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ABSTRACT RNA polymerases (RNAPs) accomplish the first step of gene expression in all
living organisms. However, the sequence divergence between bacterial and human RNAPs
makes the bacterial RNAP a promising target for antibiotic development. The most clini-
cally important and extensively studied class of antibiotics known to inhibit bacterial RNAP
are the rifamycins. For example, rifamycins are a vital element of the current combination
therapy for treatment of tuberculosis. Here, we provide an overview of the history of the
discovery of rifamycins, their mechanisms of action, the mechanisms of bacterial resistance
against them, and progress in their further development.

INTRODUCTION
While a handful of natural and synthetic compounds are known to target
bacterial RNA polymerases (RNAPs), only two of them have managed to
make it into clinical use: rifamycins and lipiarmycin (1). The most clinically
important and extensively studied class of antibiotics known to inhibit bac-
terial RNA polymerase is the rifamycins (RIFs). RIFs are a vital element of the
current combination therapy for treatment of tuberculosis (TB), an infection
caused by Mycobacterium tuberculosis (2). The mechanism of RNAP inhi-
bition by RIFs is believed to be identical for various bacterial RNAPs, and
most of the studies have been performed on Escherichia coli RNAP as a
common model system (3).

HISTORY OF RIFAMYCINS
Ansamycins are a group of naturally derived antibiotics which are named
after their characteristic basket-like structures, where an aliphatic ansa-chain
(ansa = handle in latin) spans an aromatic naphthalenic (e.g., RIF) or
benzenic moiety (e.g., geldanamycin) from its nonadjacent positions (4).
RIFs, the first antibiotics found to inhibit bacterial RNAPs, were originally
isolated from Amycolatopsis mediterranei in 1959 (5–7). Rifamycin B (RIF B)
was the first of a kind that was stable enough to be purified from a mixture of
RIFs (8). Although RIF B has poor antimicrobial activity (likely due to its
inability to penetrate the bacterial cell envelope), it is reversibly converted to

Received: 28 November 2019
Accepted: 27 January 2020
Posted: 27 April 2020
Editor: Susan T. Lovett, Brandeis University,
Waltham, MA; Deborah Hinton, Laboratory of Cell
and Molecular Biology, National Institute of
Diabetes and Digestive and Kidney Diseases,
Bethesda, MD
Citation: EcoSal Plus 2020; doi:10.1128/
ecosalplus.ESP-0017-2019.
Correspondence: Hamed Mosaei, hamed.
mosaei-sejzi@ncl.ac.uk
Copyright: © 2020 American Society for
Microbiology. All rights reserved.
doi:10.1128/ecosalplus.ESP-0017-2019

ASMScience.org/EcoSalPlus 1

mailto:mailto:hamed.mosaei-sejzi@ncl.ac.uk
mailto:mailto:hamed.mosaei-sejzi@ncl.ac.uk
www.asmscience.org/EcoSalPlus


RIF O in aqueous oxygenated solutions. RIF O is then
hydrolyzed to RIF S, losing a glycolic acid residue. The
reduction of RIF S results in RIF SV (Fig. 1) (9, 10). It is
believed that the observed activity of RIF B is due at least
in part to the transformation into active products (RIF O,
S, and SV) (11).

RIF SV was the first ansamycin that found clinical ap-
plication. RIF SV has potent activity, especially against a
spectrum of Gram-positive bacteria and a clinically sig-
nificant pathogen, M. tuberculosis. However, RIF SV has
the limitation of oral administration due to low gastro-
intestinal absorbance (12). Therefore, comprehensive
semisynthetic RIF programs aimed at finding a com-
pound with enhanced oral absorption, prolonged exis-
tence in blood, and better activity against both Gram-

positive and Gram-negative bacteria. Rifampicin (RMP)
was the result of preparation and screening of several
hundreds of semisynthetic RIFs (13). Since the intro-
duction of RMP, it has remained the first-line treatment
for mycobacterial infections, including TB.

RIFAMYCINS IN CLINIC
TB is the ninth leading cause of death and the main cause
of death by a single infectious agent worldwide. In 2018,
10 million people fell ill with TB, and about 1.2 million
(HIV-negative patients) died because of TB. The current
treatment for TB is 6-month combination therapy with
RIF, isoniazid, ethambutol, and pyrazinamide. Drug-
resistant TB is a serious threat, exacerbated by the fact
that as recently as 2018, approximately half a million new

