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N E U R O S C I E N C E

Discovering the gene- brain- behavior link in autism via 
generative machine learning
Shinjini Kundu1*, Haris Sair1, Elliott H. Sherr2, Pratik Mukherjee3†, Gustavo K. Rohde4,5†

Autism is traditionally diagnosed behaviorally but has a strong genetic basis. A genetics- first approach could 
transform understanding and treatment of autism. However, isolating the gene- brain- behavior relationship from 
confounding sources of variability is a challenge. We demonstrate a novel technique, 3D transport- based mor-
phometry (TBM), to extract the structural brain changes linked to genetic copy number variation (CNV) at the 
16p11.2 region. We identified two distinct endophenotypes. In data from the Simons Variation in Individuals Proj-
ect, detection of these endophenotypes enabled 89 to 95% test accuracy in predicting 16p11.2 CNV from brain 
images alone. Then, TBM enabled direct visualization of the endophenotypes driving accurate prediction, reveal-
ing dose- dependent brain changes among deletion and duplication carriers. These endophenotypes are sensitive 
to articulation disorders and explain a portion of the intelligence quotient variability. Genetic stratification com-
bined with TBM could reveal new brain endophenotypes in many neurodevelopmental disorders, accelerating 
precision medicine, and understanding of human neurodiversity.

INTRODUCTION
Autism is a complex condition, resulting from a combination of ge-
netic and environmental factors (1). It is characterized by impair-
ments in social interaction, communication, and repetitive behaviors 
(2). Today, autism is diagnosed behaviorally (1, 3), which under-
scores our current understanding and informs treatment. However, 
autism also has a strong genetic basis, with recent heritability esti-
mates of up to 90% (4). A genetics- first approach may help better 
subtype patients, understand autism’s origins, and develop targeted 
treatments. However, today, less than half of patients with autism un-
dergo genetic testing (5).

Recently, many new genes linked to autism have been identified, 
with copy number variations (CNVs) conferring a substantial rela-
tive risk (6). More than 200 CNVs have been linked to autism (7). 
These CNVs primarily arise as de novo mutations during maternal 
meiosis, with a proportion representing inherited germline muta-
tions (8). An important CNV is 16p11.2 (BP4- BP5). This region un-
derwent positive selection during human evolution from nonhuman 
primates, leading to concomitant changes in brain size and shape (9). 
16p11.2 deletions increase the risk of autism or developmental delay 
by 38.7- fold, while duplications increase the risk by 20.7- fold (10). 
Yet, the exact in vivo influence of this region on the brain remains a 
mystery (9). Given that the 16p11.2 region is one of the most preva-
lent single genetic contributors to autism (10, 11), we focus on this 
region as a model to develop approaches to investigate gene- brain- 
behavior relationships.

How CNVs affect behavioral phenotypes is often poorly under-
stood (3). To bridge the gap between genetics and behaviors, we study 
the concept of endophenotypes. Endophenotypes are intermediate 
traits that can be objectively defined and follow distinct developmen-
tal trajectories (12). However, structural brain imaging in autism is 

often normal (13). Recent papers have used functional magnetic reso-
nance imaging (14) and electrophysiology (15) to further subtype in-
dividuals with autism, but these modalities are not widely available 
outside of specialized research settings. Disentangling the effects of 
CNV on brain structure from other confounding sources of vari-
ability represents an ongoing challenge (7). Existing brain morpho-
metric techniques have enabled population- level comparisons among 
CNV cohorts (10, 16) but are not sensitive enough to differentiate the 
CNV- specific effects from other causes of variation. These studies 
used regional volumes (10), brain surface–based analysis (10, 17), and 
voxel- based methods (17). Furthermore, most of these studies exam-
ined a finite set of numerical indicators. Even if it were possible to 
detect specific statistical differences among them, they have no direct 
biological or physical meaning unless the corresponding model is in-
vertible (18). However, if possible, then the ability to connect CNVs to 
structural changes in the brain and subsequent behavior would repre-
sent a major advance in precision medicine (3).

New machine learning techniques have the potential to expand 
upon the results of existing morphometric techniques and overcome 
their limitations (7, 19). While discriminative learning approaches 
have aimed to explain a given dataset, generative approaches could 
enhance explainability in traditionally opaque models (19–21) by en-
abling the model to be interrogated to visualize new instances of data. 
Specifically, generative physics- based models have helped visualize 
disease pathways or targets in several studies (22–25). This approach 
offers the potential to identify more disease- relevant targets com-
pared to conventional machine learning (25).

This paper demonstrates a generative machine learning approach 
based on modeling how brain mass is distributed and changes. This 
approach is called three- dimensional (3D) transport- based mor-
phometry (TBM) (19, 21) and is based on the mathematics of optimal 
mass transport (26). We choose to assess brain mass distribution, as 
disorders of neuronal migration, organization, and differentiation 
would modify brain mass distribution. Unlike most data- driven 
approaches, mass transport can be described by closed- form equa-
tions with theoretical guarantees (27). We leverage these equations in 
conjunction with supervised machine learning to directly probe un-
derlying biological mechanisms (19). Prior work has demonstrated 
that this approach can automatically discover and visualize patterns 
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hidden to detection by existing approaches (19, 22, 28, 29). This study 
investigates the potential of this approach in the study of neurodevel-
opmental disorders.

Here, we hypothesized that CNV- specific brain structural patterns 
could be reliably isolated from background variations, even in images 
that do not show obvious abnormalities. First, we extracted the CNV- 
specific structural pattern from Simons Variation in Individuals Proj-
ect (VIP) data using TBM. We assessed whether the presence of this 
pattern could enable accurate prediction of 16p11.2 CNV in unseen 
brain images, comparing with traditional morphometry methods (see 
the Supplementary Materials). Next, we directly visualized the spe-
cific brain pattern driving accurate CNV detection, a key advance as 
TBM is generative. Last, we correlated the discovered brain pattern to 
behavior, investigating the proportion of behavioral variation that can 
be explained directly by the CNV- specific brain pattern. We demon-
strate that there are distinct brain endophenotypes in autism that may 
be driven by genetic CNV existing on a spectrum of severity. This 
work may have the potential to uncover new gene- brain- behavior re-
lationships in CNVs beyond 16p11.2, which could facilitate a genetics- 
first precision medicine approach to autism. Last, the technique we 
contribute is broadly applicable across many neurological disorders 
and could reveal new therapeutic targets.

RESULTS
Subject demographics
Subject demographics are summarized in Table 1. The duplication and 
deletion carriers had a range of diagnoses, summarized in Table 2, with 
multiple diagnoses per individual being most common. A one- way 
analysis of variance (ANOVA) demonstrates that brain tissue volume 
differs significantly among duplication carriers, deletion carriers, and 
controls. However, we report in later sections that brain tissue volume 
alone is not sufficient to distinguish the genetic cohorts.

