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Abstract

Background: Using multiple modalities of biomarkers, several machine leaning-based 

approaches have been proposed to characterize patterns of structural, functional and metabolic 

differences discernible from multimodal neuroimaging data for Alzheimer’s disease (AD). Current 

investigations report several studies using binary classification often augmented with local feature 

selection methods, while fewer other studies address the challenging problem of multiclass 

classification.

New Method: To assess the merits of each of these research directions, this study introduces a 

supervised Gaussian discriminative component analysis (GDCA) algorithm, which can effectively 

delineate subtle changes of early mild cognitive impairment (EMCI) group in relation to the 

cognitively normal control (CN) group. Using 251 CN, 297 EMCI, 196 late MCI (LMCI), and 

162 AD subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and considering 

both structural and functional (metabolic) information from magnetic resonance imaging (MRI) 

and positron emission tomography (PET) modalities as input, the proposed method conducts a 
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dimensionality reduction algorithm taking into consideration the interclass information to define 

an optimal eigenspace that maximizes the discriminability of selected eigenvectors.

Results: The proposed algorithm achieves an accuracy of 79.25% for delineating EMCI from CN 

using 38.97% of Gaussian discriminative components (i.e., dimensionality reduction). Moreover, 

for detecting the different stages of AD, a multiclass classification experiment attained an overall 

accuracy of 67.69%, and more notably, discriminates MCI and AD groups from the CN group 

with an accuracy of 75.28% using 48.90% of the Gaussian discriminative components.

Comparison with existing method(s): The classification results of the proposed GDCA 

method outperform the more recently published state-of-the-art methods in AD-related multiclass 

classification tasks, and seems to be the most stable and reliable in terms of relating the most 

relevant features to the optimal classification performance.

Conclusion: The proposed GDCA model with its high prospects for multiclass classification has 

a high potential for deployment as a computer aided clinical diagnosis system for AD.
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1. INTRODUCTION

In recent years, machine learning approaches have been applied in a growing number of 

studies to characterize patterns of structural, functional and metabolic difference discernible 

from multimodal neuroimaging data, such as magnetic resonance imaging (MRI) [1–

6] and positron emission tomography (PET) [4–8]. The high-dimensionality nature of 

neuroimaging data often raises a necessity for dimensionality reduction and feature selection 

to obtain an optimal decision space. The results reported in some recent studies indicate that 

appropriate decision-making methods could improve the classification accuracy regardless 

of the sample size [9–12].

Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical 

brain regions show atrophy patterns in mild cognitive impairment (MCI), preceding the 

onset of Alzheimer’s disease (AD) [13–17]. A recent study has indicated the clinical utility 

of PET imaging for differential diagnosis in early onset dementia in support of clinical 

diagnosis of participants with AD and noncarrier APOE ε4 status who are older than 70 
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years [18]. Empirical evidence suggests that appropriate feature selection could preserve 

the complementary inter-modality information; therefore, the proposed dimensionality 

reduction model shows great potential for extracting relevant information from all modalities 

associated with the progression of AD. Currently, the Principal Component Analysis 

(PCA) model remains the most widely used method in dimensionality reduction and 

feature selection tasks [19, 20]. However, for machine learning tasks like classification 

and regression analyses, PCA is applied as an unsupervised method not considering the 

interclass information, such as data labels and target values; therefore, in many cases the 

consequently implemented feature selection methods may not be able to find the optimal 

decision spaces for the corresponding tasks. Moreover, the importance of PCA generated 

components is estimated by the variance, which are not often equivalent to the significance 

of those components in machine learning tasks.

This study aims to introduce a supervised dimensionality reduction algorithm to characterize 

the important Gaussian discriminative components with respect to the structural, functional 

or metabolic measurements as observed in the MRI-PET combination associated with 

different stages of AD, focusing on the prodromal stage of MCI [21, 22]. The stage 

of MCI is subdivided into two stages, early MCI (EMCI) and late MCI (LMCI), as 

defined in the Alzheimer’s disease Neuroimaging Initiative (ADNI) data. Since alleviation 

of specific symptoms is possible through therapeutic interventions for some patients in 

the early or middle stages of AD, effective diagnosis of EMCI from cognitively normal 

control (CN) group is essentially important for the planning of early treatment. However, 

instead of utilizing PCA computed variances to determine the significances of different 

components, the proposed Gaussian discriminative component analysis (GDCA) makes 

use of Gaussian discriminant analysis (GDA) classifiers to reveal the discriminability 

of different components in terms of each component’s performance obtained by a 

designate machine learning task. This process is shown to lead to stable, reliable and 

accurate dimensionality reduction in multimodal neuroimaging biomarkers for effective 

classification, enhanced diagnosis and the monitoring of disease progression.

