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Abstract

The latent structure of executive functions (EFs) remains controversial. Confirmatory factorial 

analysis (CFA) has provided support for both multidimensional (assumes EFs to be functionally 

separable but related components) and bifactor (proposes all components are nested within a 

common factor) models. However, these CFA models have never been compared in patient 

samples, nor regarding their neuroanatomical correlates. Here, we systematically contrast both 

approaches in neurotypicals and in a neurodegenerative lesion model (patients with the behavioral 

variant frontotemporal dementia, bvFTD), characterized by executive deficits associated with 

frontal neurodegeneration. First, CFA was used to test the models’ fit in a sample of 341 

neurotypicals and 29 bvFTD patients based on performance in an executive frontal screening 

battery which assesses working memory, motor inhibition, verbal inhibition, and abstraction 

capacity. Second, we compared EFs factor and observed scores between patients and matched 

controls. Finally, we used voxel-based morphometry (VBM) to compare the grey matter correlates 

of factor and observed scores. CFA results showed that both models fit the data well. The 

multidimensional model, however, was more sensitive than the bifactor model and the observed 

scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional model 

revealed common and unique grey matter correlates for EFs components across prefrontal-insular, 

posterior, and temporal cortices. Regarding the bifactor model, only the common factor was 

associated with prefrontal-insular hubs. Observed scores presented scant, non-frontal grey matter 

associations. Converging behavioral and neuroanatomical evidence from healthy populations and a 

neurodegenerative model of EFs supports an underlying multidimensional structure.

Keywords

Executive functions; Confirmatory factorial analysis; Voxel-based morphometry; bvFTD; Lesion 
model

1. Introduction

Executive functions (EFs) are high-level cognitive processes that play crucial roles in 

the organization of mental resources to accomplish goals (Diamond, 2013). Despite the 

relevance of EFs in research and clinical settings, the construct itself remains poorly 

understood (Baggetta & Alexander, 2016; Jurado & Rosselli, 2007). While there is little 

controversy that EFs comprise multiple components (Baggetta & Alexander, 2016; Jurado 

& Rosselli, 2007), it is not clear whether their latent structure consists of distinct but 

related constructs, as proposed by multidimensional models, or whether they depend 

on a single underlying ability, as proposed by bifactor models (Friedman & Miyake, 

2017; Karr et al., 2018). However, these competing latent approaches have never been 

systematically compared in patient samples, nor have they been compared regarding 

their neuroanatomical correlates. Here, we contrast a multidimensional and a bifactor 

model of EFs in neurotypicals and in a lesion model composed of behavioral variant 

frontotemporal dementia (bvFTD) patients, characterized by executive deficits mainly 

associated with frontal neurodegeneration. We performed confirmatory factorial analysis 

(CFA) and voxel-based morphometry (VBM) to evaluate which model is more sensitive to 

detect neurocognitive dysfunction in patients. We expect to bring novel integrated behavioral 
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and neuroanatomical evidence to help elucidate the latent structure of EFs, which has been 

studied mainly based on performance measures.

Numerous components have been subsumed under the EFs umbrella term, including 

working memory (WM; the temporary storage and manipulation of information in mind 

(Baddeley, 2007; Wechsler, 1987)), inhibition (the ability to override a prepotent motor 

or verbal response (Aron, Robbins, & Poldrack, 2004), and abstraction capacity (Abs.C; 

conceptualization (Dubois, Slachevsky, Litvan, & Pillon, 2000)), among others. The 

organization of EFs components is still a matter of debate (Baggetta & Alexander, 2016; 

Jurado & Rosselli, 2007). Some lines of evidence suggest that EFs are a set of diverse 

cognitive capacities. EFs dissociate in some patient studies, in relation to the functional 

specialization of the frontal lobes (Godefroy, Cabaret, Petit-Chenal, Pruvo, & Rousseaux, 

1999; Stuss, 2011; Stuss & Alexander, 2007; Tsuchida & Fellows, 2013). WM would be 

critically associated with the dorsolateral prefrontal cortex (D’Esposito et al., 1998; Smolker 

et al., 2015; Wager & Smith, 2003), inhibition with inferior, medial, and orbitofrontal 

regions (Aron et al., 2004; Collette et al., 2005; Stuss, 2011), and Abs.C with rostral-

prefrontal areas (Dumontheil, 2014; Nee, Jahn, & Brown, 2014). On the other hand, the 

existence of a single ability underlying all EFs has also been proposed (Duncan, Johnson, 

Swales, & Freer, 1997; Friedman & Miyake, 2017; Obonsawin et al., 2002). Notably, 

different EFs share fronto-parietal engagement (Fedorenko, Duncan, & Kanwisher, 2013; 

Hedden & Gabrieli, 2010; Niendam et al., 2012).

A crucial shortcoming in EFs conceptualization lies in the interference of non-executive 

processes during task performance, or “task impurity” (Burgess, 1997). Factorial analysis, 

such as CFA, can reduce this confounding by extracting common variance across different 

tasks to represent a latent (i.e., pure) construct (Miyake et al., 2000). In healthy adult 

populations, both factorial multidimensional and bifactor models have received empirical 

support (Karr et al., 2018). The first one assumes that EFs components are functionally 

separable (although related) constructs (Miyake et al., 2000). Bifactor models2 propose 

that all components are nested within a common factor (CF) that predicts performance 

in all tasks (Friedman & Miyake, 2017). More specifically, bifactor models include a CF 

that comprises the commonality of all observed variables, and multiple domain-specific 

factors representing the unique influence of each specific component (Chen, West, & 

Sousa, 2006). Thus, the observed variables are directly influenced by the common and 

domain-specific factors, which are assumed to present orthogonal relationships (Chen et al., 