In our study, deletion carriers were generally younger than both 
duplication carriers and controls. This age difference could be due to 
ascertainment bias. A possible explanation is that deletion carriers 
may come to medical attention at a younger age, leading to their in-
clusion in the study. Despite best efforts to age- match the cohorts, 
this difference in age could not be completely eliminated.
CNV classification using demographic data
Age and gender alone did not differentiate 16p11.2 CNV with ac-
curacy above chance. Including brain parenchymal volume to age 
and gender did not substantially improve classification accuracy, as 

demonstrated in Table 3. Here, accuracy and confidence intervals 
are reported on the test data.

Data acquisition and preprocessing
In our study, we used T1- weighted magnetization- prepared gradient- 
echo images (n = 206) from the Simons VIP dataset. To account for 
gross orientational and size differences, these images were coregis-
tered using affine registration and segmented into gray and white 
matter tissues using the Statistical Parametric Mapping software. The 
rationale behind this separation is elaborated upon in the “Canonical 
correlation between gray matter and white matter variation” section. 
After normalizing tissue mass across all images, we used TBM (19) to 
transform each image into the transport domain with respect to a 
reference image, as depicted in Fig. 1. This transformation generated 
a transport map for each image, a vector field characterizing the op-
timal mass preserving mapping. To facilitate further analysis, we 
concatenated the set of transport maps into a data matrix for subse-
quent transport- domain analysis.

Principal component variations
TBM enables a more efficient representation of the data in the trans-
port domain, requiring fewer components to capture the same level 
of variance. Furthermore, as TBM is a bijective transformation (Fig. 1), 
it ensures no information loss. As demonstrated in Fig. 2, the trans-
port domain better represents the underlying structure of both white 
matter and gray matter compared to the image domain. In the trans-
port space, 96% of the white matter variance is captured with only 
132 components, compared to 184 components in the image space. 
Similarly, 96% of the gray matter variance is captured with 46 com-
ponents in the transport domain, compared to 182 components in 
the image domain. Furthermore, the transport domain has con-
siderable modeling advantages over conventional deformation- based 
techniques, as shown in section S7.

Canonical correlation between gray matter and white 
matter variation
When canonical correlation is performed, a statistically significant 
relationship between the distribution of gray and white matter is ob-
served (Pearson correlation coefficient = 0.56, P < 0.01), with 31% 
variance explained on unseen data. Thus, structural variations be-
tween white and gray matter cannot be mutually explained fully, 
motivating separate analyses on gray and white matter. Additional 
details are in section S2.

Table 1. Subject demographics. iQ scores were missing for one subject; social responsiveness score was missing for 20 subjects.

Cohort (N = 206) Deletion carriers (N = 48) Duplication carriers 
(N = 40)

Controls (N = 118) P value

Age (years) 15 ± 12 27 ± 16 25 ± 14 <0.001

Male:Female ratio 27:21 26:14 66:52 0.59

Original brain tissue volume 
(liters)

1.35 ± 0.15 1.15 ± 0.12 1.25 ± 0.12 <0.001

Full- scale iQ 88 ± 14 93 ± 18 106 ± 15 <0.001

verbal iQ 86 ± 17 95 ± 17 106 ± 16 <0.001

nonverbal iQ 91 ± 13 92 ± 19 104 ± 13 <0.001

Social responsiveness score 69 ± 37 54 ± 41 19 ± 12 <0.001
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Correlation between brain parenchymal volume and 
structural variation
There was no statistically significant correlation between brain 
parenchymal volume and tissue distribution for either gray matter 
(Pearson correlation coefficient = 0.12, P  =  0.20) or white matter 
(Pearson correlation coefficient = 0.21, P = 0.29) after correcting for 
covariates of age, gender, gene cohort, and full- scale intelligence 
quotient (IQ). Therefore, brain parenchymal volume did not predict 
the underlying variations in brain tissue distribution. The regres-
sion plots are included in fig. S1 in the Supplementary Materials.

3D TBM
Classification
Although duplication carriers, deletion carriers, and controls were 
not easily separable in the image domain, they were highly separable 
in the transport domain in the training set. This is shown in Fig. 3 (A and 
B) when the subject data are projected onto the most discriminating 

subspace computed by penalized linear discriminant analysis (pLDA) 
(21, 30) for white matter and gray matter, respectively. Here, one point 
belongs to each individual. Furthermore, Fig. 3 (C and D) displays the 
average decision boundaries that separate the three classes in the train-
ing set, based on the nearest centroid distance in the transport domain.

We observe that genetic cohorts are more separable based on 
white matter distribution than gray matter distribution in both the 
training and testing sets. Furthermore, discriminant direction 1 indi-
cates a dose- dependent influence of 16p11.2 CNV on brain struc-
tural variation for both gray matter and white matter. Along direction 
1, controls are centered at mean, whereas duplication and deletion 
carriers are centered reciprocally at +1.5σ1 or −1.5σ1 from the mean, 
where σ1 represents the SD from the mean. Discriminant direction 2 
plays a role in distinguishing controls from both duplication and de-
letion carriers.

The classification performance in Table 3 was computed on the test 
set using a 10- fold cross- validation approach. To maintain original 

Table 2. Duplication and deletion carriers had a range of diagnoses. diagnoses were missing for 10 participants. Adhd, attention deficit hyperactivity 
disorder; Ocd, obsessive- compulsive disorder; ASd, autism spectrum disorder.

Diagnoses Number with diagnosis (%)

Adhd 13 (14.8%)

Anxiety, Ocd, phobia 15 (17.1%)

Articulation disorder 25 (28.4%)

Behavioral disorder 7 (8.0%)

ASd 11 (12.5%)

coordination disorder 20 (22.7%)

tic disorder or tourette syndrome 5 (5.7%)

enuresis 8 (9.1%)

language disorder 14 (15.9%)

learning disorder 5 (5.7%)

Mood disorder 8 (9.1%)

intellectual disability 17 (19.3%)

Stereotypic movement disorder 1 (1.1%)

Mean number of diagnoses per subject 1.9 ± 1.5

Table 3. Classification performance using pLDA. 

