforts. The full overview of baseline
models architecture and hyper-parameters varied is
shown in Table 1.
www.thelancet.com Vol 104 June, 2024
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Model Type Hyperparameter Value Abbreviation

Decision Tree – – DT

Random Forest Number of Estimators 10 RF (10)

Random Forest Number of Estimators 100 RF (100)

SVM Kernel Function RBF SVM(RBF)

SVM Kernel Function Polynomial SVM(poly)

MLP Number of Neurons 10 MLP (10)

MLP Number of Neurons 100 MLP (100)

MLP Number of Neurons 500 MLP (500)

Table 1: Collection of baseline models used for experimentation; Total
of 8 models derived from 4 model types and through the alteration
of one main hyperparameter.

Articles
CNN models
We used Bayesian optimization provided by the com-
et.ml platform to traverse the parameter search space.
The ranges for these parameters are defined in Table 2.
The number of filters of the convolutional layers is
based on VGG16,19 increasing the number of filters as
the network deepens. Our approach is to double the
filters of each consecutive layer while maintaining the
same number for the last two layers. A max-pooling
layer is placed after each convolutional layer to assist
with feature extraction within the CNN, as well as to
reduce the computational overhead.

Model evaluation
In all of the experiments, a set of five evaluation met-
rics is computed: accuracy, macro-precision, macro-
recall, macro-F1, and weighted-F1. Where macro-
averaging refers to the arithmetic mean across classes
and weighted-averaging takes into account the pro-
portion of each class label within the dataset. The F1
score is defined in (3) as the harmonic mean of pre-
cision (p) and recall (r). The usage of harmonic mean
better reflects extreme values and leads to a low overall
F1 score if a model has either very poor precision or
very poor recall.

F1 = (r−1 + p−1

2
)
−1

= 2 ×
pr

p + r
(3)
Parameter name Range of values Range type

Number of CLs [2, 3, 4, 5, 6] Discrete

Kernel size [(3, 3), (4, 4), (5, 5)] Discrete

Number of DLs [1, 2, 3] Discrete

Number of nodes per DL [4, 8, 16, 32] Discrete

Learning rate [5e-5, 5e-3] Continuous

CL and DL stand for convolutional and dense layer respectively.

Table 2: Model search space, as defined by a number of parameters
and a corresponding range of values for each, to be explored through
the Bayesian optimisation scheme of the comet.ml platform.

www.thelancet.com Vol 104 June, 2024
To obtain a more realistic estimate of performance
we employ stratified 5-fold cross-validation throughout
all the experiments. The Bayesian optimisation algo-
rithm used for CNN parameter selection runs for 20
iterations to maximize the average weighted F1 score
over 5 folds of cross-validation.

Experimental setup
Time-domain features
For time-domain analysis using baseline models, we
utilize the theorem proposed in 20 stating that the
segment length should be “at least 10 times the wave-
length of the lowest frequency bound investigated”. In
our case, the lowest frequency bound is 0.15 Hz as
indicated in the filtering stage. The corresponding
wavelength is, therefore, 1/0.15 = 6.6 seconds, leading to
a segment length of ten times that or just over 1 min
long. We further investigate the effects on baseline model
performance when we halve this optimal segment length.

Frequency-domain features
Using the segment length of 66.6 seconds we compute
the half-FFT spectrum and extract the range of interest
between [0–20]Hz. To explore the effect of varying fre-
quency resolution on model performance, the FFT array
is split into n number of bins, computing a single
average value for each. For a half-FFT of the signal
sampled at 100 Hz, we have a total of 1333 values in the
[0–20]Hz range which gives the upper boundary of 1333
bins. We test the performance of all 9 frequency reso-
lutions when using the factor of a power of two and
these are [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024].

STFT
In the context of the STFT, the suggested signal length of
10 wavelengths refers to the size of the sliding window,
and not to the size of the entire STFT. Therefore, since an
STFT is obtained by applying the FFT on consecutive
signal windows, we use consecutive 66 second long
segments. Due to the limited duration of the follow-up
healthy recordings, we relax the requirement of the
signal length for that question. The result of the process
was a calculation of a window size of 9.86 times the
lowest frequency wavelength of interest, providing us
with 8 STFT samples for the shortest follow-up
recording. We further increase the amount of STFT
windows by dividing the calculated sizes for the window
size by 2, 4, and 8 in order to generate more training
samples. These varied approaches are only applicable to
the paediatric follow-up vs ICU stay classification prob-
lem due to the short follow-up recordings for some pa-
tients. The severity classification uses STFT windows for
the original segment length of 66.6 seconds.