2006). This aspect represents an advantage over unidimensional models, where the observed 

variables are uniquely affected by the CF (Brunner, Nagy, & Wilhelm, 2012). Consequently, 

unidimensional models cannot capture simultaneously domain-specific factors, which are 

frequently reported in CFA models of EFs (Karr et al., 2018). A re-analysis of 46 CFA 

in healthy populations (Karr et al., 2018) found that both multidimensional and bifactor 

models present similar fit indices and none could be unequivocally preferred. However, 

models have never been directly compared in clinical samples, nor regarding their brain 

correlates. Evidence from lesion and neuroanatomical approaches may help to characterize 

and compare both models.
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Lesion models, including the neurodegenerative (García-Cordero et al., 2016; Melloni et 

al., 2016; Santamaría-García et al., 2017), can be useful to scrutinize the predictions 

of EFs. Patients with distinctive neurocognitive profiles allow for direct testing of the 

hypothesis regarding a model’s brain-behavior associations. In this context, patients with 

bvFTD are characterized by early and selective deficits in EFs associated with frontal 

neurodegeneration (Harciarek & Cosentino, 2013; Johnen & Bertoux, 2019; Piguet et al., 

2011; Possin et al., 2013). The pattern of progressive degeneration among patients with 

bvFTD begins in the medial and orbitofrontal regions, followed by the anterior temporal 

pole, dorsolateral prefrontal cortices, and eventually the hippocampus and the basal ganglia 

(Kril & Halliday, 2004). Despite the fact that the initial site of atrophy does not lie in 

dorsolateral prefrontal cortices –which are typically engaged in EFs– current meta-analytic 

evidence (Beeldman et al., 2018; Kamath, Chaney, Deright, & Onyike, 2019) points to 

executive dysfunctions as core symptoms of bvFTD, with changes in mentalizing abilities 

being secondary to them (Schroeter et al., 2014). Moreover, executive impairment has been 

associated with the ventromedial compromise in bvFTD (Baez et al., 2019; Ducharme, 

Price, & Dickerson, 2018; Garcia-Cordero et al., 2019; Lu et al., 2013). Thus, the bvFTD 

constitutes a dysexecutive-frontal lesion model to test EFs models’ outcomes, especially in 

mild stages of the disease (such as the current sample).

With some exceptions (Ambrosini, Arbula, Rossato, Pacella, & Vallesi, 2019; Bettcher et 

al., 2016; Smolker et al., 2015, 2018), the majority of CFA studies in this field are based 

exclusively on behavioral measures claiming an integrated approach with brain measures 

(Ambrosini et al., 2019). In this line of research, VBM is a widely used method to 

study the grey matter correlates of EFs which greatly overlap with their functional bases 

(Ruscheweyh, Deppe, Keller, et al., 2013; Smolker et al., 2018, 2015; Weise et al., 2019). 

Also, structural neuroimaging has the advantage of being easy to implement in patient 

samples given its brevity and low demand relative to task-based functional methods.

Against this background, this work aims to compare two competing approaches to the 

organization of EFs in neurotypicals and a lesion model composed by a group of patients 

with bvFTD by combining CFA and VBM. First, we implemented CFA to assess the fit of 

robust multidimensional and bifactor models of EFs based on the performance of a large 

sample of participants (n = 370) on the INECO Frontal Screening (IFS) (Torralva et al., 

2009), a validated battery that evaluates WM, motor inhibition (M.Inh), verbal inhibition 

(V.Inh), and Abs.C. We chose the IFS given its reliable psychometric properties (see details 

in Materials and methods, section 2.2). As age has strong effects on EFs structure (Bock, 

Haeger, & Voelcker-Rehage, 2019), we performed measurement invariance testing across 

that variable. We then compared IFS factor and observed scores between bvFTD patients 

(n = 29) and a sub-sample of controls (n = 24) matched in relevant demographic variables. 

Finally, we used VBM to assess the grey matter correlates of IFS factor and observed sores 

in the bvFTD group in tandem with its paired controls.

Based on previous evidence (Karr et al., 2018), we expect both models to fit the data well. 

Also, in light of evidence from frontal lesions (e.g., Tsuchida and Fellows, 2013) suggesting 

a fractionated structure of EFs, we hypothesize that the multidimensional model will provide 
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a more sensitive discrimination of frontal-executive deficits in patients compared to the 

bifactor model and the observed IFS scores.

2. Materials and methods

We report how we determined our sample size, all data exclusions (if any), all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were established prior to data 

analysis, all manipulations, and all measures in the study.

2.1. Participants

A total of 370 participants were enrolled in this study −341 healthy controls and 29 bvFTD 

patients. For further statistical analyses, a subsample of 24 controls was sex, age, and 

education-matched with the bvFTD group (paired controls) –See demographics in Table 1. 

Sample size adequacy was determined using GPower 3.1 software. Our statistical design 

[two-group comparisons using Mann–Whitney U tests (predicting worse performance in 

bvFTD vs controls)] requires a minimum of 24 subjects per group to achieve an effect size 

d of 1, with α = .05 and β = .95. Participants’ inclusion and exclusion criteria (as detailed 

below) were established prior to assessment and data analysis.

Patients were diagnosed by an expert team composed of cognitive neurologists, 

psychiatrists, and neuropsychologists, following current revised criteria (Rascovsky et al., 

2011). They were in mild stages of the disease according to expert criteria and atrophy 

pattern (Supplementary Table 1 and Supplementary Figure 1), compatible with a score of 

1 in the Clinical Dementia Rating scale (Seeley et al., 2008) –index of mild impairment 

(Morris, 1993). On average, bvFTD patients presented declined cognitive state, as measured 

with the Addenbrooke’s Cognitive Examination test-III (ACE-III) (< 83, cut-off for mild 

dementia (Mathuranath, Nestor, Berrios, Rakowicz, & Hodges, 2000) (Table 1). Yet, 

patients’ ACE-III scores were highly variable, ranging from severely impaired to normal 

performance (Table 1), as usually reported (e.g., Chen et al., 2020; Dottori et al., 2017; 

Hornberger et al., 2011), even in advanced stages of the disease (Sheelakumari et al., 

2020). Performance on general cognitive screening tests does not always accurately reflect 

bvFTD patients’ clinical manifestations or functionality (Hornberger, Piguet, Kipps, & 

Hodges, 2008; Kipps, Nestor, Fryer, & Hodges, 2007; Rahman et al., 1999; Schroeter et al., 

2014), with executive and social cognition assessments being more sensitive to the hallmark 

features of this condition (Harciarek & Cosentino, 2013; Johnen & Bertoux, 2019; Piguet 

et al., 2011). No diagnosis nor signs of motor neuron disease/ALS nor motor impairments 

were registered in any patient. Controls declared no history of psychiatric or neurological 

conditions, substance abuse disorder, heart or vascular diseases, did not report symptoms of 

cognitive decline, and had normal executive functioning skills (see section 3.2). All subjects 

signed an informed consent in accordance with the Declaration of Helsinki. The study was 

approved by the Ethics Committee of the host institution.