Features Test accuracy Sensitivity (deletion/ 
control/duplication)

Specificity (deletion/ 
control/duplication)

Cohen’s kappa

Age and gender only 34.1 [31.1, 37.0]% 83.4 [81.1, 85.7]%/ 
8.2 [6.5, 9.9]%/ 

51.2 [48.1, 54.3]%

51.2 [48.1, 54.3]%/ 
96.1 [94.9, 97.3]%/ 
66.7 [63.8, 69.6]%

0.13 [0.11, 0.15]

Age, gender, and parenchymal 
volume

44.2 [41.2, 47.3]% 59.1 [56.1, 62.2]%/ 
27.8 [25.0, 30.6]%/ 
74.9 [72.2, 77.6]%

70.6 [67.8, 73.4]%/ 
78.8 [76.3, 81.3]%/ 
70.0 [67.2, 72.9]%

0.20 [0.17, 0.23]

White matter tBM 94.6 [93.2, 96.0]% 96.8 [95.7, 97.9]%/ 
96.0 [94.7, 97.2]%/ 
87.9 [85.8, 89.9]%

98.6 [97.8, 99.3]%/ 
92.7 [91.1, 94.3]%/ 
98.5 [97.7, 99.3]%

0.91 [0.89, 0.92]

Gray matter tBM 88.5 [86.5, 90.5]% 92.5 [90.9, 94.2]%/ 
90.5 [88.6, 92.3]%/ 
78.0 [75.4, 80.5]%

96.4 [95.3, 97.6]%/ 
85.9 [83.8, 88.1]%/ 
96.6 [95.5, 97.7]%

0.80 [0.78, 0.83]
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class distributions, stratified cross- validation was used. The process was 
repeated 1000 times with random fold partitions, and the mean final 
accuracy, sensitivity, specificity, and Cohen’s kappa are reported across 
all 1000 iterations along with 95% confidence intervals across these it-
erations. In each iteration, the test data were projected onto the discrim-
inant subspace calculated from the training set, and class assignments 
were determined on the basis of the nearest centroid distance.

Table 3 shows that white matter structural variations can pre-
dict 16p11.2 CNV with 94.6% accuracy on test set, and gray matter 

architecture can predict CNV with 88.5% accuracy on test set, with 
robust classification even after correcting for covariates of age and 
gender (section S5). Combining white and gray matter did not im-
prove discrimination ability, possibly due to collinearity, which is 
further elaborated in section S6. The kappa statistic indicates a near- 
perfect association between CNV and the architecture of white mat-
ter and gray matter (31). Furthermore, the classification performance 
of 3D TBM is superior to that using existing brain morphometry 
techniques, as described in section S10.

Fig. 1. 3D TBM system diagram. images that are not easily separable in the image domain are transformed to the transport domain, where they are represented as points 
on a high- dimensional Riemannian manifold. Supervised learning is performed in the transport space. the classifier decision boundaries are inverted to visualize the 
discriminant patterns causally driving classification as computer- generated images in the image domain. 3d tBM is performed on volumetric images, although a single 
white matter axial slice is shown here for illustration purposes.

Fig. 2. Principal components. the (A) white matter and (B) gray matter structure are better captured using fewer components in the transport domain than the image domain.
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Visualizing brain tissue variations defining 16p11.2 CNV 
discrimination
3D TBM is a generative machine learning technique that enables di-
rect visualization of the characteristic brain endophenotypes driving 
the ability to classify 16p11.2 CNV. In Fig. 3, brain endophenotypes 
can be visualized through inverse TBM transformation (19) by sam-
pling along discriminant directions 1 and 2 for both gray and white 
matter. Furthermore, figs. S4 to S7 showcase TBM- generated images 
that illustrate the physical shifts at the interface between genet-
ic cohorts.
Global brain structure variations
The pattern of perturbations observed indicates that the vulnerability 
of brain regions is diffuse rather than localized. First, as previously 
noted, CNV at the 16p11.2 locus is inversely associated with total 
brain parenchymal volume in a dose- dependent manner, as shown 
in Table 1.

Second, even after correcting for the influence of volume before 
TBM analysis, the variations among duplication and deletion carri-
ers are spatially diffuse. This is evident when visualizing the charac-
teristic tissue shifts along direction 1 in Fig. 4, where the density of 
nearly every region undergoes change.

Third, the diffuse pattern of changes is further supported by a re-
ciprocal pattern of local tissue expansion/contraction among dupli-
cation and deletion carriers, with opposite regions undergoing volume 
expansion or contraction with gene dosage. This is captured by 
the determinant of the Jacobian computed from the transport maps 

obtained from the TBM procedure, which shows a strong negative 
correlation with Pearson’s correlation coefficients of −0.96, (P < 
0.001) for gray matter and −0.97 (P < 0.001) for white matter, for 
deletion and duplication carriers located −3σ1 and +3σ1 from the 
mean, respectively.

Fourth, deletion tends to result in gross overgrowth of gray matter 
tissue compared to controls, while duplication tends to result in gross 
undergrowth of gray matter in a dose- dependent manner. This can 
be measured by the fraction of the image volume occupied by brain 
tissue, which decreases with increasing gene dosage. For example, 
among deletion carriers, −3σ1 away from the mean, 39.9% of the im-
age volume is occupied by gray matter. This decreases to 39.7% at 
−1.5σ1. At the mean, this fraction is 38.9%, and at +1.5σ1, it is 37.7%. 
At +3σ, it is 36.5%. When examining the white matter, this pattern is 
not as evident (Fig. 4).
Regional brain structure variations
To assess the regional macrostructural variations, the images were 
registered to the Harvard- Oxford atlas (32), a probabilistic atlas seg-
menting 48 cortical and 21 subcortical regions. The relative local vol-
ume contraction and expansion at ±3 SDs from the mean displacement 
were calculated via Jacobian maps in the transport domain along di-
rection 1 and direction 2. Then, voxelwise z- scores were assigned to 
the Jacobian maps calculated along directions 1 and 2, which are il-
lustrated in Figs. 5 and 6, respectively.

Table 4 shows the top cortical regions with the largest relative volume 
expansion and contraction, respectively, along direction 1. Notably, the 

Fig. 3. 3D TBM discriminant subspace. each subject in the study is represented by a point on the scatterplot. Subject data is projected onto the most discriminant sub-
space computed by pldA for (A) white matter (WM) and (B) gray matter (GM). Boundaries between the classes computed based on nearest centroid classification for 
(C) white matter and (D) gray matter.
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regions undergoing the most relative local volume expansion and 
contraction are opposite for deletion and duplication carriers. In ad-
dition, the pattern of relative expansion and contraction among the 
top three and bottom three subcortical regions exhibits lateralization. 
On the basis of the combined gray and white matter maps, the right 
thalamus, right cerebral cortex, and right lateral ventricle undergo the 
greatest relative volume expansion in duplication carriers, while the 
left caudate, left putamen, and left accumbens undergo the greatest 
relative volume contraction.