2. MATERIALS

The information of the subjects used in this study and the MRI data preprocessing and 

MRI/PET registration procedure are presented in this section.

2.1 Participants and Clinical Data

The data used in conducting this study were collected from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led 

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 

test whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to predict and gauge the progression of AD.

A total of 906 subjects were considered for this study, which were categorized into groups of 

CN (251), EMCI (297), LMCI (196) and AD (162). All individuals underwent structural 

MRI and Florbetapir (F18-AV45) PET imaging, where the time gap between the two 

imaging modalities was less than 3 months. Details of MRI and AV45 PET data acquisition 
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can be found on the ADNI website. Summary statistics and participants counts are listed in 

Table 1.

2.2 Image Processing

2.2.1 MRI Data Preprocessing—The FreeSurfer (Version 5.3.0) was firstly performed 

under Linux system (centos4_x86_64) to transform the original MRI to the standard MNI 

305 space, yielding the image referred to as T1.mgz, which is used as the reference image 

in the registration procedure, followed by skull-striping, segmenting, and delineating cortical 

and subcortical regions with the corresponding image result termed as aparc+aseg.mgz. 

Derived from the images, the following three shape measures were then calculated as 

morphological features on each of the 68 FreeSurfer labeled cortical regions for both 

hemispheres (34 per hemisphere): 1) cortical thickness, 2) surface area, and 3) cortical 

volume. Since version 5.3 of FreeSurfer was available, we tested the same data with 

FreeSurfer 6.0 and found minimal differences ranging from 1 to 5% and showing no 

statistical differences in terms of standardized uptake value ratio measurements (SUVRs).

2.2.2 MRI and PET Registration—With 12 degrees of freedom (DOF) onto 

the postprocessed T1 image, the AV45 PET was linearly registered (using trilinear 

interpolation), so that the regional amyloid deposition and gray matter atrophy are compared 

directly (i.e., thickness for cortical regions [23–26]), using the FMRIB Software Library 

(FSL) [27]. Moreover, in order to gain as much information as possible from PET images, 

which have relatively low resolution, the original AV45 PET with skull was utilized in 

this step. This registration process introduced in a recent study [28] guaranteed that AV45 

PET image had the same segmentation and parcellation as the MRI image. Combined 

with aparc+aseg.mgz images, the registered AV45 PET was inspected to obtain the mean 

standardized uptake values (SUV) for all 68 FreeSurfer labeled cortical regions. The SUV 

of the whole cerebellum, including 4 regions of interest (left/right cerebellum cortex and 

left/right white matter), was used as the reference region. Finally, regional SUVs of those 

68 cortical regions were normalized by the SUV of the whole cerebellum to get the cortical-

to-cerebellum SUVRs. Accordingly, overall there are 4 different types of neuroimaging 

features associated with each of the 68 cortical regions, yielding 272 (4×68) features for 

each subject in the dataset.

3. METHODS

After obtaining all needed features derived from raw multimodal neuroimaging data, as 

aforementioned, a 272-dimensional feature vector was generated for each subject in the 

data set. In this section, the proposed GDCA algorithm is presented for the effective 

dimensionality reduction and early diagnosis of AD. The standard PCA is applied to the 

original data to find the principal components. Then, the discriminability of each component 

is estimated by a one-dimensional GDA classifier, and consequently, all components are 

sorted in order of the corresponding classification performance. Finally, the recursive feature 

elimination (RFE) is employed to determine the optimal dimensionality reduction of the 

Gaussian discriminant components in the classification outcome. Fig. 1 demonstrates the 

flowchart of the proposed GDCA model.
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3.1 Gaussian Discriminative Component Analysis

3.1.1 Eigenvectors of the covariance matrix—The proposed classification problem 

can be formulated by having the machine learn to distinguish between CN (y = 0), EMCI 

(y = 1), LMCI (y = 2), and AD (y = 3), based on the extracted features x ∈ ℝn. In order to 

determine the potential directions of Gaussian discriminative components of all features, the 

standard PCA method is carried out. Prior to running PCA, the data need to be normalized 

as follows:

x = (x − μ)/σ

(1)

where μ ∈ ℝn and σ ∈ ℝn are the mean vector and standard deviation vector of all data, 

respectively. This process zeros out the mean of the data, and rescales each feature to have 

unit variance, which ensures different features to have the same scale. After normalization, 

the covariance matrix Σ can then be computed utilizing the normalized data by the formula 

below:

Σ = 1
m ∑i = 0

m xi ⋅ xi
T

(2)

where m is the total number of data points considered and xi
T is the transpose of the 

normalized data point xi. Then to project the original data into a k-dimensional subspace (k ≤ 

n), the eigenvector uj ∈ ℝn (j ≤ k) of the covariance matrix Σ can be computed to obtain the 

transformed features x′ ∈ ℝk.