2.2. The INECO Frontal Screening

All participants completed the IFS, a 10-minute easy-to-administer, robust screening tool 

(Torralva et al., 2009) that includes eight subtests to tap four EFs components: WM, M.Inh, 
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V.Inh, and Abs.C. This battery has shown good internal consistency, and high reliability 

and concurrent validity (Ihnen, Antivilo, Muñoz-Neira, & Chonchol, 2013; Torralva et al., 

2009). Performance on the IFS is related with gold-standard EFs tests such as the Frontal 

Assessment Battery, the Trail Making Test part B, the Wisconsin Card Sorting Test, and 

verbal phonological fluency (Baez et al., 2014; Custodio et al., 2016; Gleichgerrcht, Roca, 

Manes, & Torralva, 2011; Ihnen et al., 2013; Torralva et al., 2009). The IFS was created on 

the basis of clinical experience, integrating the most sensitive and specific tasks to detect 

executive dysfunction in dementia (Custodio et al., 2016; Gleichgerrcht et al., 2011; Torralva 

et al., 2009), has been validated in other neuropsychiatric disorders (Baez et al., 2014, 2019; 

Bruno et al., 2015; Custodio et al., 2016; Fiorentino et al., 2013a, 2013b; Gleichgerrcht et 

al., 2011), and proved useful in both young and old healthy subjects (Fittipaldi et al., 2020; 

García-Cordero et al., 2017; Sierra Sanjurjo et al., 2019). The IFS cut-off is 18, with a 

sensitivity of .90 and a specificity of .86 to detect executive dysfunction (Ihnen et al., 2013). 

All IFS subtests exhibit high sensitivity by themselves (Moreira, Lima, & Vicente, 2014; 

Torralva et al., 2009).

WM is measured through the following subtests with a maximum 12 points:

• Backwards digit span. This task captures the capacity to temporarily hold 

acoustic information in mind via phonological storage and an articulatory 

rehearsal mechanism (Baddeley, 2007; Hodges, 1994; Wechsler, 1987). 

Participants are required to repeat a progressively lengthening string of digits in 

reverse order (up to seven digits). Each length includes two trials and successful 

performance in at least one of them is necessary to move forward, with a 

maximum of six points.

• Spatial working memory. It evaluates the ability to maintain in mind and 

manipulate visuo-spatial information to use in the task at hand (Baddeley, 2007; 

Wechsler, 1987). Participants are presented with a sequence of finger movements 

over four cubes, which are required to reproduce in reverse order. In total, four 

sequences are presented, and one point is given for each correctly performed. 

The maximum score is four points.

• Verbal working memory. This subtest also tracks phonological WM (as 

backwards digit span), but with a less demanding cognitive load since the series 

is highly overlearned for most individuals (Hodges, 1994; Torralva et al., 2009). 

Participants are asked to list the months of the year in inverse order (starting with 

December). The maximum score for perfect performance is two (one error being 

penalized with one point, and two or more errors corresponding to zero points).

M.Inh (i.e., the capacity to cancel an intended movement) is measured through the following 

tasks with a maximum of nine points:

• Motor programming. This subtest is sensible to inhibition deficits, which 

may be observed as perseveration (i.e., inappropriate repetition) of movements 

(Dubois et al., 2000). It consists of performing the Luria series “fist, edge, palm” 

six times after copying the examiner three times. The score is three points for 
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a performance without errors, two points if at least three consecutive series are 

correct, one point if three series can be copied, and zero points otherwise.

• Conflicting instructions. This subtest captures the ability to obey a verbal 

command while inhibiting automatic imitation of the examiner’s movements 

(Dubois et al., 2000). Participants are instructed to hit the table once or twice 

when the examiner hits it twice or once, respectively across a series. Three points 

are given for error-free performance, two points when one or two errors are 

committed, one point for more than two errors, and zero points otherwise.

• Go-No Go. This subtest measures the capacity to inhibit a motor response that 

was previously given to a similar stimulus (Drewe, 1975; Dubois et al., 2000). 

The instruction is to hit the table once or do nothing when the examiner hits 

it once or twice, respectively, in a series. The task is applied immediately after 

conflict instructions, with identical scoring.

V.Inh (i.e., the capacity to inhibit a verbal response) is assessed through the following task, 

with a maximum of six points:

• Modified version of the Hayling test. This subtest evaluates the capacity 

to override highly overlearned and expected verbal responses to behave in 

a contextually adequate manner (Burgess & Shallice, 1997). Participants are 

presented with three sentences whose last word is missing and are asked to 

complete them with a syntactically correct but semantically incorrect word as 

quickly as possible. Sentences are constructed to strongly constrain what the 

individual should say (e.g., “An eye for an eye and a tooth for a…”). The 

maximum score for each sentence is two points. If the participant completes the 

sentence with a semantically related word, only one point is given. Using the 

exactly expected word corresponds to zero points.