Statistics
The statistical analysis in this study was primarily car-
ried out through the use of machine learning
5
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techniques. These were chosen over traditional statisti-
cal tools due to the nature of the dataset, which is
characterized by complex multidimensional and tem-
poral features. In this setting, machine learning ap-
proaches were deemed suitable for handling such high-
dimensional data and consequently being able to predict
dengue severity based on wearable sensor PPG data.

Two sets of inclusion-exclusion criteria were applied.
The first set focused on the study enrolment, where the
most common exclusion was a contraindication to using
devices. The second set focused on data quality, where
patients were excluded if more than 10% of their PPG
signal was of poor quality, since noise-corrupted PPG
readings do not provide meaningful input to the clas-
sification model.

Ethics
The study was approved by the scientific and ethical
committee of the Hospital for Tropical Diseases
(HTD), Ho Chi Minh City and by the Oxford Tropical
Research Ethics Committee (OxTREC) with reference
522-20 on 23rd April 2020. Informed consent was ob-
tained from the patient or their representative. If the
patient was a minor (>8 and <18 years of age), assent
form was obtained in addition to parental or guardian
consent.

Role of funders
The funders had no roles in study design, data collec-
tion, data analysis, data interpretation, or writing of the
report.
Adult cohort Paediatric
cohort

n 132 56

Age, median [Q1,Q3] 28.0 [21.0, 35.0] 11.0 [9.0, 13.0]

Sex, n (%)

M 75 (56.8) 24 (42.9)

F 57 (43.2) 32 (57.1)

Length of hospitalisation (days),
median [Q1,Q3]

4.5 [4.0, 6.0] 4.0 [3.0, 5.0]

PPG recording duration (hours),
median [Q1,Q3]

11.7 [5.3, 14.2] 24.2 [20.5, 27.8]

Table 3: Summary of both patient cohorts.
Results
Study population
For the adult cohort of 132 patients, over 1398 h of
continuous raw PPG waveform was included in the
primary analysis. This cohort was further split into 3
categories according to the severity of the patient during
enrolment.

1. Uncomplicated: patients with dengue with warning
signs who never progressed, did not develop shock
or require ICU (n = 49, median age = 28)

2. Moderate-severe: patients with dengue who were
admitted to the emergency department with dengue
shock syndrome but did not require ICU or organ
support (n = 52, median age = 27.5)

3. Severe: patients with severe dengue admitted to
ICU, for multiple or prolonged shock and/or organ
support (n = 31, median age = 30)

Additional 56 paediatric patients (aged less than 16
years) with over 1345 h of raw PPG data were part of
the secondary analysis. Here we looked at the subset of
this cohort which contained a 30-min follow-up
recording captured 14–21 days after the illness onset
to serve as a baseline, post-dengue state for compari-
son. Both the adult and paediatric datasets are sum-
marized in Table 3.

Patients with moderate-severe and severe disease
in ED/ICU were monitored more intensively as part
of routine medical care. An illustration of such a
clinical dataset for a severe patient, including the
duration of captured raw waveforms can be found in
Fig. 2. For uncomplicated patients, vital signs were
taken at least every 6 h together with daily blood tests.

The continuous PPG data was processed and
cleaned using the data quality pipeline, classifying
waveform segments into one of the 4 categories: (1)
excellent, (2) good, (3) poor and (4) completely unus-
able. Only the first 2 categories were useable for further
analysis and patients with more than 10% of unusable
segments were removed from analysis. The
Supplemental Fig. S2a–d shows examples of each data
quality class.

For the primary investigation, all available adult pa-
tient cohort data were applicable for the analysis. This
cohort was split into 3 categories (uncomplicated,
moderate-severe and severe) by the attending clinician,
according to the disease progression during the enrol-
ment period. These three categories were then used as
classes for model development. After cleaning the
dataset and assessing data quality, 127 patients were
used for model development using 1223 h of contin-
uous PPG data (Fig. 3a).