3.1.2 Supervised dimensionality reduction—As indicated earlier, the PCA model 

sorts the extracted eigenvectors (i.e., the direction of principal components) based on 

the variance represented by each eigenvector, without considering any information from 

the labels of data as an unsupervised algorithm. But, in general, only reducing the 

dimensionality to retain as much as possible of the variance cannot help in deciding 

the optimal subspace towards an optimal performance if a supervised machine learning 

scenario is contemplated. As a consequence, the proposed method capitalizes on a 

supervised dimensionality reduction model making use of a GDA-based classifier. Given 

the eigenvectors which were computed based on the covariance matrix Σ given in (2), the 

GDA model will be trained on each new feature in the transformed space to determine 

the discriminability of each component according to the corresponding classification 

performance, subsequently sorting the extracted principal components in order of their 

discriminability.

GDA can model p(x′|y), the distribution of the feature vector x′ in the transformed feature 

space given y ∈ {0,1,2,3}, assumed to be distributed according to a Gaussian distribution, 

with the generalized density function given in (3):
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p x′; μ′, ∑ ′ = 1
(2π)n ∑

exp − 1
2 x′ − μ′ T ∑′ − 1 x′ − μ′

(3)

where μ′ ∈ ℝk is the mean vector in the new transformed feature space, Σ′ is the 

new covariance matrix, |Σ′| and Σ′−1 denote the determinant and inverse matrix of Σ′, 
respectively. To determine the discriminability of each component, since x′ ∈ ℝ1, the μ′ is 

the mean of the transformed feature, and Σ′ is the variance of the transformed feature. After 

modelling p(x′|y), Bayes rule is used to derive the posterior distribution on y given x′ as:

p y ∣ x′ = p x′ ∣ y p(y)
p x′

(4)

Here, p(y) denotes the class prior distribution, which cannot be determined when given a 

certain subject, so it is assumed to be absolutely random (for all a ≠ b, p(y = a) = p(y = b)). 

Furthermore, to make a prediction, it is not necessary to calculate p(x′), since

argmax
y

p y ∣ x′ = argmax
y

p x′ ∣ y p(y)
p x′ = argmax

y
p x′ ∣ y p(y)

(5)

Therefore, for classification purposes, the following formula is used instead:

argmax
y

p y ∣ x′ = argmax
y

p x′ ∣ y

(6)

3.1.3 Recursive Component Elimination—The aforementioned classifier is applied 

to each component, so that for each eigenvector, the transformed features can be 

ranked in terms of classification outcome using cross validation. In this study, the 

classification accuracy is used as the key metric to measure performance, which means 

the discriminability of each component is determined by its corresponding classification 

accuracy expressed as follows:

Accuracy = TP + TN
TP + FP + TN + FN

(7)

which is the sum of True Positives (TP) and True Negatives (TN) divided by the sum of TP, 

False Positives (FP), TN, and False Negatives (FN).

Setting the computed accuracies as assigned weights to discriminative components, 

recursive feature elimination (RFE) is performed to select the optimal Gaussian 
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discriminative components by recursively considering smaller and smaller sets of 

components. First, the entire set of components were applied to the classifier and estimated 

by the cross-validation performance. Then, the least important component is eliminated from 

current set of components. That procedure is recursively repeated on the pruned set until the 

desired set of Gaussian discriminative components is found with an optimal classification 

performance.