Table 5 summarizes the top cortical areas with the largest relative 
local volume expansion and contraction along direction 2. Among 
subcortical regions, the lateral ventricles undergo the greatest relative 
expansion in controls. The right caudate and pallidum and the left 

hippocampus undergo the most relative volume contraction. Sec-
tion  S11 describes the regional changes in more detail, which are 
summarized in tables S6 to S9.

16p11.2 brain endophenotypes and behavior
The relationship between the distinct brain endophenotypes, as cap-
tured along directions 1 and 2, and behavior was investigated in the 
population space. Our a priori hypothesis was that articulation disor-
ders would be associated with CNV because it was the most CNV- 
related disorder (Table 2).

Results showed that TBM scores along discriminant direction 1 
were significantly associated with articulation disorders for both 
gray matter (P < 0.0001) and white matter (P = 0.0002). Articulation 

Fig. 4. TBM generated images showing spatially diffuse changes associated with 16p11.2 CNV. the resulting 3d tBM- generated images, obtained by sampling the 
discriminant subspace in Fig. 2 along discriminant direction 1, depict the physical changes in white (WM) and gray matter (GM) tissue density. Red indicates relative in-
crease in tissue density, while blue represents relative decrease. Our findings reveal diffuse tissue overgrowth in deletion carriers and tissue undergrowth in duplication 
carriers compared to controls, as highlighted by the black arrows in selected regions.
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disorders were much more common among deletion carriers, com-
prising 96.0% of the total individuals with the disorder, whereas du-
plication carriers comprised only 4.0%. These findings are depicted in 
Fig. 7 (A and B), which demonstrate that having a negative TBM score 
for either gray matter or white matter among duplication/deletion 
carriers was 96% sensitive and 62.9% specific for having an articula-
tion disorder. These associations remained significant even after ap-
plying the Bonferroni correction for multiple comparisons.

TBM scores along direction 2 showed a significant association 
with IQ scores, as revealed by multiple linear regression in the pLDA 
discriminant subspace computed in the transport domain. Direction 
2 exhibited a stronger relationship with IQ than direction 1 for both 
gray and white matter. In the combined gray matter and white matter 
model, the weight placed on white matter direction 2 was dispropor-
tionately higher. The findings of the multiple linear regression analy-
sis, summarized in Table 6, remain significant even after correcting 
for multiple comparisons using the Bonferroni correction.

DISCUSSION
This research reveals new details regarding brain structural patterns 
linked to genetic CNV in autism. These patterns are specific enough 
that their presence accurately predicts the CNV from brain images 
alone in new, unseen individuals. Furthermore, the discovered patterns 

are sensitive to articulation disorders and explain a fraction of the 
variability in IQ. The results in this paper were enabled by 3D TBM, a 
generative machine learning approach that can directly probe bio-
logical mechanisms perturbing brain mass distribution. By revealing 
structural networks underpinning CNV- related endophenotypes in 
detail, this research helps advance our understanding of autism’s bio-
logical basis.

Although autism is primarily diagnosed and treated behaviorally, 
it is highly heritable, with recent heritability estimates of up to 90% 
(4). However, less than half of patients with autism now undergo ge-
netic screening (5). In the future, findings from this preclinical study 
could be validated in clinical studies in several ways. First, as patients 
present with initial symptoms, routine brain imaging is often per-
formed. TBM could help automatically screen these images to detect 
potential CNVs early and refer patients for genetic testing. Second, as 
we had found that brain endophenotypes exist on a spectrum quanti-
fiable by TBM, the prognostic value of TBM scores can be investigated 
in the future. As new therapies emerge, new therapeutic biomarkers 
are needed to confirm treatment effect. In this regard, this research 
demonstrates that brain endophenotypes on imaging could facilitate 
autism screening and personalize treatment in the future. Larger co-
hort studies and prospective trials are needed to explore these possi-
bilities. However, these efforts must proceed in tandem with the 
curation of genetically stratified datasets in autism research.

Fig. 5. Reciprocal changes along direction 1. Z- score maps demonstrating reciprocal changes among deletion and duplication carriers. these were derived from the 
determinant of the Jacobian of the transport maps.
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We focused on one of the most prevalent genetic causes of autism, 
16p11.2 as a case study. The function of this genetic locus is largely 
unknown (9). We found that 16p11.2 CNVs were nearly 100% pene-
trant with regard to brain structural variations, enabling sensitive 
detection of CNV status (deletion, duplication, and control) based 
on brain imaging alone. We directly visualized the CNV- specific endo-
phenotypes driving accurate discrimination, discovering a diffuse 
process with regional localization. Deletion carriers exhibit tissue 
overgrowth, while duplication carriers show undergrowth, with effects 

observed in even controls, on a spectrum of severity. Regionally, the 
areas most affected were those related to emotional processing, visuo-
spatial ability, multisensory integration, and language, consistent with 
the behavioral phenotypes of autism. Furthermore, we observe lateral-
ization in certain changes between right and left hemispheres, evolu-
tionarily dedicated to visuospatial ability (right) and language ability 
(left). Furthermore, these structural variations were significantly pre-
dictive of articulation disorders, the inability to produce normal speech 
sounds, which comprise errors of substitution, omission, distortion, 

Fig. 6. Changes along direction 2. Z- score maps demonstrating the changes among controls and deletion/duplication carriers. these were derived from the determinant 
of the Jacobian of the transport maps.

Table 4. Direction 1. 

Deletion Duplication

Region Z- score Region Z- score

inferior frontal gyrus 0.47 intracalcarine cortex 1.02

cingulate gyrus 0.40 Parietal operculum 0.96

Angular gyrus 0.35 central opercular cortex 0.89

central opercular cortex −0.85 Angular gyrus −0.32

intracalcarine cortex −0.85 cingulate gyrus −0.39

Parietal operculum −0.88 inferior frontal gyrus −0.50
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and addition (33). CNV- specific brain endophenotypes also explained 
a small fraction of IQ variability. The results confirm that 16p11.2 
CNV, commonly occurring de novo in patients presenting with autism 
and other neurodevelopmental disorders (34), affect higher- order cog-
nitive processing functions. As other CNVs also demonstrate the mir-
ror brain phenotype, such as 22q112.2 and 15q11.2, in the future, this 
approach could be used to study many of the >200 CNVs linked to 
autism (7). CNVs are a major source of variability between individuals 
(35), and TBM could help further our understanding of human neuro-
diversity (36).