Figure 1 The chemical pathway for conversion of RIF B to RIF SV. The ansa chain and naphthalene moiety of molecules are shown in black and
blue, respectively.
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cases of RMP-resistant (RMPr) TB were recorded, 78% of
which were multidrug-resistant TB (MDR-TB; resistance
to RMP and isoniazid). The RMPr-TB and MDR-TB re-
quire longer treatments, which typically last for 20
months. The role of RIFs as the main first-line anti-TB
drug is so critical that the WHO recommended the Xpert
MTB/RIF assay for simultaneous detection of TB and
RMP resistance (14). RMP is also one of the relatively few
anti-TB drugs with sterilizing activity, the capacity to kill
the mycobacteria that remain after the initial phase of
treatment (e.g., the population of bacteria that undergo
sporadic metabolism) (15). The sterilizing activity of RIFs
enables further shortening of the treatment if higher doses
are tolerated. Higher doses of RMP (up to 35 mg/kg)
are in trials to reduce the treatment period for drug-
susceptible TB (14). Five different RIFs are currently
marketed in various countries: RMP, rifapentine (RPT),
and rifabutin (RBT) for the systemic treatment of myco-
bacterial infections, rifaximin (RXM) only for travelers’
diarrhea), and RIF SV (with limited availability) (16).

MECHANISM OF ACTION OF RIFs
The antibacterial activity of RIFs is due to inhibition of
DNA-dependent RNA synthesis (17). This inhibition is a
result of strong binding of RIFs to prokaryotic RNAP,
ranking them as the most potent inhibitors of bacterial
RNAP (the 50% effective concentration [EC50RMP] for
E. coli RNAP is ∼20 nM). The binding constant of RMP
for eukaryotic RNAP is at least 100 times higher than its
binding constant for prokaryotic enzymes. Inhibition of
RNAP is the common mechanism of action (MOA)
among all structurally related RIFs with antibacterial
activity (15, 18, 19). The antimicrobial activity differences
of RIFs in Gram-positive and Gram-negative bacteria are
not related to their binding site on RNAP but are due to
other factors like efflux pumps in E. coli (20). The binding
of RIFs to RNAP was initially verified by mapping almost
all RMPr mutations to the rpoB gene encoding the β
subunit of RNAP (21).

Studies on the MOA of RIFs revealed that they inhibit
RNA synthesis at the very early stages of transcription
(15, 22, 23) and that RMP is no longer active when RNA
synthesis progresses beyond an early stage (24). It was
also determined that RMP binds to core E. coli RNAP
and does not need the σ-subunit for its binding (25).
McClure and Cech discovered that RMP inhibition
induces the release of dinucleotide from E. coli RNAP if
transcription is started with nucleoside triphosphate,

whereas trinucleotide is released from transcription
complexes started with smaller nucleoside mono- or di-
phosphate. Based on this observation, they proposed that
RIFs sterically block the extension of nascent RNA at
transcription initiation (26). The well-studied RMP-
E. coli RNAPmodel was used as a prototype for analyzing
the RMP binding to other bacterial RNAPs, mostly
through investigation of the RMP-resistant mutants (3,
27–30). Resolving the crystal structure of RMP bound to
RNAP was a breakthrough in the investigation of RIF’s
MOA. According to the structure, the RIF-binding
pocket is located in the β subunit of Thermus aquaticus
RNAP within the DNA/RNA binding channel in 12-Å
proximity to the Mg2+ ion at the active site (3), which is
consistent with previous biochemical observations with
E. coli RNAP (31, 32). Based on the crystal structure,
binding of RMP to RNAP blocks the formation of the
second or third phosphodiester bond (Fig. 2) (3).

The steric model alone did not explain the differences
observed in RIFs. For example, a semisynthetic RIF,
rifalazil (RLZ), and RMP are not completely cross-
resistant, or RLZ and RBT can develop different resistant
mutations compared to RMP (33). Based on the crystal

Figure 2 Mechanisms of action of different RIFs. A RIF (with or
without groups at C-3/C-4 or KglA) bound at the RIF-binding pocket
either sterically blocks progression of the growing RNA chain,
resulting in abortive synthesis (left), or inhibits the first phospho-
diester bond formation by interfering with initiating NTP or with σ
region 3.2 that stabilizes the template DNA.
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structures of Thermus thermophilus RNAP holoenzymes
in complex with RBT and RPT, which lacked catalytic
Mg2+ from the active center, Artsimovitch et al. proposed
an allosteric inhibition model in which instead of or in
addition to the steric model, RIFs allosterically reduce the
affinity of catalytic Mg2+ ion to the RNAP active center
(19, 34).