3.2 Classification Based on GDCA

From the proposed GDCA dimensionality reduction model, the optimal components are 

obtained in terms of the classification performance (i.e., the accuracy of that set of 

components selected), and would then be applied to other classification algorithms. Some 

other metrics are used as well, since, as a clinical application, the classification performance 

may not only be evaluated by the accuracy, but could also rely on precision, recall (or 

sensitivity) and specificity. The F1 score is also a widely used measure of performance in 

statistical analysis of binary classification, by which both precision and recall are taken into 

consideration. The formulas used to calculate these four metrics are expressed below:

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

Specificity = TN
TN + FP

(10)

F1 = 2 × Precision × Sensitivity
Precision+Sensitivity

(11)

In order to assess the ability of the obtained transformed feature space in performance 

improvement, several widely used classification algorithms are applied on the original 

feature space as well as the dimensionality reduced new feature space, including linear 

support vector machines (SVM), multilayer perceptron (MLP), and gradient boosting (GB) 

classifiers. To demonstrate the advantage of the proposed GDCA over other widely used 

dimensionality reduction methods, PCA, LASSO and univariate feature selection are carried 

out on the best performed classifier among the ones mentioned above.

Fang et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2024 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. EXPERIMENTS AND RESULTS

The focus of this study is placed on demonstrating how the proposed dimensionality 

reduction model can determine the most discriminative components associated with the 

progression of MCI and improve the classification performance. Also, in order to predict 

the progression of AD, a multiclass classification was carried out on those three groups 

of AD patients (i.e., EMCI, LMCI, AD), therefore, we could further compare the 

proposed dimensionality reduction with other widely used methods based on the multiclass 

classification performance. Scikit-learn, free software machine learning library, was used to 

implement all classification algorithms with 9-fold cross validation procedure and built-in 

experiment pipeline [29]. In the classification experiments, all subjects were randomly split 

into training, validation, test sets with 80% of the data used for training, 10% for cross 

validation, and 10% for the hold-out true test. The 9-fold cross validation was used to 

determine the optimal set of features/components with the best validation performance, 

in terms of which training/validation data split yielded the best performance, therefore, 

the final performance comparisons were based on the hold-out true test using the same 

training data to evaluate the model on unseen data. In order to demonstrate the advantage of 

the proposed GDCA method over other dimensionality reduction methods, the same setup 

was carried out using PCA, LASSO, univariate feature selection and the proposed GDCA 

methods. Finally, a computer aided diagnosis (CAD) application for detecting different 

stages of AD was presented to reveal the potential of this GDCA model to be deployed as a 

CAD system.

4.1 Gaussian Discriminative Components

Given the eigenvectors of the covariance matrix calculated by the whole data, Table 2 

shows the classification accuracy of top-10 Gaussian discriminative components based on 

the binary classification (i.e., CN vs. EMCI, EMCI vs. LMCI) on the training/validation 

data split obtaining the best performance, and the PCA rank of these components are also 

provided to demonstrate the difference between GDCA and PCA. As shown in Table 2, the 

principal components with higher variance do not necessarily yield better performance in the 

classification task than those with lower variance, which may help in delineating the subtle 

changes associated with CN vs. EMCI and with EMCI vs. LMCI.

With the Gaussian discriminative components ranked, the RFE was applied on the validation 

data to find the optimal set of components that yielded the best validation performance 

in terms of overall classification accuracy. Consequently, these optimal discriminative 

components were used to evaluate the proposed GDCA on the held-out test data using 

the same training set. Fig. 2(a) illustrates the CN vs. EMCI learning curves of the training, 

validation and testing when increasing the number of Gaussian discriminative components 

involved in the classifier. It can be observed that the proposed model was able to learn the 

generic discriminative components through the cross validation and performed similarly on 

the held-out test data. Based on the best training/validation data split, the highest accuracy 

of 79.25% was obtained by using the first 106 Gaussian discriminative components. The 

GDCA results are shown in Table 3, which also sets a performance benchmark for further 

classification performance comparison using several different machine learning algorithms. 
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Another challenging task of detecting different stages in AD is in distinguishing LMCI 

from EMCI, because LMCI may have higher risk in developing AD. Thus, EMCI vs. LMCI 

classification was carried out following the same procedure, and the results are illustrated in 

Table 3 and Fig. 2(b), where the best cross validation performance was attained by including 

the first 99 Gaussian discriminative components into the model with an accuracy of 83.33%.

4.2 Binary Classification Performance Comparison

By applying the relevant classifiers (i.e., SVM, MLP, and GB) to the original data and 

to the dimensionality-reduced data, the corresponding results are given in Table 4. Unlike 

the proposed GDCA, these algorithms may give us various results due to the random 

initialization. The classification experiments were run multiple times on the best training/

validation data split, and for each classifier, the best performing model was selected, then the 

corresponding test results were reported in Table 4. It can be observed that after introducing 

the proposed dimensionality reduction model, all the selected classifiers achieved better 

performance on the transformed feature space than obtained on the original features, which 

adds credence to the validity of the proposed GDCA model. Moreover, although state-of-

the-art MLP and GB algorithms established better performance than the GDA algorithm on 

the original features as a result of the underlying feature selection process, for both CN vs. 