The secondary investigation evaluated the difference
in PPG waveform features between acute disease
(admission to ICU) and post-disease healthy state
(follow-up). The dataset for this question only contained
a subset of the whole paediatric cohort as not everyone
had the follow-up recordings present. It was therefore
treated as a binary classification problem, grouping all
follow-up and ICU recordings into their respective
classes. In total, data from 15 paediatric patients have
been analysed, using all 7.27 h of available follow-up
data and the same duration extracted from the ICU
data for balanced class distribution (Fig. 3b).
www.thelancet.com Vol 104 June, 2024
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Fig. 2: Visualisation of data from a patient suffering from severe dengue. The following clinical information is tracked: Fluid highlights the
period of fluid resuscitation; Lab provides timestamps of blood tests; Oxy stands for the duration of supplemental oxygen therapy; Shock
signifies the time clinical shock was determined by the attending physician; Vital are timestamps for vital sign collection (hourly) and SC is the
duration of continuous PPG waveform measurement using a SmartCare wearable device.

Articles
Classification between severity classes in adult
patients with dengue
When investigating the primary research objective, the
best-performing baseline model was a random forest
with 100 estimators and achieved an accuracy of 0.694,
macro precision of 0.709 and weighted F1 score of
0.689. For the baseline, frequency domain feature set,
Adult dengue severity classification 

Recruited adult patients
N = 132

Had dengue severity recorded
N = 132

Passed quality pipeline
N = 127

More than 10% of noisy segments in a recording N = 5

Severe dengue N = 31
Extracted samples X = 22,755 

Moderate-severe dengue N = 52
Extracted samples X = 31,037 

Uncomplicated dengue N = 49
Extracted samples X = 21,629

Fig. 3: Participant inclusion flowcharts for both investigated research obje
number of acceptable quality 1-min segments extracted from the raw PP

www.thelancet.com Vol 104 June, 2024
we have also shown that there is an optimal frequency
binning approach at 64 bins. This led to 7.6% and 8.3%
improvements in accuracy and F1 score compared to
1024 frequency bins (Fig. 4a–b).

All baseline model performance results are summa-
rized in Table 4. The achieved classification accuracy of
69.4% provides a solid initial performance considering
Paediatric ICU-FU classification

Recruited paediatric patients
N = 56

Had follow-up recording 
N = 15

Passed quality pipeline
N = 15

More than 10% of noisy segments in a recording N = 0

No follow-up recording N = 41

ICU stay N = 15
Extracted samples X = 310  

Follow-up N = 15 
Extracted samples X = 384

ctives. The N denotes number of participants, whereas X stands for
G data.
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a b

c d

Fig. 4: Baseline model performance charts across frequency bins, showing the clear peaks in performance. The plotted points correspond to the
final metric after 5-fold cross-validation for the given model type and frequency resolution combination. (a) accuracy and (b) weighted F1 score
for adult severity classification as a function of frequency resolution. (c) accuracy and (d) weighted F1 score for paediatric ICU-FU classification as
a function of frequency resolution. Frequency resolution is quantified through the logarithm of the number of frequency bins.
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the minimum computation complexity requirements
for this type of model.

For deep learning CNN model implementation, we
leveraged the large size of the adult cohort dataset and
experimented with varying STFT window sizes. In
addition to the sample window length of 66.6 seconds
used for the baseline models, we have reduced the size
to 1/8 of the original and increased it to 32 times the
original length. The best-performing CNN classifier
used 1/8 of the baseline STFT length and achieved an
accuracy of 0.780, macro precision of 0.785 and
weighted F1 score of 0.780, improving the overall clas-
sification accuracy by 8.6% compared to the best-
performing baseline model. This suggests that a large
number of samples has a higher effect on the overall
performance compared to the STFT duration as the
www.thelancet.com Vol 104 June, 2024
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Variation FE domain Model name Accuracy Macro precision Macro recall Macro F1 Weighted F1

10 wavelength Segment Time-domain DT 0.431 0.421 0.421 0.421 0.431

RF (10) 0.486 0.479 0.454 0.455 0.472

RF (100) 0.548 0.586 0.503 0.504 0.523

SVM (RBF) 0.498 0.534 0.434 0.404 0.430

SVM (poly) 0.440 0.501 0.359 0.269 0.435

MLP (10) 0.478 0.479 0.430 0.419 0.444

MLP (100) 0.442 0.430 0.428 0.428 0.440

MLP (500) 0.461 0.449 0.444 0.445 0.457

5 wavelength Segment (truncated) Time-domain DT 0.434 0.426 0.426 0.426 0.435

RF (10) 0.494 0.490 0.466 0.468 0.483

RF (100) 0.553 0.585 0.512 0.515 0.532

SVM (RBF) 0.502 0.548 0.445 0.424 0.452

SVM (poly) 0.468 0.501 0.386 0.335 0.378

MLP (10) 0.494 0.515 0.443 0.434 0.458

MLP (100) 0.461 0.451 0.447 0.448 0.459

MLP (500) 0.476 0.467 0.461 0.463 0.473

Best performing Model frequency Bins Frequency-domain RF (100)–4 0.469 0.454 0.446 0.446 0.462