Abs.C is measured in the IFS through the following subtest, with a maximum of three 

points:

• Proverb interpretation task. This task is usually employed to assess abstract 

thought (Dubois et al., 2000; Lezak, 1983). Three proverbs are given to the 

participant, who is required to explain their meaning. One point is given for each 

proverb correctly explained, .5 points are awarded if an example is given, and 

zero points are awarded in all other scenarios. For example, the English version 

of the IFS includes the following proverb: “A bird in the hand is worth two in 

the bush”. The participant would obtain one point if they were able to explain 

its abstract meaning; “it is better to be content with what you have than risk 

losing it by trying to get something better”. Alternatively, the participant would 

get one half of a point if they were to provide an example such as “you shouldn’t 

spend your savings in the lottery for the uncertain possibility of winning a high 

sum of money”, because it denotes some degree of abstraction. Finally, they 

would get zero points if they were to provide a literal response (e.g., “it is better 

to catch one bird than see two in the bush”). This scoring follows standard 

recommendations (Murphy et al., 2013).
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2.3. MRI acquisition

Structural MRI recordings were obtained from bvFTD patients (n = 29) and their paired 

controls (n = 24) –See demographics in Table 1. Image acquisition and analysis are reported 

following the practical guide of the Organization for Human Brain Mapping (Nichols et al., 

2017; Poldrack et al., 2017). Using a 1.5 T Phillips Intera scanner with a standard head 

coil (8 channels), we acquired T1-weighted anatomical 3D spin echo sequences parallel to 

the plane connecting the anterior and posterior commissures, covering the whole brain. The 

following parameters were used: 196 slices, TR = 7489 msec, TE = 3420 msec, flip angle = 

8◦, matrix size = 256 × 240, voxel size = 1 × 1 × 1 mm3, total scan duration = 7 min.

2.4. Statistical analyses

2.4.1. Confirmatory factorial analysis—CFA was implemented to compare the fit of 

a multidimensional and a bifactor model from the observed IFS scores in the sample of 

370 participants. The multidimensional model was composed of four components (WM, 

M.Inh, V.Inh, Abs.C), assuming functional differentiation with associations between them. 

The bifactor model included the same components as independent constructs nested in a CF. 

After removing the components’ shared variance in the CF, they are no longer related but 

explained as individual manifestations of a general domain ability.

Data analyses were performed in RStudio (R Core Team, 2020; RStudio Team, 2020), 

using various packages (Epskamp, 2019; Jorgensen et al., 2020; Rosseel, 2012; Wickham 

et al., 2019). CFA models were plotted using Ωnyx (Von Oertzen et al., 2015). Because the 

data were not normally distributed, we used maximum likelihood estimation with robust 

(Huber-White) standard errors. Full information maximum likelihood estimation method 

was implemented to handle missing data (.008% of the total measures). Goodness-of-fit 

of each model to the data was evaluated via global model fit indices that adjust for 

nonnormality: the Yuan-Bentler correction factor for the chi-square statistics (YB χ2), the 

robust comparative fit index (the robust CFI (Savalei, 2018)), and the robust root mean 

square error approximation (the robust RMSEA (Savalei, 2018)). For model selection, we 

used the Akaike’s Information Criterion (AIC). To discriminate between models, we used 

the AIC differences (ΔAIC) between the model with the smallest value and the other 

candidate models in the set. Differences between zero and two suggest little support to 

distinguish between models, from four to seven indicate less support for the model with the 

higher value, and a difference >10 suggest no support for the model with the higher value 

(Burnham & Anderson, 2002). The fixed variance method of identification was used in all 

models (Putnick & Bornstein, 2016).

The YB χ2 exams the exact-fit hypothesis that there is no difference between the model-

implied covariance matrix and the population covariance matrix. A non-significant p-value 

(p ≥ .05) brings support to the exact-fit hypothesis. The robust RMSEA is an absolute 

fit index where a value of zero supports the exact-fit hypothesis (values > .08 considered 

as poor fit, values in the range of .05–.08 considered as adequate fit, and values ≤ .05 

supporting the close-fit hypothesis (Browne & Cudeck, 1993)). The robust CFI assesses 

how the specified model improves fit over the null model (values > .95 considered as 

an acceptable fit, and values > .97 considered as excellent fit (Schermelleh-Engel et al., 
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2003). The AIC index has been formally proposed for the comparison of either nested or 

non-nested models of different complexity (those with the lowest values presenting a better 

fit (Burnham & Anderson, 2002)).

Due to the wide range of age of our participants (range = 18 – 89, median = 47) and 

expected age-related differences in the factors underlying the IFS, we dichotomized this 

variable into young and old adults (young ≤ 47, n = 187; older > 47, n = 183). This 

procedure is typical in this type of data modeling (Cheung & Rensvold, 2002; Little, 2013). 

To show that differences across age are due to differences in the factors underlying the IFS 

scores rather than differences related to unknown variables, we tested the IFS measurement 

invariance. This means that the factor structure and observed factor loadings and intercept 

values (i.e., the mean of the measured variables) are equal across age groups (i.e., scalar 

invariance model). Evidence for the latter model suggests that: (1) the latent variables have a 

common factorial structure across age groups; (2) age group differences in the factor means 

are unbiased; and (3) observed intercepts and factor loadings are directly related to the factor 

means (Kline, 2016). Details and criteria for testing measurement invariance are given in 

Supplementary Material 1.

We computed predicted factor scores of the IFS from the partial multidimensional and 

bifactor models to examine performance and correlations with grey matter volume in the 

group of bvFTD patients and its paired controls. Factor scores represent the prediction made 

by the model for each participant in each EFs component, as deviation units from the mean 

of the young group (0 ± 1). Lower scores represent lower predicted performance, and higher 

scores represent higher predicted performance.

2.4.2. Analysis of behavioral data—We compared the performance of bvFTD 

patients (n = 29) and their paired controls (n = 24) in the IFS scores predicted by the 

multidimensional and bifactor models (WM, M.Inh, V.Inh, Abs.C, CF) and those observed 

using Mann–Whitney U tests (since data were non-normally distributed). To consider results 

as significant, the α level was set at p < .05. Effect size for each comparison was estimated 

by the Cohen’s d, calculated with 5000 bootstrap resamples, using the package DABESTR 

for R (Ho, Tumkaya, Aryal, Choi, & Claridge-Chang, 2019).

2.4.3. MRI data

2.4.3.1. Images preprocessing.: T1-weighted images were processed using the Dartel 

Toolbox on SPM 12 running in MAT-LAB following validated VBM procedures (Ashburner 

& Friston, 2000). Preprocessing steps included segmentation into grey matter, white matter, 

and cerebrospinal fluid. Those images were used to estimate the total intracranial volume. 