Prior studies have observed gene dosage–related effects on brain 
size (10) and widespread changes in axial diffusivity (37) and frac-
tional anisotropy (FA) (38) in diffusion tensor imaging studies of de-
letion carriers. Another prior study reported more prevalent cortical 

anomalies in both 16p11.2 duplications and deletions (39), with ab-
normally increased or decreased cortical thickness in the deletion or 
duplication groups, respectively. In contrast to prior studies, a key 
capability of TBM is that it is generative, providing the ability to link 
statistical changes to potential biological mechanisms. We directly 
visualized the physical changes in gray and white matter within 
CNV- specific networks. In the near future, TBM could be used to 
investigate new therapies targeting neuronal migration, organiza-
tion, and differentiation. For example, Ras homolog gene family 
member A (RhoA) inhibition and CD47 pathway modulation may 
help regulate the activity of 16p11.2 deletion neurons and neuronal 
pruning (40, 41). N- methyl-  d- aspartate receptor modulators (34) 
and transcription factors are other potential therapies. Targeting 
16p11.2 CNVs via gene therapy or transcriptional methods is a 

Table 5. Direction 2. 

Controls Deletion/duplication

Region Z- score Region Z- score

Superior temporal gyrus 0.62 Frontal orbital cortex 0.61

Middle temporal gyrus 0.38 Supramarginal gyrus 0.50

temporal pole 0.36 inferior temporal gyrus 0.43

inferior temporal gyrus −0.41 temporal pole −0.35

Supramarginal gyrus −0.49 Middle temporal gyrus −0.37

Frontal orbital cortex −0.60 Superior temporal gyrus −0.58

A  gray matter B  white matter

Fig. 7. Articulation disorder. the presence of articulation disorder among deletion and duplication carriers is highly associated with projection scores along discriminant 
direction 1 for both (A) gray matter (GM) (P < 0.0001) and (B) white matter (WM) (P = 0.0002). Among duplication/deletion carriers, having a negative tBM score for either 
gray matter or white matter was 96% sensitive and 62.9% specific for having an articulation disorder using logistic regression.

Table 6. IQ variance explained by TBM projection scores. iQ scores were missing for one subject.

IQ

Gray matter White matter Combined

R2 P R2 P R2 P

Full- scale iQ 0.13 <0.001 0.18 <0.001 0.20 <0.001

verbal iQ 0.14 <0.001 0.18 <0.001 0.20 <0.001

nonverbal iQ 0.11 <0.001 0.15 <0.001 0.17 <0.001
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promising area of preclinical research. The pleiotropic effects of the 
16p11.2 genetic locus need further exploration in the future.

Despite the heterogeneity of autism phenotype, articulation disor-
ders and IQ could partially be explained by CNV- specific endopheno-
types. The finding that 16p11.2 CNVs are significantly associated with 
language impairments is consistent with studies in the very recent 
emerging literature (42), although our findings correlate how brain 
macrostructure relates to behavior in a dose- depending manner. At 
the same time, we cannot draw conclusions about the causality of the 
relationship. Variable expressivity of behavior may arise from genes 
with multiple functions, expanding the number of cognitive functions 
without a proportional increase in gene count during human evo-
lution (43). In addition, behavioral heterogeneity in individuals with 
16p11.2 CNV can be influenced by both nongenetic and genetic 
factors (8).

The regions exhibiting the most prominent expansion/contraction 
due to CNV identified in this study overlap with those regions that 
experienced substantial changes during human evolution, including 
the frontal regions, parietal regions, and temporal poles (36). The net-
works served by direction 1 involve multisensory integration, visuo-
spatial ability, sensation on one end and on the other, those related to 
reading and writing function, semantic processing, language produc-
tion, and emotional regulation, consistent with observed symptoms of 
16p11.2 CNV–related autism and related disorders. There appears to 
be lateralization, with right- sided structures serving visuospatial abili-
ty and left- sided structures serving language networks. In direction 2, 
in controls, the areas related to speech perception, language compre-
hension, familiar face recognition, emotional and social behavior, se-
mantic processing, and socioemotional processing expand, while in 
deletions/duplications, areas related to decision- making, somatosen-
sory association, interpreting tactile sensory data, phonological pro-
cessing, language, semantic memory, visual processing, and sensory 
integration contract. Direction 2 subcortical areas exhibit less lateral-
ization than direction 1, with a mix of visuospatial (right) and episodic 
verbal memory (left). These results are consistent with 16p11.2 CNV 
being at the crossroads of both human evolutionary history and the 
source of de novo mutations vitally associated with risk of autism and 
other neurodevelopmental disorders.

White matter structural differences enabled better differentiation 
of genetic cohorts compared to gray matter. The volume of long ax-
ons in white matter increases more rapidly than gray matter volumes 
containing dendrites and axons according to a power law (44), so 
that distant areas of the cortex can be better connected. Structural 
white matter injury outperformed gray matter functional centrality 
in predicting cognitive impairment after focal brain lesions in Reber 
et  al. (45). Furthermore, white matter has less intraclass variance 
than gray matter, suggesting that it is more discriminatory and may 
have a stronger effect on brain structure related to CNV. Including 
gray matter features slightly increases the class variance from white 
matter, as shown in the Supplementary Materials. In the future, TBM 
on diffusion imaging can identify the specific white matter tracts af-
fected by 16p11.2 CNV.

Several pathologic mechanisms may corroborate the findings in 
this study. In deletion carriers, these include increased soma size/
dendrite length (34), increased synaptic marker expression, and hy-
peractivity, overexpression of CD47 (41). In duplication carriers, 
these include deficits in neuronal differentiation, reduced synaptic 
marker expression (40), and reduced soma size/dendrite length (34). 
Furthermore, myelin and myelin lipids may play a role in white 

matter aberrations (46). Also, dysregulation of transcription and cor-
tical maldevelopment (34) may also play a role. Mouse models sug-
gest synaptic dysfunction, with certain genes at the 16p11.2 locus 
resulting in abnormal cortical development (34), changes in synaptic 
function at GABAergic and glutamatergic synapses (34), disrupted 
corticostriatal circuitry in deletion carriers, thickening of corpus cal-
losum in deletion carriers, and thinning in duplication carriers (34). 
Our findings support that duplications have reduced cortical thick-
ness and enlarged ventricles. Changes are mostly seen in insula, 
calcarine cortex, accumbens, pallidum, transverse temporal gyrus, 
caudate, and putamen and thalamus. We also demonstrate that re-
gional effects are independent of global effects (47). The 16p11.2 
gene may also be involved in utero iron homeostasis (9). This study 
suggests that synaptogenesis and cortical development in utero may 
be involved, although further studies are needed to characterize the 
in vivo mechanisms.