Later biochemical and structural studies contradicted the
allosteric model of RIF inhibition. Feklistov et al. showed
that RIFs do not affect the affinity of Mg2+ to RNAP, and
a high concentration of Mg2+ does not confer resistance
to RIFs (35), as was proposed for the allosteric mecha-
nism. The crystal structures of the E. coli RNAP σ70

holoenzyme in complex with RMP as well as two RIF
derivatives which similarly to RBT inhibit the first
phosphodiester bond displayed the binding of RIFs to a
RIF-binding pocket without inducing the loss of Mg2+

from the active center (36). Accordingly, the authors
suggested that a potential interaction of RIF “tails” with a
loop-like domain of σ subunit, σ region 3.2, is responsible
for inhibiting the formation of the first phosphodiester
bond by some RIF derivatives (36). The σ region 3.2
stretches toward the RNAP active center and plays an
important role in transcription initiation via direct in-
teraction with template DNA and stabilizes the initiating
nucleoside triphosphates (NTPs) in the RNAP active site
(37). Therefore, disengagement of the σ region 3.2 from
its position by RIFs may reposition the template DNA
relative to the active site and impair the binding of, first,
NTP, which consequently may inhibit the formation of
the first phosphodiester bond (36–39).

Recently, crystal structures of M. tuberculosis RNAP
containing variable synthetic RNA oligomers (2-, 3-, and
4-RNA nucleotide RNA) in complex with RMP demon-
strated that it does not expel the catalytic Mg2+ from
RNAP (40). The recent studies of kanglemycin A (KglA),
a rifamycin molecule with no C-3/C-4 side groups,
showed that it does not displace the Mg2+ from the RNAP
active center while inhibiting the first phosphodiester
bond via a steric and/or electrostatic clash of the addi-
tional acid moiety of the ansa bridge with γ and/or β
phosphates of the initiating NTP (Fig. 2) (41, 42). Overall,
the discrepancy in the MOA of different RIFs could be
explained by direct interference of large groups of some
RIF molecules (e.g., RBT) with the initiating dinucleotide
or other proximal residues such as the σ region 3.2 (rather
than allosterically with Mg2+ of the active center), which
also would appear as inhibition of synthesis of the first

phosphodiester bond (Fig. 2). It should be mentioned
that some discrepancies in interpretation of biochemical
results may also be caused by the usage of different ini-
tiation substrates in different studies, in particular, NTP
versus NpN dinucleotide primers (lacking triphosphate
moiety at their 5′ end), which have different sizes and
charge distributions, which, in turn, may strongly affect
their interactions with various RIFs.

The sensitivity of different bacterial RNAPs to RIFs is
influenced not only by the binding region (RIF-pocket)
but also by other regions which indirectly change the
conformation of the binding site (43). The M. tubercu-
losis andMycobacterium avium RNAPs have been shown
to be more sensitive than E. coli RNAP to RMP (44, 45).
As the RIF-binding pocket is highly conserved among all
bacteria, such differences are thought to be due to
structural differences in the nonconserved regions
surrounding the RIF-binding pocket of RNAPs. For in-
stance, a chimeric E. coli RNA polymerase carrying
β-subunit regions I and II of M. tuberculosis enzyme was
as sensitive as wild-type E. coli enzyme in response to
RMP, suggesting that regions outside the RIF pocket can
determine sensitivity to RIFs (43). Similarly, T. aquaticus
RNAP is about 100-fold less sensitive to RMP compared
to E. coli RNAP (42, 46), while amino acids of
T. aquaticus RNAP that directly interact with RIF are
identical to those in E. coli RNAP. Therefore, the dif-
ference is also thought to be due to changes in the regions
outside the RIF-binding pocket (3, 47).

STRUCTURE-ACTIVITY RELATIONSHIP OF RIFs
Almost all RIFs form four critical hydrogen bonds with
RNAP residues through oxygens at C-1 and C-8 on the
naphthalenic ring and C-21 and C-23 hydroxyl groups. A
particular spatial arrangement of the above four oxygens is
important for the binding. Oxygens at C-1 and C-8 make
hydrogen bonds with RNAP residues S531/Q513 and
R529, respectively, while hydroxyl oxygen at C-21 makes
hydrogen or van der Waals interactions with three resi-
dues of RNAP: H526, D516, and F514 (E. coli numbering
is used here and throughout the paper). The hydroxyl
oxygen at C-23 together with carbonyl oxygen of C-25
make hydrogen bonds to F514 (3, 48). In KglA, because of
different orientation of the ansa chain compared with
other RIFs, the hydroxyl group at C-23 does not form a
hydrogen bond with βF514. Instead, the unique sugar side
chain of KglA at C-27 makes contact with βR143 (Fig. 3)
(41). Moreover, hydrophobic interactions between RIFs
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and RNAP residues E565, I572, G534, L533, L511, and
Q510 contribute to the binding of RMP (3).