Then, to improve between-subject alignment, a template based on grey and white matter 

segmentations was created for the complete data set (default parameters) (Ashburner, 2007). 

This template was used to affine transformation into MNI space to all individual grey matter 

images. Finally, images were modulated by Jacobian determinants and smoothed with a 

kernel of 12 mm.

2.4.3.2. Voxel-based morphometry analysis.: The atrophy pattern of bvFTD patients was 

calculated by comparing their grey matter maps with those of their paired controls, via 
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two-sample t-tests (SPM module) (Supplementary Table 1 and Supplementary Figure 1). 

Then, we performed whole-brain multiple regression analyses (SPM module) to identify 

grey matter associations with scores predicted by CFA models and those observed. These 

analyses were made for the bvFTD group in tandem with its paired controls (n = 53) to 

increase behavioral variance, sample size, and statistical power (O’Callaghan et al., 2016; 

Sollberger et al., 2009). Total intracranial volume and a dummy variable codifying the group 

to which the participant belonged were included as nuisance covariates. The inclusion of 

these covariates reduces the inter-variability in head size (Pell et al., 2008) and the atrophy 

effect (Alkharusi, 2012).

To control for multiple comparisons, the statistical threshold was set at p < .05 at the cluster 

level with a voxel-level threshold of p < .001. The minimum cluster size (k) to consider 

results as significant was set using AlphaSim correction (Rest v1.8 software) (Song et 

al., 2011), which applies Monte Carlo simulations. The following parameters were used: 

individual voxel p = .005; rmm = 1; simulations = 1000. This approach is commonly used 

in VBM analysis (e.g., Peng et al., 2018; Tas et al., 2018; Zhang et al., 2013) to control 

for spurious findings while avoiding false negatives that could result when applying more 

conservative corrections such as FWE (Lieberman & Cunningham, 2009). Localization was 

derived from the Automated Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002).

3. Results

3.1. Confirmatory factorial analysis

Measurement invariance revealed that the multidimensional model was not fully scalar 

invariant. Thus, we computed the partial scalar multidimensional model (from here on, 

multidimensional model). See Supplementary Material 1 and Supplementary Table 2 for 

details. In this model, the observed intercepts of verbal WM, the first trial of the modified 

Hayling test, and the third trial of the proverb interpretation task were freed across age. The 

goodness-of-fit indices indicated that the exact-fit hypothesis cannot be rejected (YB χ2
(109) 

= 112.880, p = .38); the robust RMSEA indicated a close fit of the model to data (robust 

RMSEA = .014, 90% CI = .0–.042). Similarly, the robust CFI showed an excellent fit to data 

(robust CFI = .996).

Tests of measurement invariance for the bifactor model indicated that the scalar invariance 

hypothesis was not supported. Thus, in the partial scalar bifactor model (from here on, 

bifactor model), the intercepts of the conflicting instruction task and the third trial of the 

proverb interpretation task were freely estimated in both age groups (see Supplementary 

Material 1 and Supplementary Table 2). The bifactor model fitted the data well, as evidenced 

by the fit indices (YB χ2
(108) = 115.522, p = .29; robust RMSEA = .02, 90% CI = .0–.044; 

robust CFI = .993). Although the multidimensional model appears to provide the best 

account of data (AIC = 8134.8), no strong goodness-of-fit measures distinguish it from the 

bifactor model (AIC = 8138.7; ΔAIC = 3.93).

Fig. 1A displays the standardized estimates of the multidimensional model with the symbols 

representing the types of variables, parameters, and relationships. All factor loadings were in 

the range of .42 and .81 and statistically significant, indicating that measured variables were 
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directly influenced by each specific factor. In the multidimensional and bifactor models, all 

factor means were fixed to zero in the young group (“Y”) and freely estimated for the old 

group (“O”; see the parameters above the triangles pointing to each factor). Thus, factor 

means for WM (values provided above the triangles pointing to the WM factor) indicate that 

the old group’s performance was .55 standard deviations lower than the young group (p < 

.001). Similarly, relative to the young group, the old group performed worse in M.Inh (O = 

−.51, p < .01) and in V.Inh (O = −.25, p < .05). In Abs.C, age groups showed no differences 

in performance (O = −.17; p > .05). Correlations between latent variables were similar in 

both groups, in the range of .39 and .80. In the bifactor model (Fig. 1B), except for verbal 

WM task (p = .11), factor loadings were statistically significant (p < .05), evidencing that 

measured variables were directly influenced by the common and specific factors. The model 

reveals that age differences for the latent variables were statistically significant in M.Inh (O 

= −1.41, p = .04) and marginally significant in WM (O = −3.39, p = .06) and V.Inh (O = 

−1.33, p = .09).

3.2. IFS performance

Descriptive statistics (mean, median, SD and range) of factor and observed IFS scores 

as well as between-group comparisons’ results (bvFTD patients vs paired controls) are 

summarized in Table 2.

On average, healthy controls reached the IFS cut-off for normal executive functioning (≥ 

18 (Ihnen et al., 2013)). A 22% of them showed values below the cut-off, as expected 

and usually reported in Latin American samples, probably explained by educational level 

(controls with IFS < 18: Meducation = 7.5, SDeducation = 3.3, controls with IFS ≥ 18: 

Meducation = 13.4, SDeducation = 4.4; U = 9.4, p < .001) and potential differences in 

fluid intelligence. As occurs with many other EFs batteries from other regions (Diamond, 

2013; Duncan, 2013; Julayanont & Ruthirago, 2018; Roca et al., 2010; Vigliecca & Baez, 

2015; Wray et al., 2020) the IFS performance is not resistant to educational level and 

fluid intelligence (Roca et al., 2010) –See Discussion section. Indeed, there was a positive 

correlation (r = .7, p < .001) between IFS total score and years of education in the healthy 

controls’ sample. Low educational level could also explain poorer IFS performance in the 

full healthy controls’ sample (Mage = 44.1, SDage = 16.7) than in the sub-group of older 

paired controls (Mage = 69.2, SDage = 7.47), as revealed by a significant difference in years 

of education between non-paired (n = 317; Meducation = 11.7, SDeducation = 4.8) and paired (n 
= 24, Meducation = 15.2, SDeducation = 3.5) controls (U = 3.7, p < .001).