There are several limitations in this study. The first is ascertain-
ment bias as the population of autism seen in a clinic may reflect 
other factors than solely CNV (47, 48). Healthier counterparts may 
exist in the population, and more severe illness is not captured in 
these datasets as those patients may be too ill to participate in a clin-
ical trial. A second limitation is that while the study investigated the 
influence of a single genetic locus, it did not directly assess the com-
plex interaction of this gene with other genes (3, 8). Third, this paper 
examined pediatric through adult patients. Multiple studies have 
suggested that neuroimaging abnormalities do not seem to be influ-
enced by age through adolescence and young adulthood (47), sug-
gesting stable phenotype with changes already present in early age. 
As these changes are seen throughout age, but present early, early 
childhood may be the best time to intervene. A fourth limitation is 
that the causality of the gene- brain- behavior relationships cannot be 
established based on our results alone but may be studied further in 
in vivo animal models. Last, because of our genetically stratified co-
hort, it may not be possible to disentangle the independent effect of 
brain structural variations on articulation disorder from the influ-
ence of CNV. Investigating this relationship in a broader, nongeneti-
cally stratified autism population could provide valuable insights and 
is warranted for future research.

This preclinical study serves as a proof of concept, demonstrating 
that distinct brain endophenotypes linked to CNV are present and 
are behaviorally relevant. CNVs are increasingly recognized as valu-
able genetic models for exploring brain- behavior relationships (4, 
49). Future research could extend this approach to study other CNVs 
linked to autism. Distinguishing between autism- related brain vari-
ability and variability not related to autism is an ongoing challenge 
(7). The large anatomic variations linked to 16p11.2 CNV (50, 51) 
aids discrimination of CNV- related variation from other sources of 
variability. In the future, tailored approaches may be necessary to de-
tect the potentially more subtle effects of other CNVs. As genetic 
stratification is supported by several studies (3, 48, 52), future appli-
cations of our technique could help accelerate a genetics- first strategy 
in autism and other neurodevelopmental disorders to unlock new 
frontiers in precision medicine.

MATERIALS AND METHODS
Study population
Subjects were recruited as part of the Simons VIP (http://Simons-
VIPconnect.org). This research was reviewed by the Johns Hopkins 

http://SimonsVIPconnect.org
http://SimonsVIPconnect.org
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Institutional Review Board and acknowledged as exempt as the 
subjects were deidentified and from a preexisting database. Partici-
pants were referred by clinical genetic centers or testing laborato-
ries, web- based networks, and self- referral of families who learned 
about Simons VIP (48). Subjects underwent an initial screening 
and review of medical records by Geisinger and Emory University 
(10). Peripheral blood samples were used to test for 16p11.2 CNV 
using fluorescent in situ hybridization (48). Inclusion criteria were 
those who had recurrent breakpoints at BP4- BP5 of 16p11.2 but no 
other pathogenic CNVs, neurogenetic diagnoses, or syndromes 
unrelated to 16p11.2 (48). Exclusion criteria were history of envi-
ronmental insults with a potential influence on neurocognitive sta-
tus (such as fetal alcohol syndrome), severe birth asphyxia, severe 
prematurity, and lack of fluency in English (10). The advantage of 
defining the inclusion criteria based on genotype was that, in con-
trast to behavioral diagnoses, the inclusion criteria did not change 
over time.

Behavioral testing included the Autism Diagnostic Observation 
Schedule, Autism Diagnostic Interview, and broad screening mea-
sures of social impairment such as the Social Responsiveness Scale. 
The core sites for phenotyping were University of Washington Medi-
cal Center, Baylor University Medical Center, and Boston Children’s 
Hospital. The diagnoses were based on DSM- IV- TR (Diagnostic and 
Statistical Manual of Mental Disorders, fourth edition, text revision) 
criteria (53). The developmentally appropriate cognitive measure 
was applied to measure the full- scale IQ among the Mullen Scales of 
Early Learning (54), Differential Abilities Scale second edition (55), 
Wechsler Intelligence Scales, or Wechsler Abbrebiated Scales of Intel-
ligence (56). High- resolution structural brain imaging was per-
formed at University of California (UC) and Children’s Hospital of 
Philadelphia (CHOP).

The control cohort consisted of subjects recruited locally near the 
core imaging sites (UC- San Francisco, UC- Berkeley, and CHOP) 
from the general population and were matched for age, sex, handed-
ness, and nonverbal IQ. Exclusion criteria included major DSM- IV 
diagnoses based on clinical psychologist review or immediate family 
history of ASD, other developmental disorders, dysmorphic features, 
or genetic abnormalities. Control subjects also had a chromosome 
microarray, neurologic exam, a clinical psychologist interview, and a 
photograph evaluation for dysmorphology.

Subjects in the cohort were chosen with the aim of matching age 
and gender as closely as possible within each subgroup. This study 
cohort consisted of high- resolution structural brain images from 206 
individuals belonging to control (N = 118), deletion (N = 48), and 
duplication (N = 40) cohorts.

Image acquisition
T1- weighted magnetization- prepared gradient- echo image (MPRAGE) 
images were collected. The same structural brain imaging protocol 
was used across sites; the clinical scanners were cross- calibrated. 3T 
TIM Trio magnetic resonance imaging scanners (Siemens) were used 
to image subjects using a 32- channel phased- array radiofrequency 
head coils. In the sagittal plane, 3D multi- echo MPRAGE sequences 
were obtained with the parameters: TR = 2530 ms, TI = 1200 ms, 
TE = 1.64 ms, FA = 7°, 1 mm × 1 mm × 1 mm isotropic voxels, with 
a field of view = 256 mm (10). Images were assessed for quality con-
trol, and the subjects with artifacts were discarded such as ringing/
striping/blurring, inhomogeneities, poor head coverage, ghosting, or 
susceptibility artifacts.

Image preprocessing
The images were first preprocessed to exclude the skull and cerebro-
spinal fluid. After segmentation into gray and white matter, the affine 
coregistration step normalized the brains to correct for total brain 
size. Next, the images were normalized to have equal mass. The gray 
matter and white matter tissues were segmented separately. To en-
hance computational efficiency, the images were downsampled by a 
factor of two. Preprocessing was performed using the VBM8 toolbox 
as part of the Statistical Parametric Mapping software (SPM12).