MODIFICATIONS OF THE RIF ANSA BRIDGE
Early studies showed that even minor modifications of
the ansa bridge, such as acetylation of C-21 or C-23
alcohols, led to activity loss of RIFs (15). Other examples
of unsuccessful modifications in the ansa bridge include
the epoxy side chain derivatives (e.g., 18,19-epoxy RIF S),
RIF SV analogues with a keto group at C-21 instead of
hydroxyl and an extra hydroxyl at C-20 (49), derivatives
with a cyclic 3-14 linkage to the nitrogen of the macro-
cyclic ring, and RIFs with open rings, such as RIF W (50).
Very few derivatives of RIFs with ansa bridge modifica-
tions have been shown to retain their activity due to only
minor conformational changes of the ansa bridge. The
hydroxylated C-25 derivative of RIF is one of the modi-
fications of the side chain which is tolerated (49, 51). The
24-desmethyl rifampicin has also been claimed to have
the same or enhanced activity against some bacteria
compared to RMP (52). The considerable potential of
RIF ansa bridge modifications to improve their activity
was revealed after the discovery of the KglA MOA (41,

42). KglA, a rifamycin molecule with unusual ansa bridge
modifications (C-27 β-O-3,4-O,O′-methylene digitoxose
and C-20 2,2-dimethyl succinic acid) is more effective
against RMPr RNAPs and bacteria compared with the
commonly used RMP. KglA binds to the RIF-binding
pocket, but the unique ansa bridge groups of KglA es-
tablish additional contacts with the RIF-binding pocket
and influence the overall binding mode of KglA in the
pocket (Fig. 3) (41). The KglA scaffold provides a ratio-
nale for the further development of new RIFs with
activity against the RMPr bacteria.

MODIFICATIONS OF THE NAPHTHAQUINONE RING

Modifications at Position C-4 of RIFs
Generally, modifications in the naphthalene ring of RIFs
are well tolerated. The first observation indicating the
possibility of modifications in the naphthalene ring was
the equal RNAP activity of RIF S, RIF B, and RIF SV (15,
53). RIF B, a potent inhibitor of bacterial RNAP, shows
poor penetration through the bacterial cell wall due to
free carboxylic acid at C-4. Structure-activity relationship
studies noted that RIFs with free carboxyl groups at C-3
or C-4 have reduced ability to penetrate the cell wall and

Figure 3 Mode of KglA binding to RNAP compared with RMP. (A) Chemical structures of KglA (in red with C-20 and C-27 side chains
highlighted in yellow) and RMP (black). (B) A close-up view of KglA in the RIF-binding pocket of T. thermophilus RNAP (PDB: 6CUU). KglA is
shown as a stick model (red) with its deoxysugar and succinate groups shown in yellow. RNAP is shown as a transparent surface model (gray),
and RNAP β residues, which form the RIF-binding pocket, are shown as stick models. KglA binds to the same residues that RMP binds (cyan) to,
with the exception of βF514 (green). KglA makes additional binding with βR143 (blue). (C) A side view of KglA in the RIF-binding pocket shown
in panel B (PDB: 1YNN and 6CUU). The RNAP β subunit is shown in cyan. KglA (red and yellow) is overlaid on RMP (gray). Compared with
RMP, KglA maintains a larger distance from the RIF-binding pocket (depicted by the two-headed arrow) (41).
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therefore possess reduced activity against bacteria (54).
The first successful modifications at C-4 were the amide
and hydrazide analogues of Rif B with enhanced in vitro
and in vivo activity (55). The first RIF B derivative in
clinical use was a diethylamide analogue (rifamide),
though it was replaced by RMP because of its poor
pharmacokinetics (13, 56).

Modifications at Position C-3 of RIFs
Most of the initial successful structure-activity relation-
ship studies concentrated on C-3 modifications of RIFs.
A range of substitutions at the C-3 position of RIF S or
SV have been shown to maintain their activity against
bacteria (57–59). Dampier and Whitlock showed that
electronegative groups at C-3 enhance the activity of
RIFs, while the electron-donating groups at C-3 reduce
the activity against RNAP (60). Early works showed
that almost all changes in RIFs, including the naphtha-
quinone ring modifications, which change the confor-
mation of the ansa bridge, lead to loss of activity (58,
61–63). Although RIF O retains its inhibitory activity
against RNAP despite conformational changes in the
ansa chain it is suggested that the in vitro activity of RIF
O could be at least partly due to the hydrolyzed product,
RIF S (64, 65). RMP was the result of many hundreds of
imine, hydrazide, and oxime derivatives of 3-formyl RIF
SV (Fig. 4). Due to its potency against M. tuberculosis
and improved pharmacokinetic properties, RMP has
remained the mainstay in TB therapy since its intro-
duction in 1968 (13). After successful synthesis of RMP,
many structure-activity relationship studies moved to-
ward the synthesis of RMP analogues with enhanced
half-life to permit intermittent dosing. These studies
resulted in the synthesis of many C-3 substituted RMPs
(66). RPT, which has a cyclopentyl group instead of a
terminal methyl group at C-3, was the best derivative
(Fig. 4). Not only is RPT as active as RMP against
M. tuberculosis, but its longer half-life enables twice-
weekly dosing for TB patients (67). However, RPT is
completely cross-resistant with RMP (68, 69). RPT is
currently used in combination with isoniazid to treat
latent M. tuberculosis infections (70).