As expected (Harciarek & Cosentino, 2013; Johnen & Bertoux, 2019; Rascovsky et al., 

2011), bvFTD patients showed executive decline (Table 2). Notably, patients’ performance 

was highly variable, suggesting different degree of executive impairment, as previously 

reported (Baez et al., 2019; Beeldman et al., 2018; Kamath et al., 2019).

3.2.1. Multidimensional model’s predicted scores—We found significant 

differences between groups in all EFs components as estimated by the multidimensional 

model, with bvFTD patients performing worse than controls (WM: U = 5.60 p < .001, 

Cohen’s d = 1.91; M.Inh: U = 4.90, p < .001, Cohen’s d = 1.47, V.Inh: U = 5.69, p < .001, 
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Cohen’s d = 1.91, Abs.C: U = 5.87, p < .001, Cohen’s d = 2.47). Effect sizes were higher for 

these scores in comparison to those estimated by the bifactor model (Table 2 and Fig. 2, left 

panel).

3.2.2. Bifactor model’s predicted scores—Significant differences between bvFTD 

patients and controls were found for V.Inh (U = 2.16, p < .05, Cohen’s d = .55), Abs.C 

(U = 2.90, p < .05, Cohen’s d = .84), and the CF (U = 5.82, p < .001, Cohen’s d = 2.37), 

with patients performing worse than controls. In contrast, no significant differences were 

found for WM and M.Inh. Effect sizes were lower for these scores in comparison to those 

estimated by the multidimensional model (Table 2 and Fig. 2, right panel).

3.2.3. Observed scores—Compared to controls, bvFTD patients presented lower 

IFS observed scores in all EFs components. Effect sizes were lower than those of 

the multidimensional model, but higher than those of the bifactor model (Table 2 and 

Supplementary Figure 2).

3.3. VBM results

3.3.1. Grey matter correlates of multidimensional model’s predicted scores—
Higher WM scores were related with greater grey matter volume of the right dorsolateral, 

medial and orbitofrontal cortex (p < .05, AlphaSim cluster-corrected, k = 107 voxels). 

Superior M.Inh scores were related with higher volume in the right orbitofrontal cortex, 

in addition to the left parietal Rolandic operculum (p < .05, AlphaSim cluster-corrected, k 

= 114 voxels). Higher V.Inh scores were related with increased grey matter volume in the 

right medial and orbitofrontal cortex/gyrus rectus, and the bilateral anterior insula (p < .05, 

AlphaSim cluster-corrected, k = 116 voxels). Finally, higher scores in Abs.C were associated 

with more grey matter volume in the right medial and orbitofrontal cortex, the bilateral 

insula, the left Rolandic operculum, the bilateral mid/posterior cingulate gyri and precuneus, 

and the left (para)hippocampal/amygdala complex (p < .05, AlphaSim cluster-corrected, k = 

123 voxels). See Fig. 3 and Supplementary Table 3 for further details.

3.3.2. Grey matter correlates of bifactor model’s predicted scores—Higher 

CF scores were associated with increased grey matter volume in the right medial and 

orbitofrontal cortex/gyrus rectus, and the bilateral insula (p < .05, AlphaSim cluster-

corrected, k = 111 voxels) –See Fig. 3 and Supplementary Table 3 for further details. 

In contrast, no significant grey matter correlates were found for the individual EFs’ 

components as estimated by the bifactor model (p < .05, AlphaSim cluster-corrected, k 

for WM = 119 voxels, k for M.Inh = 123 voxels, k for V.Inh = 126 voxels, and k for Abs.C = 

148 voxels).

3.3.3. Grey matter correlates of observed scores—Observed IFS scores presented 

less specific brain volume correlates (Supplementary Table 3 and Supplementary Figure 3). 

No significant grey matter associations were obtained for WM (p < .05, AlphaSim cluster-

corrected, k = 113 voxels). Higher M.Inh and V.Inh scores were related to higher volume 

in the left Rolandic operculum and the left posterior temporal gyrus, respectively (p < .05, 

AlphaSim cluster-corrected, k for M.Inh = 113 voxels, k for V.Inh = 115). Finally, higher 
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Abs.C scores were associated with higher grey matter volume in the bilateral Rolandic 

operculum, the left hippocampus and amygdala, and the left mid/posterior cingulate gyrus (p 
< .05, AlphaSim cluster-corrected, k = 125 voxels).

4. Discussion

To our knowledge, this is the first work in examining the latent organization of EFs 

in both neurotypicals and in a neurodegeneration model of EFs. CFA was used to test 

the multidimensional and bifactor models of EFs. The multidimensional model featured 

four EFs components including WM, M.Inh, V.Inh and Abs.C as separate but correlated 

constructs. In the bifactor model, components were independent (i.e., unrelated) and their 

shared variance was captured by a CF, implying a general-domain ability underlying 

all EFs. Although both factorial models fit the data well, the multidimensional model 

was more sensitive to detect bvFTD’s EFs impairments and unique neuroanatomical 

correlates for EFs, in comparison with both the bifactor model and the observed scores. 

Thus, the converging behavioral and neuroanatomical evidence supports an undelaying 

multidimensional structure. Our framework offers novel insights to better understand the 

latent structure of EFs, which has been traditionally studied through performance measures.

The CFA in healthy participants evidenced that all fit indices (YB χ2, robust RMSEA, 

CI, and robust CFI) provided support for both models. While the multidimensional model 

appeared to provide a better account of behavioral data, goodness-of-fit measures did not 

provide a clear advantage for any model. This result confirms that, at a behavioral level, both 

models would work similarly (Friedman & Miyake, 2017; Karr et al., 2018; Miyake et al., 

2000).