3D transport- based learning
The 3D TBM technique is a nonlinear image transformation frame-
work originally described by Kundu et al. (19). The premise is that 
patterns that may be imperceptible in the original image domain 
(Fig. 8) may be more readily extracted in the transform domain when 
applying the optimal transport (OT) metric (19). In contrast to exist-
ing approaches, 3D TBM is fully automated and does not require a 
priori features such as volume to discover discriminating patterns. A 
key contribution of 3D TBM is that it is generative. Unlike existing 
approaches, inverse transformation enables direct physical interpreta-
tion of the discovered discriminating patterns (19, 22, 28, 29). This 
paper makes modifications and extensions to the 3D TBM frame-
work. By combining supervised machine learning classification with 

Fig. 8. Sample images. the brains of 15 different subjects are shown (five control, 
five duplication, and five deletion carriers). Parenchymal tissue has been segment-
ed, and the same axial slice is shown for each individual. visual inspection does not 
reveal a pattern that differentiates the three cohorts. Furthermore, histograms of 
the brain tissue volumes across all three genetic cohorts demonstrate that al-
though there is a statistically significant difference among the groups (P < 0.001), 
volume alone is insufficient to differentiate cnv.
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3D TBM, this paper enables automated discovery and visualization of 
gray matter and white matter patterns sensitive to 16p11.2 CNV dis-
crimination.
Overview
As magnetic resonance imaging measures signal from water protons, 
the motivation of our transport- based approach is to directly quan-
tify the shift in the tissue water distribution from one image to an-
other. The latter is measured by the OT distance (27). The OT 
distance between two images measures the amount of “effort” (as 
quantified by amount of mass over distance moved) to morph one 
tissue distribution into another. The distance is optimal in terms of 
mass transport. The 3D TBM approach is based on applying the OT 
distance to discriminate images.

By contrast, existing approaches have predominantly relied on nu-
merical statistics such as total brain volume and voxelwise statistics, 
without directly quantifying the physical shifts in tissue distribution 
(10, 57). In this sense, 3D TBM provides a unique advantage as it of-
fers a direct physical interpretation. Figure 1 illustrates the system dia-
gram for transport- based learning.
Discovering discriminating tissue patterns
The 3D TBM technique was used to transform gray matter and white 
matter images to the transport domain. For each individual image, the 
variations in both shape and texture with respect to a common refer-
ence are characterized in a unique transport map for each image. The 
transport map morphs each source image to match the common ref-
erence. The common reference image for each gray matter and white 
matter tissues was computed by taking the Euclidean mean of the 
study cohort. The OT map is the one that minimizes the amount of 
mass over distance moved. While the space of potential transport 
maps is infinite, the OT map is unique. In contrast to methods using 
deformation fields [i.e., deformation- based morphometry (58), voxel- 
based morphometry (59), and tensor- based morphometry (60)], 
transport maps capture variations in both shape and texture (19) and 
have been demonstrated to be superior in enabling physical interpre-
tation (19) through a transport model of tissue distribution.

In mathematical terms, by treating magnetic resonance images as 
smooth density functions, the similarity in tissue spatial distribution 
between two images can be quantified based on the L2- Wasserstein 
distance (20). Given the set of magnetic resonance images I1, …, IN : 
Ω ⟶ ℝ+, corresponding to experimental subjects i = 1, …, N, where 
Ω = [0,1]3, the images are first intensity normalized produce densi-
ties according to Eq. 1.

Here, x is a 3D voxel coordinate in the original image domain. 
After normalizing mass across the images, the analysis equation that 
transforms an image in the original image domain to its correspond-
ing representation in the transport domain can be written based 
on Eq. 2.

Here, D denotes the Jacobian matrix, and the MP is the family of 
all mass- preserving mappings from I0 to I1. Here, fi : Ω ⟶ Ω is a 

mass preserving mapping from I0 to Ii. The OT mapping is calculated 
from the reference image I0. The problem in Eq. 2 is well- posed, and 
the existence of a unique optimal solution f ∗

i
 to the above minimiza-

tion was shown by Brenier (26). Thus, the transformation is bijective.
Using a common reference image reduces the number of pairwise 

computations from N(N − 1)/2 to N. However, the choice of refer-
ence image was found to have no significant impact on the perfor-
mance of pattern recognition (20, 24), as confirmed in section S8.
OT- based learning
Formally, the metric space defined by the OT metric is a Riemannian 
manifold (20). The shortest distance between two images on this Ri-
emannian manifold corresponds to a geodesic on this manifold. 
However, we calculate a modified (linearized) version of the trans-
port metric (i.e., generalized geodesic) (20). Therefore, Euclidean 
distances in the transform space correspond to the modified geode-
sic distances using the transport metric. The latter means that com-
plex, nonlinear changes in the image domain captured by the OT 
geodesic correspond to Euclidean distances the transform domain 
(19). Therefore, 3D TBM enhances separability of classes (19) and, in 
the 1D case, was proven to transform nonconvex sets in the original 
image space to convex and disjoint sets in the transform space (61). 
A separating hyperplane always exists for two convex and disjoint 
sets, thus enabling linear separability of the sets (61).

As a result of the linearized geodesic, experimental work in TBM 
has demonstrated that simple linear classifiers and regression models 
in the transform space capture complex, spatially diffuse, nonlinear 
shifts in tissue distribution in the image domain (19) in three dimen-
sions as well.

Mathematically, the transport maps f ∗
i
(x) are vector fields that 

define the direction and quantity of mass transport needed to match 
Ii(x) to I0(x). Then, it can be shown that Î i(x) = (f ∗

i
(x) − x)

√
I0(x) 

provides an isometric linear embedding for image Ii with respect to 
the linearized OT metric (20, 30). The linear embedding is genera-
tive; thus, any geometric analysis in the transform domain can be 
directly visualized in the image domain (19, 20, 30).
Visualizing discovered shifts in brain tissue distribution
A key contribution of this work is that 3D TBM is generative. A 
benefit of combining a generative technique with a physics- based 
model is that TBM facilitates direct visualization of physical tissue 
changes. The learned decision boundary can be sampled and invert-
ed to visualize the variations driving class discrimination. The latter 
enables causal explainability of the classification decisions. More-
over, generative techniques such as TBM address the limitation 
highlighted by Friston and Ashburner (18) by providing an invert-
ible generative model, thereby assigning direct physical meaning to 
statistical parameters.

Mathematically, the unique image corresponding to a given linear 
embedding can be recovered and visualized according to the synthe-
sis equation in Eq. 3.

Here, I(x) is a physically plausible brain image generated from 
the mapping of an arbitrary point f(x) in the transport space to the 
image domain. Furthermore, this transformation is unique. Addi-
tional details are in section S10. The MRIcroGL software was used to 
render the TBM- generated brain images (https://nitrc.org/projects/
mricrogl).

∫
Ω

Ii(x)dx = 1 (1)

f ∗
i
(x)= argmin

fi∈MP ∫
Ω

∣x− fi(x) ∣
2 I0(x)dx

such that det(D fi(x))Ii(fi(x))= I0(x) ∀x∈Ω

(2)

I(x)=det(Df −1(x))I0(f
−1(x))

where f −1(x) is the inverse mapping of f (x)
(3)

https://nitrc.org/projects/mricrogl
https://nitrc.org/projects/mricrogl
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Principal component variations
After transformation to the transport domain, the standard principal 
components analysis (PCA) technique was applied to denoise the 
data in the transport domain. The dimensions of data contributing 
little to the overall variance in the dataset were removed. The princi-
pal components corresponding to the top 96% of the variance 
were retained.