Modifications of C-3/C-4 in RIFs
A variety of RIF analogues with an additional ring linking
C-3 and C-4 have been synthesized. The antibacterial
activity of different C-3/C-4 analogues of RIFs can differ
by several orders of magnitude, and therefore, most of the
recent attempts have been focused on making such

derivatives of RIFs (71). Rifazine was one of the first ri-
gidified benzannulated analogues of RIF which retained
its activity against RNAP (Fig. 4). Rifazine has consider-
ably higher potency against Staphylococcus aureus com-
pared with RIF SV (49, 72). Rifaximin (RXM) was another
RIF analogue with an additional ring (Fig. 4) which had
similar activity as RMP in cell culture, though its activity
against Staphylococcus epidermidis RNAP was about half
of RMP activity (73). RXM has very low oral absorption
due to the two oppositely charged nitrogens in addition to
phenolic hydroxyls, which is beneficial for treatment of
gastrointestinal infections where a high fecal concentra-
tion of drug is required (74, 75). RXM is approved in
many countries to treat uncomplicated traveler’s diarrhea
(E. coli-born irritable bowel syndrome with diarrhea)
(75). Although resistant mutations for RXM are selected
at a lower rate compared with RMP, cross-resistance be-
tween the two drugs is inevitable (76, 77).

A milestone in the optimization of RIF derivatives was the
synthesis of spiro-piperidyl RIF analogues, out of which
RBT was the most promising (Fig. 4) (78). The crystal
structure of T. thermophilus RNAP holoenzyme in com-
plex with RBT showed that, similar to RMP, the ansa
moiety of RBT makes contact with β residues of RNAP,
suggesting the same MOA as RMP. It is proposed that the
C-3/C-4 tail of RBT makes contact with the σ-subunit of
RNAP, which enables RBT to inhibit the elongation of
RNA at earlier stages of transcription compared to RMP.
However, there is no strong biochemical evidence to
support that binding to the σ-subunit is responsible for
this variation (19, 35). RBT is more potent against RMP-
susceptibleM. tuberculosis than RMP (20), but most of the
RMPr M. tuberculosis strains are also resistant to RBT,
albeit with lower MICs than those for RMP (79). The in
vitro activity of RBT against RMPr RNAPs also confirmed
its partial cross-resistance with RMP (20). Further studies
of large numbers of clinically isolated RMPr strains indi-
cated the potential of RBT for treatment of patients di-
agnosed with specific RMPr-TB (80, 81). One of the main
drawbacks of RIFs is the interaction with human pregnane
X receptor (hPXR), which induces the hepatic cytochrome
P450 (Cyp450) and other proteins involved in xenobiotic
metabolism. This is of great importance in patients
coinfected with HIV and M. tuberculosis, as certain
antiviral drugs are metabolized by Cyp450. Because of the
low drug-drug interactions of RBT, especially with
antiviral drugs, and the high level of in vivo toxicity, it is
used as an alternative therapy against several mycobacte-
rial infections, including M. avium-intracellulare complex
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Figure 4 Chemical structures of different RIFs. The ansa chain and naphthalene moiety of the molecules are shown in black and blue, respectively.
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(MAC) in patients with AIDS, and for treatment of MDR-
TB (82, 83). More recently, synthesis of RBT analogues
resulted in two promising candidates, RFA-1 and RFA-2
(Fig. 4), which display MIC values up to 100 times lower
than that of RMP and 20 times lower than that of RBT
against MDR-TB (84, 85). Preliminary molecular model-
ling calculations on an RMPr M. tuberculosis RNAP
showed increased interaction energy between the RFA-1
compared to RBT and RMP. Therefore, the enhanced
antimicrobial activity of the two derivatives against RMPr

strains derives from their tighter binding to RNAP as a
result of additional enzyme-ligand contacts (85).