RF (100)–8 0.542 0.541 0.519 0.524 0.535

RF (100)–16 0.630 0.636 0.606 0.613 0.624

RF (100)–32 0.671 0.685 0.646 0.656 0.666

RF (100)–64 0.694 0.709 0.669 0.680 0.689

RF (100)–128 0.688 0.704 0.662 0.672 0.682

RF (100)–256 0.674 0.692 0.646 0.646 0.667

RF (100)–512 0.646 0.667 0.616 0.616 0.638

RF (100)–1024 0.618 0.641 0.584 0.592 0.606

Table 4: Baseline model performance on time-domain and frequency-domain inputs for adult dengue severity classification.

Articles
performance of other CNN variations was significantly
lower (Table 5).

60 iterations of Bayesian optimization were per-
formed to obtain optimal CNN parameters for each STFT
configuration (Table 6). Here, we found that the best-
performing CNN model contained a single dense layer
with 4 nodes. Compared with the optimization results for
other sizes of STFT windows, the lower dense layer stage
complexity produced better classification performance.

We have observed that the reduction in dataset size
caused by prolonging the STFT window outweighed the
potential gain in temporal variations and low-frequency
features leading to degradation in the final performance
of the model.

Classification between paediatric patients with
dengue in ICU and during follow-up after recovery
The secondary objective focused on a subset of
paediatric patients whose available dataset contained a
FE domain Model name Accuracy Macro precision

STFT CNN–1 0.689 0.709
CNN–1/8 0.780 0.785
CNN -1 (32 windows) 0.615 0.629

Size is represented by the number by which the STFT window length is multiplied (e.g

Table 5: Performance metrics for the best severity CNN model found by the

www.thelancet.com Vol 104 June, 2024
follow-up recording after discharge. To keep the binary
class distribution balanced, we have used the shorter
follow-up recordings to dictate the total number of
samples used for model development. Despite the lower
number of samples available, the best-performing fre-
quency-domain baseline model was again a random
forest with 100 estimators and achieved an accuracy of
0.882, macro precision of 0.881 and weighted F1 score
of 0.882. Baseline model performance peaked between
128 and 256 frequency bins (Fig. 4c–d and Table 7).

To combat the negative effects of a small number of
training samples due to short follow-up recordings, we
reduced the STFT window size in steps (Table 8) and
retrained the model. Repeating the Bayesian optimiza-
tion approach for each model iteration leads to the best
performance again achieved at 1/8 of the original
length. The achieved metrics of 0.892 and 0.891 for
accuracy and macro precision respectively (Table 9)
indicate excellent classification capabilities of the model
Macro recall Macro F1 Weighted F1 # Training samples

0.665 0.676 0.684 9094
0.771 0.776 0.780 75,443
0.591 0.599 0.609 226

. 1/4 represents a quarter of the normal 10-wavelength-long window).

optimiser for different sizes of the STFT.
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1 1/8 1 (32 windows)

Number of CLs 5 5 5

Kernel Size (4, 4) (4, 4) (4, 4)

Number of DLs 3 1 2

Number of Nodes per DL 32 4 4

Learning Rate 5e − 3 6e − 4 7e − 4

Number of Filters of 1st CL 4 8 4

Table 6: Model parameters for each of the models shown in Table 5.
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and clear difference between the ill and healthy state in
paediatric patients.

Baseline models interpretation
To understand which underlying features contributed
the most to the classification result, we have conducted a
permutation-based feature importance investigation.21

The analysis was only conducted for the best perform-
ing baseline models for each investigated objective. In
both cases, these involved frequency domain features
split into 64 or 128 bins as explained in the Methods
section.