EMCI and EMCI vs. LMCI, they did not surpass the benchmark performance yielded by 

the proposed GDCA algorithm. However, because of the random initialization, classification 

algorithms like SVM, MPL, GB may not always achieve the global optimal solution, only 

the GDA classifier is applied here for the multiclass classification experiment.

As another widely used metric in choosing binary classification models, the receiver 

operating characteristic (ROC) curve and the area under the curve (AUC) were used to 

measure the classification performance. The AUC score can reveal the discriminability of a 

classification model and to indicate if the false positive and true positive rates achieved by a 

model are significantly above random chance. The ROC curves and the corresponding AUC 

scores of hold-out tests on original and transformed feature spaces are demonstrated in Fig. 

3, and it can be observed that, after carrying out the proposed GDCA model, the AUC scores 

improved significantly by 0.15 for CN vs. EMCI classification and by 0.31 for EMCI vs. 

LMCI classification.

In Table 5, the results obtained by the proposed GDCA model are compared with those 

obtained using most recent state-of-the-art methods based on ADNI data [30–36]. It should 

be noted that, as shown in Table 5, although most of the studies used relatively small 

dataset, the proposed model still achieved overall best performance for both CN vs. EMCI 

classification and EMCI vs. LMCI classification; and for the only study having the relatively 

large number of subjects [34], the proposed study obtained significantly better performance.

4.3 EMCI vs. LMCI vs. AD Multiclass classification

The same pipeline was followed for the multiclass classification experiments, and since 

the F1 score, precision, and recall would no longer be available, the confusion matrix was 

used instead to evaluate the performance with each row corresponding to the true class. 

The diagonal elements of the confusion matrix represent the number of points for which 
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the predicted label is equal to the true label, while off-diagonal elements are those that are 

misclassified by the classifier.

Fig. 4 demonstrates the learning curve of the multiclass classification experiment using 

the proposed GDCA, where the best cross validation performance was achieved by using 

the first 90 Gaussian discriminative component. It can be observed that the learning curve 

associated with the hold-out test is closer to the learning curve of cross validation in 

comparison to the learning curve results shown in Fig. 2, since there were three classes 

instead of two classes, which enabled the model to learn more generic discriminative 

components across all three classes.

Fig. 5 shows the confusion matrices of the hold-out test on the original features and GDCA 

transformed features. The overall classification accuracy using the transformed features was 

67.69%, compared to 53.85% if all original features were utilized. As shown in Fig. 5, after 

applying the proposed GDCA model, the classifier could more precisely distinguish LMCI 

and AD from EMCI group, so that the overall classification performance was improved 

significantly. Additionally, Table 6 converted the multiclass classification results to binary 

classification results of MCI vs. AD, showing that the proposed method could effectively 

discriminate AD from MCI with a 31.25% increase on recall.

4.4 Dimensionality Reduction Performance Comparison

Since the proposed GDCA method is capable of defining the most discriminative directions 

of all eigenvectors, noted improvements were obtained in the classification results. To 

demonstrate how this process differs from other widely used dimensionality reduction 

methods, the same procedure was implemented for the EMCI vs. LMCI vs. AD multiclass 

classification task by applying the PCA, LASSO, univariate feature selection and proposed 

GDCA methods. The PCA method, as aforementioned, utilizes PCA computed variances 

to determine the significances of the principal components. Since linear models regularized 

with the L1 norm (i.e., LASSO) have sparse solutions, and the estimated coefficients could 

be employed in measuring the importance of each feature, therefore, which can also be used 

to select the most important features. For univariate selection method, the eigenvectors of 

the covariance matrix are not computed, and instead it selects the best features based on 

univariate statistical tests. In this study, the analysis of variance (ANOVA) was performed as 

the univariate statistical test to determine the significances of the different features.

Moreover, rather than adding one feature at a time, the different percentiles were used to 

illustrate the classification performance of these dimensionality reduction methods varying 

the percentile of features selected. The same GDA classifier was applied to all these four 

dimensionality reduction methods so as to eliminate any bias. Fig. 6 shows the 9-fold cross 

validation results of these methods.