Another breakthrough in RIF analogues was the syn-
thesis of 3′-hydroxy-5′-aminobenzoxazinorifamycin
derivatives. The benzoxazinorifamycins (bxRIFs) showed
enhanced in vivo activity against slowly growing myco-
bacteria, including M. tuberculosis and MAC compared
to RMP, and provided better absorption from the gas-
trointestinal tract. Among such derivatives, KRM-1648
(rifalazil [RLZ]) was the most promising analogue due to
its excellent potency against M. tuberculosis in addition
to the improved pharmacokinetic characteristics (Fig. 4)
(86). RLZ strongly inhibits a spectrum of Gram-positive
bacteria with MICs lower than or similar to those for
RMP. Although the frequency of spontaneous mutation
for RLZ is almost same as for RMP (87), it has somewhat
enhanced activity against some of the isolates which are
resistant to RMP and RBT (36, 88–90). Fujii et al. showed
that RLZ similarly inhibits RNAPs of different bacterial
origins in vitro and concluded that its improved anti-
bacterial activity depends on cell wall permeability of
the target bacteria (45). Despite many exceptional
characteristics of RLZ, including high potency (up to
250-fold more potent than RMP) (91), its activity against
some RMPr strains (88), high volume of distribution and
tissue level (92), and lack of hepatic Cyp450 induction
(93), RLZ development was suspended due to high tox-
icity observed in phases I and II of clinical trials (94).

In a study aimed at the synthesis of novel bxRIFs, Gill et al.
showed three novel RLZ derivatives which have improved
binding affinity to wild-type and rifamycin-resistant
(RIFr) RNAPs of M. tuberculosis (94). It is suggested that
bxRIFs are capable of making additional contacts with
RNAP (possibly with σ region 3.2 and other regions of the
RNAP complex) (36). However, all analogues exhibited
high human pregnane X receptor (hPXR) activation and
cytotoxicity and had low antitubercular activity in cell
culture (94).

MECHANISM OF RESISTANCE TO RIFs
Shortly after the discovery of RIFs, the occurrence of
resistant mutations creating a high level of resistance was
observed in the laboratory and in infected patients (95,
96). Bacteria develop resistance to RIFs at frequencies of
10–10 to 10–7 depending on the organism, methodology,
and type of RIF molecule (16, 97). Because of the rapid
emergence of resistant isolates, RMP is used in drug
combinations almost exclusively for treatment of TB (4).

Mutations Affecting the β Subunit
Almost all mutations conferring resistance to RIFs map
to the rpoB gene (which encodes the β subunit of RNAP)
in M. tuberculosis (29, 98), E. coli (22, 99), and other
microorganisms examined (100–102) (Fig. 5). Although
E. coli is not the main therapeutic target for most RIFs,
well-studied RNAP of this organism in addition to the
homology of its RNAP to the M. tuberculosis RNAP
makes it a good model for genetic and physiological
studies. RIFr spontaneous point mutations, mostly as
single amino acid changes, occur within four regions of
rpoB (known as the RIF resistance-determining region,
RRDR): N-terminal cluster (cluster N, amino acids 146 to
148), cluster I (amino acids 504 to 538), cluster II (amino
acids 562 to 575), and cluster III (amino acids 684 to 691)
(Fig. 5) (103, 104). The vast majority of such mutations
(∼95%) are within the 81-base pair region of cluster I,
which is highly conserved among bacterial RNAPs but
different from archaeal or eukaryotic RNAPs (98, 105).
According to crystal structure of the T. aquaticus RNAP
bound to RMP, almost all residues that directly interact
with RMP are encoded by cluster I. Almost all residues
involved in direct interaction with RMP are susceptible to
mutations resulting in RMP resistance (Fig. 5) (3).

While point mutations have been found in 33 codons of
RRDR, only three mutations, S531L, H526Y, and D516V,
account for around 41%, 36%, and 9%, respectively, of all
clinically isolated RIFr-TB strains (98). The three most
frequent RMPr mutations have direct effect on interactions
with oxygens at C-8 and C-21 of RMP (Fig. 5) (3).
Depending on the point mutations, the mechanism of
resistance to RIFs varies. For example, the βS531L does not
impose a significant structural or functional impact on
RNAP in the absence of RMP. The βS531L disorders the
RIF-binding pocket upon RMP binding and therefore
reduces the binding affinity for RMP. The collision be-
tween the leucine at β531 and the β subunit fork loop 2
(a conserved loop of the active center which plays a role in
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DNA strand separation) is suggested to be responsible for
disordering the RIF-binding pocket. The H526Y mutation
significantly changes the RIF-binding pocket and therefore
causes a significant steric conflict for binding of RMP to
RNAP. As a result, mutations at βH526 lead to very high
levels of resistance to RMP. The less frequent mutation,
βD516V, reduces the affinity of RIF binding only by
changing the electrostatic surface of the RIF-binding
pocket (48, 106). Other RIF-resistant rpoB mutations
which do not make direct interactions with RIF are
thought to act by changing the conformation of the RNAP.