In the primary investigation of dengue severity, the
best performing random forest used 64 frequency bins.
From these, the 4 most impactful features occurred at 0,
1.27, 1.9 and 3.17 Hz. Translating these into clinical
Variation FE domain Model name

10 wavelength Segment Time-domain DT

RF (10)

RF (100)

SVM (RBF)

SVM (poly)

MLP (10)

MLP (100)

MLP (500)

5 wavelength Segment (truncated) Time-domain DT

RF (10)

RF (100)

SVM (RBF)

SVM (poly)

MLP (10)

MLP (100)

MLP (500)

Best performing Model frequency bins Frequency-domain RF (100)–4

RF (100)–8

RF (100)–16

RF (100)–32

RF (100)–64

RF (100)–128

RF (100)–256

RF (100)–512

RF (100)–1024

Table 7: Baseline model performance on time-domain and frequency-domain
context, 0 Hz corresponds to the static bias of the PPG
waveform, influenced by the absorptivity of the non-
pulsatile parts of the tissue. With the sensor placed on
the finger, the main contributing factor to this bias is the
overall finger thickness. This can be both referenced to
the overall BMI of the patient as well as to the severity of
the disease as extremities can get swollen due to fluid
therapy. Both 1.27 and 1.9 Hz corresponds to a regular
heart-rate signal (76.2 and 114 bpm respectively), while
the most influential feature at 3.17 Hz corresponds to a
significantly elevated heart-rate of 190 bpm.

In the case of the ICU-FU investigation, the most
influential feature is the static bias, which can point to
the higher variability in finger thickness in children.
The remaining features share importance around the
regular and elevated heart-rate frequencies.

Based on these results, we can argue that the
random forest models have learned to pick up on
combinations between heart-rate and waveform bias
to devise a set of complex rules for severity classifi-
cation. With 100 estimators, the complexity of these
models is beyond the capability of human decision
makers. The complexity further raises in the case of
the CNN approach, where similar interpretability
analysis becomes obsolete due to changes in input
feature representation. The full feature importance
results for both severity and ICU-FU best-performing
Accuracy Macro precision Macro recall Macro F1 Weighted F1

0.614 0.611 0.609 0.609 0.613

0.654 0.655 0.636 0.632 0.642

0.730 0.732 0.721 0.722 0.722

0.675 0.673 0.663 0.664 0.670

0.594 0.637 0.553 0.495 0.518

0.593 0.585 0.553 0.582 0.587

0.620 0.616 0.612 0.612 0.618

0.628 0.627 0.624 0.622 0.626

0.633 0.630 0.630 0.629 0.633

0.677 0.681 0.664 0.662 0.669

0.753 0.754 0.746 0.747 0.751

0.719 0.720 0.707 0.708 0.715

0.650 0.677 0.618 0.601 0.617

0.642 0.638 0.636 0.635 0.640

0.666 0.664 0.661 0.661 0.665

0.665 0.662 0.661 0.660 0.664

0.692 0.689 0.685 0.685 0.690

0.697 0.696 0.692 0.692 0.696

0.849 0.848 0.847 0.847 0.849

0.863 0.862 0.861 0.861 0.862

0.875 0.875 0.874 0.874 0.875

0.882 0.881 0.881 0.880 0.882

0.882 0.882 0.880 0.880 0.882

0.858 0.859 0.856 0.856 0.858

0.835 0.837 0.831 0.832 0.835

inputs for ICU vs FU classification.
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1 1/2 1/4 1/8

# Training Samples 79 168 349 707

Number of Convolutional Layers 2 5 6 5

Kernel Size (2, 2) (3, 3) (3, 3) (3, 3)

Number of Dense Layers 2 2 1 1

Number of Nodes per Dense Layer 16 4 32 32

Learning Rate 2e − 3 8e − 4 2e − 3 8e − 4

Number of Filters of 1st Conv. Layer 4 8 8 8

STFT Shape (3286, 9) (1643, 9) (822, 9) (411, 9)

Size is represented by the number by which the full STFT length, as computed from a 10-wavelength long signal, is multiplied (e.g. 1/4 represents a quarter of the full STFT length).

Table 8: Training set size, STFT shape for different sizes of the STFT input and CNN model parameters.

Articles
random forest models can be found in Supplemental
Figure S3.
Discussion
The ability of the models to reliably distinguish between
various stages and illness severity in dengue is likely to
be of clinical value in supporting individual patient
assessment in hospitals. The investigated classification
objectives aimed to tackle the issues with overcrowding
during seasonal dengue epidemics. With the best-
performing frequency domain algorithm only
requiring 66 s of continuous data for classification, the
model can be run repeatedly to provide a continuous
assessment of the patient’s clinical status during their
hospital stay as well as at home. This is in contrast with
existing clinical care in which patients in general wards
may undergo vital signs monitoring every 6–8 h. The
wearable sensor used in our study costs around 150
USD per unit and will likely be cost-effective for
implementation in the LMIC healthcare setting. The
scalable nature of wearables deployment, coupled with
intrinsic connectivity allows for a means for patient
monitoring which can cope with periods of high work-
load for healthcare staff, such as during large dengue
outbreaks.22 By further optimizing the model to mini-
mize the false negative rate of severe dengue classifi-
cation, the developed model can be used to give the
nursing team up-to-date information about the expected
state of each patient, shifting focus to the most critical
patients while allowing the uncomplicated ones to stay
at home until their state worsens. This mass-deployable
FE domain Model name Accuracy Macro preci