As can be observed from the results shown in Fig. 6, the ANOVA-based univariate 

selection method reached quickly an optimal average cross validation accuracy with 5% 

of the features used and seems to outperform all other methods when 10% or less of the 

features are used. The nature of the Univariate performance graph with its rapid decline in 

performance with more features included misses out on that optimal solution that is reached 
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out by the proposed GDCA methods when 20% of the features are used. At 15% of the 

features used, both LASSO and GDCA performed well and they were better in performance 

than the PCA and the Univariate methods. However, with more features added, the decline in 

performance is more gradual in the proposed GDCA method than it is for LASSO.

Overall, the proposed GDCA method obtained an optimal hold-out test accuracy of 65.62% 

with 20 percent of all features, which is better than the hold-out test performance achieved 

by the LASSO (56.25%), the Univariate (57.81%) and the PCA (62.50%) methods. It also 

indicated that making use of the eigenspace rather than the original feature space could 

help the model attain more generally selected features to avoid overfitting on the training 

data, which resulted in better hold-out test performance yielded by the GDCA and the PCA 

methods.

4.5 Computer aided diagnosis based on GDCA

The previous sections have indicated that the proposed GDCA model was able to identify 

the most discriminative components associated with different stages of AD as a multiclass 

classification problem. But, in order to apply the proposed model to a practical CAD 

system, the trained model should be able to include the CN group, allowing a given subject 

in the classification process to belong to any of the 4 groups: CN, EMCI, LMCI and 

AD. Therefore, in this section, a multimodal multiclass classification neuroimaging CAD 

application involving all four groups (CN, EMCI, LMCI and AD) is presented utilizing the 

proposed GDCA model.

The learning curve of the GDCA-based CAD application is shown in Fig. 7, where the best 

cross validation performance was obtained by using the first 133 Gaussian discriminative 

components. Now, since more interclass information was involved during the training, more 

generic discriminative components across all four classes were captured, which resulted in 

a small gap between the learning curves of the cross validation and the hold-out test. Fig. 8 

demonstrates the confusion matrices of the hold-out test on the original features and GDCA 

transformed features. As the most complicated task in AD classification, the accuracy of 

53.93% was attained, which reached only 41.57% when all original features were used. 

Making use of GDA, Fig. 9 illustrates the 3-dimensional visualization by projecting the high 

dimensional data onto the affine subspace generated by the estimated class means of all 

classes. In Fig. 8 and Fig. 9, it can be observed that, after applying the proposed GDCA 

model, the classifier could detect the subtle difference between MCI group (i.e., EMCI and 

LMCI) and CN group as well as MCI group and AD group more effectively, in particular, 

more CN and AD subjects were correctly detected.

Furthermore, in order to illustrate the performance improvement of the GDCA-based CAD 

application, some extension of ROC to multiclass classification were carried out, including, 

one-against-rest ROC curve for each class, micro-averaging and macro-averaging ROC 

curves. Micro-averaging considers each element of the label indicator matrix as a binary 

prediction, while macro-averaging gives equal weight to the classification of each label. 

The ROC curves and the corresponding AUC scores are demonstrated in Fig. 10, and it 

can be observed that, after carrying out the proposed GDCA model, the micro-averaging 

and macro-averaging AUC scores were increased significantly by 9.71% and 8.73%, 
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respectively. For AD vs. rest and CN vs. rest, the performances were also improved 

significantly, and AUC scores of 0.7919 and 0.9092, respectively were achieved.

As shown in Fig. 9, after applying the GDCA model, the classification improvement was 

attributed to more of the CN and AD subjects correctly distinguished from EMCI and 

LMCI groups. Therefore, in order to demonstrate the performance improvement on CN vs. 

MCI vs. AD classification, the CAD results of EMCI and LMCI were combined together 

as MCI. By combining those results, the confusion matrices on the original features and 

GDCA transformed features are shown in Fig. 11. After combining, the overall classification 

accuracy on original and transformed features was 57.30% and 66.29%, respectively. And 

more notably, if the MCI and AD results were further combined as diseased group, it 

indicates that the proposed GDCA-based CAD application can effectively discriminate 

diseased subjects from the CN group with an accuracy of 75.28%, an F1 score of 82.51%, 

a precision of 83.87%, and a recall of 81.25%. These results show that the proposed GDCA 

model has a high potential for use as a clinical CAD system using multimodal neuroimaging 

data.