The bvFTD group showed impaired performance in all EFs components as predicted by 

the multidimensional model. This is consistent with the neuropsychological profile of 

this condition, characterized by impairments in an extended range of EFs (Harciarek & 

Cosentino, 2013; Johnen & Bertoux, 2019). A similar pattern of alterations was found for 

IFS observed scores, although with lower effect sizes (arguably due to the effect of task 

impurity). In contrast, the bifactor model only showed moderate impairments in patients in 

the CF, V.Inh, and Abs.C, with preserved performance in WM and M.Inh. Notably, effect 

sizes were lower than those obtained for the multidimensional model and observed scores, 

and, except for the CF, data from the bifactor model presented a very similar distribution 

across groups. Taken together, bvFTD behavioral results suggest more accurate predictions 

and sensitivity for the multidimensional model to detect executive dysfunction reflecting the 

selective involvement of the ventromedial PFC (Broe et al., 2003) in a very specific way.

VBM results for the multidimensional model revealed common grey matter correlates of 

EFs components. Higher scores in all components were associated with higher volume in the 

critical frontal EFs hubs (ventromedial/orbitofrontal cortex). Although these regions seem 

crucial for response inhibition (Aron et al., 2004; Collette et al., 2005; Stuss, 2011), they are 

also involved in other EFs (Fuster, 2019), and behavioral regulation (Stuss, 2011). Evidence 

from patients suggests that the integrity of the ventromedial/orbitofrontal cortex is critical 

for any complex executive task (Fuster, 2019), being these regions the earliest structures 
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affected by the neuronal degeneration in bvFTD (Hodges & Piguet, 2018; Kril & Halliday, 

2004).

Regarding specific EFs correlates of VBM’s multidimensional model, the better WM the 

larger the dorsolateral prefrontal cortex, confirming robust evidence (D’Esposito et al., 

1998, 2000; Smolker et al., 2015; Wager & Smith, 2003). This result was right-lateralized. 

Previous evidence on brain lesions and healthy subjects has shown a lateralization effect 

on the dorsolateral prefrontal cortex in WM tasks, with the right and left hemispheres 

processing preferentially spatial and auditory-verbal material, respectively (D’Esposito et 

al., 1998; Jonides et al., 1993; Smith & Jonides, 1998; van Asselen et al., 2006). Since the 

WM component of the IFS involves both modalities, we would have expected a bilateral 

dorsolateral prefrontal pattern. However, there is evidence that the lateralization effects 

can change in the elderly (Jonides et al., 2000; Reuter-Lorenz et al., 2000), and in those 

with cerebral dysfunctions (Chiaravalloti et al., 2005; Walter et al., 2003). On the other 

hand, in contrast to brain lesion literature showing a critical involvement of posterior areas, 

such as the left angular gyrus (Warrington & Shallice, 1969), in WM, our results were 

circumscribed to frontal hubs. This may be explained by preserved posterior gray matter in 

our patients (Supplementary Table 1 and Supplementary Figure 1). Additionally, posterior 

regions are suggested to have a more generic role in EFs, specifically in processing low-level 

information that is shared across domains (Collette et al., 2005). Thus, CFA might have 

eliminated the variance associated with their function. Other VBM studies also failed to 

show associations between EFs and non-frontal areas (Smolker et al., 2015, 2018).

M.Inh presented a unique association with a cluster in the left parietal Rolandic operculum, 

putatively related to the sensorimotor aspects of this task (Eickhoff et al., 2010). Not 

surprisingly, V.Inh presented a positive correlation with the right ventromedial/orbitofrontal 

cortex, which has been previously referred to as the neural substrate of the Hayling test –the 

paradigm used in the IFS (Cipolotti et al., 2016; Robinson et al., 2015; Volle et al., 2012). 

Higher V.Inh was also associated with greater volume in the bilateral anterior insular cortex. 

Despite this region not being traditionally associated with EFs, several studies reveal its role 

in verbal response suppression tasks –similar to the Hayling test (De Zubicaray, Zelaya, 

Andrew, Williams, & Bullmore, 2000; Ruscheweyh, Deppe, Lohmann, et al., 2013)–, as well 

as in inhibitory failure (Ramautar et al., 2006), and in other higher-order cognitive aspects of 

language production (Oh, Duerden, & Pang, 2014). The anterior insula is the key node of the 

salience network for the facilitation of error monitoring and task control (Eckert et al., 2009; 

Menon & Uddin, 2010; Ruscheweyh, Deppe, Lohmann, et al., 2013). In this line, previous 

evidence has linked the insular damage with executive impairments in bvFTD (Baez et al., 

2019). Taken together, these results suggest the insula might have a role in language-based 

inhibition tasks.

Finally, Abs.C was associated with a widespread grey matter pattern, comprising an 

extended prefrontal cluster as previously reported (Dumontheil, 2014; Murphy et al., 2013; 

Nee et al., 2014; Urbanski et al., 2016) but also including other temporo-posterior regions 

(Bohrn, Altmann, Lubrich, Menninghaus, & Jacobs, 2012). These last regions would be 

related to cognitive demands required by the proverb interpretation task used to assess 

Abs.C. The task relies on the medial temporal lobe’s long-term verbal memory involvement, 
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which is putatively left-lateralized (Kaiser et al., 2013; McDonald, Delis, Kramer, Tecoma, 

& Iragui, 2008). Furthermore, proverb interpretation engages perspective-taking abilities 

(associated with medial frontal and posterior areas (Amodio & Frith, 2006; Saxe, 2006)) to 

decode meaning, while inhibiting literal responses (right ventromedial/orbitofrontal cortex). 

In brief, the multidimensional model presented common and unique neural signatures 

previously associated with the specific EFs components.

The bifactor model presented a positive association of the CF and ventromedial/orbitofrontal 

cortex volume (the main hubs of the multidimensional model) together with the bilateral 

insula. As discussed above, these regions encompass general purpose roles in EFs (Eckert 

et al., 2009; Fuster, 2019; Menon & Uddin, 2010; Stuss, 2011). Consistently, a previous 

work on latent variables also revealed a similar association (Smolker et al., 2015), however, 

no associations for individual EFs components were found using bifactor scores. These 

findings extend previous evidence of shared neuroanatomical bases among EFs and suggest 

a sensitivity loss of the individual components when their common variance is extracted.

