Table 7.
Variation | FE domain | Model name | Accuracy | Macro precision | Macro recall | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|---|
10 wavelength Segment | Time-domain | DT | 0.614 | 0.611 | 0.609 | 0.609 | 0.613 |
RF (10) | 0.654 | 0.655 | 0.636 | 0.632 | 0.642 | ||
RF (100) | 0.730 | 0.732 | 0.721 | 0.722 | 0.722 | ||
SVM (RBF) | 0.675 | 0.673 | 0.663 | 0.664 | 0.670 | ||
SVM (poly) | 0.594 | 0.637 | 0.553 | 0.495 | 0.518 | ||
MLP (10) | 0.593 | 0.585 | 0.553 | 0.582 | 0.587 | ||
MLP (100) | 0.620 | 0.616 | 0.612 | 0.612 | 0.618 | ||
MLP (500) | 0.628 | 0.627 | 0.624 | 0.622 | 0.626 | ||
5 wavelength Segment (truncated) | Time-domain | DT | 0.633 | 0.630 | 0.630 | 0.629 | 0.633 |
RF (10) | 0.677 | 0.681 | 0.664 | 0.662 | 0.669 | ||
RF (100) | 0.753 | 0.754 | 0.746 | 0.747 | 0.751 | ||
SVM (RBF) | 0.719 | 0.720 | 0.707 | 0.708 | 0.715 | ||
SVM (poly) | 0.650 | 0.677 | 0.618 | 0.601 | 0.617 | ||
MLP (10) | 0.642 | 0.638 | 0.636 | 0.635 | 0.640 | ||
MLP (100) | 0.666 | 0.664 | 0.661 | 0.661 | 0.665 | ||
MLP (500) | 0.665 | 0.662 | 0.661 | 0.660 | 0.664 | ||
Best performing Model frequency bins | Frequency-domain | RF (100)–4 | 0.692 | 0.689 | 0.685 | 0.685 | 0.690 |
RF (100)–8 | 0.697 | 0.696 | 0.692 | 0.692 | 0.696 | ||
RF (100)–16 | 0.849 | 0.848 | 0.847 | 0.847 | 0.849 | ||
RF (100)–32 | 0.863 | 0.862 | 0.861 | 0.861 | 0.862 | ||
RF (100)–64 | 0.875 | 0.875 | 0.874 | 0.874 | 0.875 | ||
RF (100)–128 | 0.882 | 0.881 | 0.881 | 0.880 | 0.882 | ||
RF (100)–256 | 0.882 | 0.882 | 0.880 | 0.880 | 0.882 | ||
RF (100)–512 | 0.858 | 0.859 | 0.856 | 0.856 | 0.858 | ||
RF (100)–1024 | 0.835 | 0.837 | 0.831 | 0.832 | 0.835 |