5. CONCLUSIONS

In this study, a novel GDCA dimensionality reduction algorithm was proposed to 

characterize the optimal Gaussian discriminative components of the original high 

dimensional feature space, maximizing as a consequence the discriminability of selected 

eigenvectors. The CN vs. EMCI classification results indicated that the proposed supervised 

method was able to delineate the subtlest changes associated with the EMCI group. After 

transforming the original features to the optimal Gaussian discriminative components, a high 

accuracy of 79.25%, an F1 score of 80.70% and an AUC score of 0.7960 were obtained, 

which showed high potential of the proposed method for clinical diagnosis of the early stage 

of AD. For EMCI vs. LMCI classification, the proposed model achieved a high accuracy of 

83.33%, an F1 score of 77.78%, and an AUC score of 0.8947. These results of CN vs. EMCI 

classification and EMCI vs. LMCI classification are considered as the best classification 

performance obtained so far.

A multiclass classification was also carried out for the detection of the different stages in AD 

(i.e., EMCI, LMCI, and AD). An overall accuracy of 67.69% was achieved, and moreover, 

the proposed method was able to distinguish AD from MCI with an accuracy of 87.69% and 

a recall of 93.75%, respectively. The comparison with other widely used dimensionality 

reduction methods indicated that the proposed method could significantly reduce the 

dimensionality of the data and still accomplish an effective classification performance. A 

CAD application based on the proposed GDCA model was also presented, which attained 

an overall accuracy of 66.29% for CN vs. MCI vs. AD classification, and more notably, 

for distinguishing diseased subjects (i.e., MCI and AD) from CN group, with an accuracy 

of 75.28%. The future work will ultimately focus on taking advantage of the proposed 

GDCA algorithm to build a CAD system that could help in delineating the EMCI group in a 

multiclass classification process that could be helpful in the planning of early treatment and 

therapeutic interventions.
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Highlights

• Introducing a novel supervised dimensionality reduction algorithm to 

characterize the optimal Gaussian discriminative components of the original 

high dimensional feature space.

• Achieving the best classification performance of CN vs. EMCI and EMCI vs. 

LMCI classifications compared with most recent state-of-the-art methods.

• Reducing the dimensionality of the data and still accomplishing more 

effective classification performance than other widely used dimensionality 

reduction methods.

• Attaining an overall accuracy of 67.69% for CN vs. MCI vs. AD 

classification, and more notably, distinguishing diseased subjects (i.e., MCI 

and AD) from CN group with an accuracy of 75.28%.
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Fig. 1. 
General flowchart of the proposed GDCA dimensionality reduction algorithm.

Fang et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2024 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The learning curves of the training, validation and testing with different numbers of 

Gaussian discriminative components: (a) CN vs. EMCI classification; (b) EMCI vs. LMCI 

classification.
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Fig. 3. 
ROC curves and AUC scores on original features and GDCA transformed features: (a) CN 

vs. EMCI classification; (b) EMCI vs. LMCI classification.
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Fig. 4. 
The learning curves of the training, validation and testing with different numbers of 

Gaussian discriminative components for EMCI vs. LMCI vs. AD classification.
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Fig. 5. 
EMCI vs. LMCI vs. AD classification confusion matrices: (a) All features were used; (b) 

GDCA-transformed features were used.
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Fig. 6. 
EMCI vs. LMCI vs. AD cross validation performance of different dimensionality reduction 

methods varying the percentile of features selected.
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Fig. 7. 
The learning curves of the training, validation and testing with different numbers of 

Gaussian discriminative components for the proposed GDCA-based CAD application.
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Fig. 8. 
CN vs. EMCI vs. LMCI vs. AD classification confusion matrices: (a) All features were 

used; (b) GDCA-transformed features were used.
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Fig. 9. 
CN vs. EMCI vs. LMCI vs. AD 3-dimensional visualization by projecting the data onto the 

affine subspace: (a) All features were used; (b) GDCA-transformed features were used.
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Fig. 10. 
ROC curves to multiclass classification and AUC scores for the proposed GDCA-based 

CAD application: (a) All features were used; (b) GDCA-transformed features were used.
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Fig. 11. 
CN vs. MCI vs. AD classification confusion matrices by combining EMCI and LMCI: (a) 

All features were used; (b) GDCA-transformed features were used.
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Table 1

Participant Demographic and Clinical Information

CN (n=251) EMCI (n=297) LMCI (n=196) AD (n=162)

F/M 128/123 132/165 85/111 68/94

Age_PETb 75.5(6.5)a 71.5(7.4) 73.8(8.1) 74.9(7.8)