Many studies focused on binding surfaces away from the
RIF-binding pocket to target the RIFr bacterial RNAPs (40,
107). However, the RIF-binding pocket is still a promising

target for the development of new RIFs with activity
against RIFr pathogens. For example, the additional con-
tacts of KglA with the RIF-binding pocket induces con-
formational changes of KglA which, compared with RMP,
positions the drug slightly away from the RIF-binding
pocket (Fig. 3). The increased distance between KglA and
RNAP enables it to maintain its inhibitory activity against
the most frequent RIF-resistant bacterial RNAP (βS531L).
Due to additional contacts and slightly different modes of
binding to RNAP, it was suggested that only an unlikely
event of two concurrent mutations within the RIF-binding
pocket can produce resistance to KglA (41). However,
such mutations impose a great fitness cost and may
compromise the transcriptional integrity and therefore
make the pathogen nonviable (108).

Figure 5 Rifamycin resistance-determining regions of different bacterial RNAPs. (A) Schematic representation of RMP in the stick model
(green) bound to residues of E. coli RIF-binding pocket (gray stick model; PDBID: 5UAC) (48). The hydrogen bonds between RMP and residues
are shown as dashed lines. Amino acid residues that are mutated in clinical RIFr isolates are highlighted in red. The three residues which are most
frequently mutated to confer RIFr clinical isolates of M. tuberculosis are marked by an asterisk. (B) The schematic on top represents the primary
sequence of the E. coli β subunit. The amino acid numbering is depicted. Gray boxes represent the four clusters (RMP resistance-determining
regions; RRDRs) where RIFr mutations occur. A sequence alignment showing these clusters in E. coli, S. enterica,M. tuberculosis, T. thermophilus,
S. aureus, and B. subtilis is depicted below the schematic bar. Amino acids that are identical to E. coli are highlighted in gray. Mutations that confer
RIFr in E. coli are indicated above the sequence.
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Other Mechanisms of Resistance to RIFs
Some bacteria, such as certain soil-dwelling actino-
mycetes, are intrinsically resistant to RIFs. An example of
such intrinsic resistance is the presence of asparagine at
consensus codon 531 in comparison to serine in sus-
ceptible bacteria (109). Various RNAP-independent
mechanisms have been described for RMP resistance,
though mostly in clinically insignificant organisms. For
example, the removal of RIFs by efflux pumps has been
shown in different strains, includingM. tuberculosis (110,
111). In Nocardia farcinica, an RMP monooxygenase
(ROX) is recognized as a secondary mechanism of RMPr

which, by adding an oxygen to the C3 side chain of
RMP, converts it to a compound with lower antimicro-
bial activity (112). Furthermore, in certain species of
mycobacteria, including the emerging pathogen Myco-
bacterium abscessus, the high level of resistance to RMP is
partly associated with the ADP-ribosyltransferase (Arr)
enzyme that can modify RMP with ADP-ribosyl, a group
transferred from NAD+, which results in RIF inactivation
(113). Since the ribosylation of RMP by Arr occurs at
position C23, the presence of bulky side chains in the
vicinity of the ribosylation site is suggested to create a
steric hindrance for RMP inactivation. For instance,
different 3-morpholino RIFs which possess a bulky car-
bamate group at C25 are resistant to RIF inactivation by
Arr (114). KglA and its congeners which carry a relatively
large sugar side group at C-27 (41, 42) are potential

candidates for developing RIFs with the ability to over-
come Arr-mediated RIF inactivation.

Fitness Cost of RIFr Mutations
and Fitness-Compensatory Mechanisms
Most mutations conferring antibiotic resistance come
with a cost, meaning the bacterial strains carrying resis-
tant mutations have compromised fitness compared with
the ancestral strains (115–118). In the absence of anti-
biotics, resistant bacteria bearing reduced fitness should
be outcompeted by the drug-sensitive bacteria and be
eliminated from the population. However, the fitness cost
of antibiotic resistance is counterbalanced by compen-
satory evolution. Rapidly evolving secondary mutations
provide the resistant bacteria the ability to become as fit
as susceptible strains and hence stabilize the resistant
bacterial population in the absence of antibiotic (116).

