Skip to main content
. 2024 May 29;104:105164. doi: 10.1016/j.ebiom.2024.105164

Table 7.

Baseline model performance on time-domain and frequency-domain inputs for ICU vs FU classification.

Variation FE domain Model name Accuracy Macro precision Macro recall Macro F1 Weighted F1
10 wavelength Segment Time-domain DT 0.614 0.611 0.609 0.609 0.613
RF (10) 0.654 0.655 0.636 0.632 0.642
RF (100) 0.730 0.732 0.721 0.722 0.722
SVM (RBF) 0.675 0.673 0.663 0.664 0.670
SVM (poly) 0.594 0.637 0.553 0.495 0.518
MLP (10) 0.593 0.585 0.553 0.582 0.587
MLP (100) 0.620 0.616 0.612 0.612 0.618
MLP (500) 0.628 0.627 0.624 0.622 0.626
5 wavelength Segment (truncated) Time-domain DT 0.633 0.630 0.630 0.629 0.633
RF (10) 0.677 0.681 0.664 0.662 0.669
RF (100) 0.753 0.754 0.746 0.747 0.751
SVM (RBF) 0.719 0.720 0.707 0.708 0.715
SVM (poly) 0.650 0.677 0.618 0.601 0.617
MLP (10) 0.642 0.638 0.636 0.635 0.640
MLP (100) 0.666 0.664 0.661 0.661 0.665
MLP (500) 0.665 0.662 0.661 0.660 0.664
Best performing Model frequency bins Frequency-domain RF (100)–4 0.692 0.689 0.685 0.685 0.690
RF (100)–8 0.697 0.696 0.692 0.692 0.696
RF (100)–16 0.849 0.848 0.847 0.847 0.849
RF (100)–32 0.863 0.862 0.861 0.861 0.862
RF (100)–64 0.875 0.875 0.874 0.874 0.875
RF (100)–128 0.882 0.881 0.881 0.880 0.882
RF (100)–256 0.882 0.882 0.880 0.880 0.882
RF (100)–512 0.858 0.859 0.856 0.856 0.858
RF (100)–1024 0.835 0.837 0.831 0.832 0.835