Age_MRIb 75.3(6.6) 71.3(7.4) 73.6(8.0) 74.7(7.8)

Education 16.43(2.6) 15.99(2.7) 16.31(2.7) 15.76(2.7)

MMSEcd 29.04(1.2) 28.32(1.6) 27.61(1.9) 22.77(2.7)

RAVLT_immediatecd 45.3(10.6) 39.5(10.8) 33.2(10.8) 22.3(7.0)

a
Values are represented as mean(sd), except gender (F for female, M for male), which are frequencies instead

b
Significant group differences (ANOVA for continuous and Chi-square test for categorical values, significance level is 0.05 by default)

c
Significant group differences (ANCOVA adjusted for Age_PET)

d
Significant differences for all between-group post-hoc tests (Tukey’s HSD test)
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Table 2

Classification accuracy of top-10 Gaussian discriminative components and their corresponding PCA rank

CN vs EMCI EMCI vs. LMCI

GDCA Rank Accuracy PCA Rank GDCA Rank Accuracy PCA Rank

1 65.45% 22 1 68.00% 204

2 65.45% 186 2 66.00% 9

3 63.64% 64 3 66.00% 35

4 63.64% 148 4 66.00% 105

5 63.64% 207 5 66.00% 132

6 63.64% 241 6 64.00% 64

7 63.64% 262 7 64.00% 170

8 63.64% 267 8 64.00% 239

9 61.82% 6 9 62.00% 3

10 61.82% 62 10 62.00% 74
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Table 3

Benchmark CN vs. EMCI and EMCI vs. LMCI classification results based on the GDCA

Classification CN vs. EMCI EMCI vs. LMCI

Performance F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall

Cross validation 86.15% 83.64% 80.00% 93.33% 92.31% 94.00% 94.74% 90.00%

Hold-out test 80.70% 79.25% 82.14% 79.31% 77.78% 83.33% 82.35% 73.68%

J Neurosci Methods. Author manuscript; available in PMC 2024 June 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fang et al. Page 31

Table 4

Binary classification performance comparison of original features and GDCA-transformed features

Task
Feature Original Features Transformed Features

Classifier F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall

CN vs. EMCI

SVM 72.73% 66.04% 64.86% 82.76% 78.69% 75.47% 75.00% 82.76%

MLP 75.41% 71.70% 71.88% 79.31% 78.57% 77.36% 81.48% 75.86%

GB 75.41% 71.70% 71.88% 79.31% 77.19% 75.47% 78.57% 75.86%

GDA 66.67% 64.15% 67.86% 65.52% 80.70% 79.25% 82.14% 79.31%

EMCI vs. LMCI

SVM 54.05% 64.58% 55.56% 52.63% 65.00% 70.83% 61.90% 68.42%

MLP 59.46% 68.75% 61.11% 57.89% 72.73% 75.00% 64.00% 84.21%

GB 48.48% 64.58% 57.14% 42.11% 60.00% 75.00% 81.82% 47.37%

GDA 52.00% 50.00% 41.94% 68.42% 77.78% 83.33% 82.35% 73.68%
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Table 5

CN vs. EMCI and EMCI vs. LMCI classification performance comparison

Classification Subjects
(CN/EMCI/

LMCI)

CN vs. EMCI EMCI vs. LMCI

Performance Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

Pei et al. [30], 2018 -/18/18 - - - - 70.00% - - 0.7088

Hett et al. [31], 2019 62/65/34 - - - - 70.80% - - 0.6240

Jie et al. [32], 2018 50/56/43 - - - - 74.80% - - 0.7200

Jie et al. [33], 2018 50/56/43 78.30% 74.00% 82.10% 0.7710 78.80% 82.10% 74.40% 0.7830

Wee et al. [34], 
2019 300/314/208 53.00% 60.40% 55.00% - 63.10% 61.30% 77.60% -

Yang et al. [35] , 
2019 29/29/18 77.59% 59.09% - 0.6849 76.60% 66.20% - 0.7682

Kam et al. [36], 
2019 48/49/- 76.07% 76.27% 75.87% - - - - -

Proposed 251/297/196 79.25% 79.31% 79.17% 0.7960 83.33% 82.35% 89.66% 0.8947
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Table 6

MCI vs. AD classification performance by converting the EMCI vs. LMCI vs. AD classification results

Features F1 Score Accuracy Precision Recall

Original 64.52% 83.08% 66.67% 62.50%

Transformed 78.95% 87.69% 68.18% 93.75%
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