Almost all Rif-resistant mutations impose reduced fit-
ness. The fitness cost of RIFr mutations is generally
inevitable, as the process targeted by RIFs, the tran-
scription, is vital to all aspects of bacterial life, including
the growth and virulence (117–122). The fitness cost of
RIFr mutations and their corresponding prevalence in
nature have a negative correlation. Therefore, only the
RIFr mutations with low fitness costs are found fre-
quently in resistant clinical isolates (48, 123). Fitness in
bacteria critically depends on their surrounding envi-

Figure 6 Two views of the RIF compensatory mutations from different RIFr bacteria (108, 121, 122, 128, 131) mapped onto the crystal structure of
the E. coli RNAP-RMP complex (PDB:5UAC). The RNAP core enzyme is illustrated as a transparent surface (α subunits, gray; β subunit, cyan; β′
subunit, bright orange; ω subunit, gray). The active center of RNAP, marked by the presence of catalytic Mg2+ (magenta sphere) is circled. The
RMP molecule is depicted as red spheres. Compensatory mutations found on the α, β, and β′ subunits of RNAP are shown as gray, blue, and
orange spheres, respectively.
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Table 1 List of secondary mutations in different RIFr bacteria

Strain RMPr mutation Secondary mutations in α Secondary mutations in β Secondary mutations in β′ Reference
Salmonella
enterica

βS531 αA189E
αT196S

βN339H
βD340Y
βE546k
βG809A
βQ1264R

β′H419P
β′A446V
β′D622E
β′R634P
β′T674I
β′I937T
β′S942L
β′R943H
β′R1075C
β′R1075L
β′G1136A

128

Salmonella
enterica

βR529 αR191C βD516G
βP560L
βP564S
βE565A
βR637C
βH673Y

β′P64L
β′L770P
β′R1075P
β′R1075H
β′G1136
β′R1140H
β′V1198E

122

E. colia βD516 βS574Y
βH554Y
βS574Y

121

E. colia βP564 βR211P
βS574F
βL194R

121

E. colia βL511 βD516G 121

E. colia βI572 βG556G 121

M. tuberculosisc βS531 αA189V
αR191W
αV192G
αT196A

βT1286I
βQ490R
βP25S

β′G257R
β′G257S
β′N341S
β′P359R
β′P359V
β′F377L
β′K370R
β′V408G
β′P420_V421insA
β′L432V
β′L441P
β′L452V
β′D622E
β′E658G
β′E658D
β′E658A
β′P998R
β′P998S
β′A1312V
β′N1350S
β′A1312V

108

M. tuberculosisb βS531 β′D410Y
β′F377C
β′G257R
β′H450Q
β′V408G
β′V408A
β′I416T
β′Q448E

131

(continued)
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ronment. For example, RIFr mutants, which reduce the
bacterial fitness in exponential growth, can be advanta-
geous in the later stages of growth (e.g., aging colonies), at
high temperatures, or in low-glucose environments (124,
125). The fitness costs of RIFr mutations could be ame-
liorated by secondary mutations within RNAP β, β′, or α
subunits and occur at higher frequencies than the mu-
tations resulting in reversion of primary RIFr mutation
(Fig. 6 and Table 1) (108, 122, 126, 127). The secondary
mutations are concentrated in particular structural re-
gions of RNAP and may act by different mechanisms,
including restoring the properties of the RIF-binding
pocket, changing the interaction of enzyme with sub-
strate or RNA, or affecting the interactions between
different RNAP subunits (e.g., mutations in the α-β′
interface) (108, 122, 127, 128). The secondary mutations
do not considerably change the susceptibility of bacteria
to RIFs, with the exception of those that are known RIFr

mutations (e.g., βD516G) (122).

A combination of different factors determine the recur-
rence of RIFr mutations. In addition to low fitness cost, a
high level of resistance to RIF, and acquiring secondary
mutations to further reduce the fitness cost, all contribute
to the success of specific RIFr mutations in clinical isolates
of M. tuberculosis (129). Although the compensatory
mutations play key roles in developing clinical RIFr bac-
teria with high fitness (118, 120, 127, 130), our knowledge
of the MOA of such mutations is very limited. Investi-
gating the MOA of compensatory mutations in different
organisms could possibly shed new light on the activities
of RNAP and allosteric switches within the enzyme and
open new doors to potential novel approaches for tackling
antibiotic resistance.

Although the importance of RIFr fitness compensatory
mutations has been studied in different organisms, E. coli
(121) and Salmonella are broadly used as genetically
amenable model organisms to study the fitness cost in

resistance to RIFs and the genetics of the corresponding
compensatory evolution (122, 128, 129). The compensa-
torymutations found in the model organisms overlap with
the mutations found in clinical isolates of M. tuberculosis,
suggesting the conserved role of fitness compensatory
mutations in bacteria (Table 1) (122, 127–129).
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