STFT CNN–1 0.760 0.776

CNN–1/2 0.791 0.798

CNN–1/4 0.827 0.833

CNN–1/8 0.892 0.891

Size is represented by the number by which the STFT window length is multiplied (e.g

Table 9: Performance metrics for the best ICU vs FU CNN model found by th
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and low-cost wearable system can therefore provide a
perceived “second set of eyes” for patients and clini-
cians, overcoming staffing issues and having the po-
tential to greatly improve the standard of care.

The classification accuracy of 0.78 and 0.89 for the
primary and secondary analyses respectively clearly
showcase a relationship between dengue severity and
wearable sensor PPG data, opening up avenues for
scalable patient monitoring. Only marginal improve-
ments in performance between STFT-CNN and
frequency-domain random forest model for the paedi-
atric analysis point to the sufficiency of the less complex
model, allowing implementation on cost-effective hard-
ware. It also shows that the added temporal variation
introduced by the STFT does not provide enough in-
formation to improve classification performance
significantly. The argument changes when looking at
the adult cohort where the STFT-CNN approach im-
proves the metrics by more than 8%. This confirms that
larger datasets are a better fit for a deep-learning model.

Despite the promising results in dengue severity
assessment, several substantial limitations warrant
acknowledgement. One critical aspect revolves around
the inherent “black-box” nature of the machine learning
models, particularly regarding approaches from the
deep learning paradigm, such as the Convolutional
Neural Networks (CNNs) used. This opacity poses
challenges in interpreting how the model arrives at its
predictions, limiting the clinical utility of the algorithm.
Based on the performance and interpretability of the
baseline models, we can assume that the CNN network
used similar set of critical frequencies to perform
sion Macro recall Macro F1 Weighted F1

0.744 0.744 0.751

0.783 0.785 0.789

0.823 0.824 0.826

0.891 0.891 0.892

. 1/4 represents a quarter of the normal 10-wavelength-long window).

e optimiser for different sizes of the STFT.
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classification, with the performance improvements due
to the spatial features of the constructed STFT frames.
The generalizability of the results is further constrained
due to the homogeneous ethnic composition of the
cohort, primarily from Vietnam. On one hand, this
constraint helps mitigate the effects of varying skin
tones on PPG sensing while reducing application to the
wider population. Employing PPG sensors in clinical
settings poses its own set of limitations. Factors such as
motion artefacts and environmental conditions can
impact signal quality, potentially compromising the
reliability and accuracy of data collected. Additional
operational requirements on device provisioning and
maintenance by the nursing staff need to be evaluated
before any large-scale deployment in the affected re-
gions. Furthermore, studies of this nature suffer from
limitations in recruitment, including sample size con-
straints and specific inclusion criteria, that limit the
diversity of the acquired dataset. It is important to note
that some parts of the clinical dataset have not been
used when formulating the research objectives. Namely,
the duration and amount of fluid used during resusci-
tation as well as the day of illness when the PPG was
taken. Both of these introduce an additional degree of
inaccuracy as the acquired PPG signal would be influ-
enced by the duration and volume of fluid received.
Enhancing future models by including these parameters
can further improve the performance of the classifiers.

The outcome of this work provides baseline action-
able information to assist clinicians with the day-to-day
triage of patients with dengue. Work is currently un-
derway by our research group in the development of a
bespoke multi-wavelength PPG wearable capable of
continuous monitoring of the cardiovascular and hae-
modynamic status of patients with dengue.23 The
developed platform expands on the SmartCare sensor
operation, adding additional wavelengths and sensing
sites to provide the capability for non-invasive haema-
tocrit and pulse pressure sensing. Further work will
include investigating the role of wearables in ambula-
tory clinical management, whereby patients can be
managed safely as outpatients or at home, thus allowing
for the effective allocation of staffing resources to pro-
vide care for the sickest patients. Presented results of
the research objectives in this work, combined with the
feature-rich PPG dataset available for future investiga-
tion, are opening the way for a commercial end-to-end
system for patient management in low-income and
middle-income countries.
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