Mathematically, the covariance matrix in Eq. 4 was computed.

Here, x =
1

M

M∑

m=1

xm . The principal components are given by the 

eigenvectors of ST and can be used to explain the main modes of 
variability in the dataset (19, 24). The factorization in Eq.  5 gives 
both the principal components and eigenvalues, where the diagonal 
components of Σ represent the variance for each principal component.

Supervised machine learning
As previously described, nonlinear distances in the image domain 
can be represented in terms of Euclidean distances in the transport 
domain. Therefore, a linear classifier in the transport domain was 
designed to characterize shifts in tissue morphology (19). The pLDA 
technique was used to compute a subspace in the transport space 
that maximally separated the classes when the data were projected 
onto this subspace. To evaluate the performance of our machine 
learning classifier, we randomly partitioned the data into distinct 
training and test sets. We then trained the classifier by computing a 
discriminant subspace on the training set and tested its ability to 
accurately assign cohorts on the corresponding test set through a 
10- fold stratified cross- validation procedure, iterated many times. 
Further details on the cross- validation scheme can be found in an-
other section.

Within each training iteration, the pLDA method was used to 
classify individual samples after dimensionality reduction. Given the 
mth TBM- transformed image fm, let us refer to the vectorized ver-
sion of the transport map fm as xm. A C- 1 dimensional subspace in 
the transport space is sought using the pLDA method such that the 
projections of the C = 3 classes (duplication, deletion, and control) 
are maximally separated. The pLDA directions are given by the solu-
tion to the optimization problem in Eq. 6.

The matrices ST and SW are defined as in Eqs. 4 and 7.

where C = 3 and represents the number of classes. The pLDA tech-
nique estimates each conditional class density as a multivariate nor-
mal distribution N(μj, Σ), where the j = 1, …, C. The penalty weight α 
represents the tradeoff between the traditional LDA direction and the 
PCA directions. The parameter α is set to be 1.

In the testing phase, after the discriminant subspace is first com-
puted based on training samples, the test data are assigned to class-
es. On the basis of training sample estimates, the quantities μ̂j and π̂j 
that indicate the class mean (i.e., class centroids) and prior probabil-
ity of each class j, respectively. The quantities are defined according 
to Eqs. 8 and 9.

In the above, xi indicates transformed images, and yi indicates 
their class labels for i ∈ 1, …, n, where n is the total number of 
samples. To classify a test sample, the class centroids are pro-
jected onto the discriminant subspace to give the transformed 
centroids μ̃j , and the sample is assigned to the class j according to 
the nearest centroid, based on the following minimization rule 
in Eq. 10.

Here, ŷ refers to the assigned class label of the test sample. Test 
subjects were assigned to cohorts based on nearest centroid classifica-
tion, correcting for the a priori proportion of subjects in each class. 
Sensitivity and specificity were reported using a one- against- all ap-
proach to compute the class sensitivity and specificity.

Repeated cross- validation
Stratified 10- fold cross- validation was performed during classifica-
tion. For each fold, the PCA technique was performed in the training 
set, and the training data were projected onto the principal compo-
nents capturing the top 96% of the variance. The test data were cen-
tered and projected onto the same principal components following 
the same procedure as in the training set. After this dimensionality 
reduction step, supervised machine learning was performed as de-
scribed above. Stratified 10- fold cross- validation was iterated 1000 
times, each with random and nonrepeated partitions of the dataset 
into 10 folds.

Accuracy, sensitivity, and specificity, as well as 95% confidence 
intervals, were determined by using the normal approximation of a 
binomial distribution for error estimation. The test accuracy ob-
tained using white and gray matter distribution was compared to that 
based on age, gender, and brain parenchymal volume alone using the 
same classification scheme and reported in Table 3.

Visualizing discriminating differences
The discriminant subspace computed in the transport domain 
over each iteration of stratified 10- fold cross- validation was aver-
aged to yield a single direction across each discriminant direction. 
The discriminant subspace computed in the training phase by the 
classification scheme was sampled along the maximally correlated 
direction. A vector field corresponding to the magnitude and di-
rection by which brain tissue changes due to the discriminant di-
rection is calculated. Then, inverse TBM transformation is used to 
visualize the interface between cohort boundaries using Eq. 3 as 
brain images.

ST =
1

M

∑

m

(xm − x)(xm−x)T (4)

ST = UΣUT (5)

wpLDA = argmax
‖w‖ = 1

wTSTw

wT (Sw + αI)w
(6)

SW =
∑

C

∑

n∈C

(xn − xc)(xn−xc)
T

(7)

μ̂j =
1

nj

∑

yi = j

xi (8)

π̂j =
nj

n
(9)

ŷpLDA(x) = argmax
j= 1,… ,K

∥ μ̃j − x̃ ∥2
2
− logπ̂j (10)



Kundu et al., Sci. Adv. 10, eadl5307 (2024)     12 June 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

14 of 16

Correlation with an independent variable
The influence of a clinical variable such as brain parenchymal volume 
on brain tissue distribution can be investigated in the transport do-
main. Suppose the variable of interest is ν ∈ ℝN×1. The direction in 
the transport domain wcorr can be computed that maximizes the co-
variation with the variable of interest ν according to Eq. 12.

Here, the direction w = x + ηwcorr is a vector field. The direction 
in the transport domain is a map characterizing tissue redistribution 
due to the independent variable. Here, η represents the decrement 
along the direction maximizing covariance. The images correspond-
ing to the direction maximizing covariance in the transport domain 
can be visualized through inverse 3D TBM transformation.

Regression in the transport space
After computing the discriminant subspace in the transport domain 
using pLDA, the relationship between the brain macrostructural 
variations across each discriminant direction and behavior scores 
were calculated. As linear distances in the transport domain can cap-
ture complex, nonlinear variations in the image domain, linear re-
gression was performed.

For continuous behavioral variables y (i.e., IQ), multiple linear 
regression was performed according to Eq. 12. Here, x1 represents 
the data when projected along direction 1, and x2 represents the data 
when projected along direction 2.

R2, the fraction of variance captured, was examined, and statistical 
significance was determined by permutation testing with 1000 itera-
tions. For ordinal behavioral variables y (i.e., behavioral diagnoses), 
binary logistic regression was performed according to Eq. 13

Violin plots were generated according to (62).
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