Finally, the grey matter correlates of observed IFS scores were scant. Remarkably, no 

prefrontal involvement was detected in any component, possibly due to the effect of 

contaminating variables in performance (task impurity). Previous research has already 

pointed to difficulties and contradictions in brain results from observed (i.e., contaminated) 

EFs scores (Smolker et al., 2018; Weise et al., 2019; Yuan & Raz, 2014). Thus, our findings 

further reinforce the advantages of using CFA to characterize EFs constructs.

Taken together, while both the multidimensional and the bifactor models presented a good 

fit to observed IFS data, converging behavioral and neuroanatomical evidence from bvFTD 

supports the multidimensional model. This is especially relevant for the clinical field, as it 

has been previously suggested that EFs are fractionated in frontal patients (Godefroy et al., 

1999; Stuss, 2011; Tsuchida & Fellows, 2013). The separability of EFs, however, should not 

be interpreted as complete independence. The multidimensional model presented moderate–

high correlations among EFs components (ranging from .39 to .80), alongside common 

neuroanatomical hubs, suggesting a pattern of “unity and diversity” of EFs (Friedman & 

Miyake, 2017). The nature of such unity of EFs, namely whether it reflects general abilities 

(Obonsawin et al., 2002), goal neglect (Duncan et al., 1997), or reasoning (Salthouse, 2005) 

still remains to be determined.

The controversy regarding the unity and diversity structure of EFs has been largely 

addressed using behavioral measures in healthy participants (e.g., Huizinga, Dolan, & van 

der Molen, 2006; Miyake et al., 2000; Was, 2007), older adults (e.g., De Frias, Dixon, & 

Strauss, 2006; Hull, Martin, Beier, Lane, & Hamilton, 2008; Martin, Barker, Gibson, & 

Robinson, 2021), as well as in neurological (e.g., Robinson et al., 2012; Roca et al., 2010; 

Tsuchida & Fellows, 2013) and psychiatric (e.g., Martin, Mowry, Reutens, & Robinson, 

2015) patients. Some works tackled this issue using structural and functional imaging (e.g., 

Collette et al., 2005; Fedorenko et al., 2013; Hedden & Gabrieli, 2010; Niendam et al., 

2012). Overall, these studies support the differentiation of EFs across the lifespan. However, 

most of them rely on observed (i.e., contaminated) EFs measures, raising controversies 

regarding the latent organization of the different dimensions (i.e., whether they depend on 
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a domain-general ability), and precluding specific brain-behavior associations (e.g., Weise 

et al., 2019; Yuan & Raz, 2014). On the other hand, studies using CFA to alleviate the 

problem of task impurity typically do not include brain measures. Moreover, the very few 

CFA studies that assess cortical correlates (Ambrosini et al., 2019; Bettcher et al., 2016; 

Smolker et al., 2015, 2018), do not test their hypotheses in patients. In sum, our study is the 

first in integrating robust convergent evidence from latent measures, structural imaging, and 

a neurodegenerative lesion model to investigate the multidimensional organization of EFs.

Results have relevant implications for neuropsychological assessment. EFs impairments are 

present in most neurological and psychiatric conditions (Huey et al., 2009; Snyder et al., 

2015; Stopford et al., 2012). However, the use of tasks’ observed scores is sometimes 

problematic to accurately detect such deficits (e.g., to differentiate between types of 

dementia (Johns et al., 2009)). While decades of research and many resources have been 

invested to find specific tasks to solve this issue, the field still lacks a clear answer. Thus, the 

incorporation of factor scores as normative values in neuropsychological batteries represents 

a promising avenue towards the development of more sensitive EFs measures for diagnosis, 

detection of daily life impairments, and assessment of treatment outcomes.

Some limitations must be acknowledged. First, despite its advantages, the IFS is not 

an exhaustive measure of EFs; it does not include all EFs components (e.g., cognitive 

flexibility, planning, organization) and does not account for processing speed (i.e., reaction 

times). Second, given its screening nature, a potential ceiling effect in healthy subjects 

cannot be ruled out. Yet, the IFS taps into complex behaviors (e.g., M.Inh domain is based 

on challenging hand movements that require interference control while having implicit 

the capacities of motor coordination and learning; Dubois et al., 2000) which allows for 

the tracking of inter-individual differences. Indeed, the IFS proved its utility in healthy 

young and old adults (Fittipaldi et al., 2020; García-Cordero et al., 2017; Sierra Sanjurjo 

et al., 2019). Relatedly, EFs are impacted by multiple factors, including education and 

fluid intelligence (Diamond, 2013; Duncan, 2013; Julayanont & Ruthirago, 2018; Roca et 

al., 2010; Vigliecca & Baez, 2015; Wray et al., 2020). Similarly, the IFS is sensitive to 

educational level (Ihnen et al., 2013; Moreira et al., 2014; Sierra Sanjurjo et al., 2019), 

and fluid intelligence (Roca et al., 2010), which can produce floor effects. Arguably, low-

educated participants may present difficulties in attending, comprehending and following 

instructions, lack proper vocabulary (as required, for instance, in the proverb interpretation 

task), and struggle in creating adequate strategies to solve complex tasks (Hawkins & 

Bender, 2002; Le Carret et al., 2003; de Wachholz & Yassuda, 2011). This limitation is not 

exclusive of the IFS but typical of other gold-standard executive (Appollonio et al., 2005; 

Matioli et al., 2008; Rodrigues et al., 2009) and cognitive (e.g., Crum, Anthony, Bassett, 

& Folstein, 1993; Matías-Guiu et al., 2016; Zhou et al., 2015) screening tests widely used 

to track acquired deficits. In any case, future CFA works should more precisely address 

the issue of ceiling and floor effects on EFs tasks. Third, the Abs.C domain of the IFS is 

based on a single task (proverb interpretation), with a short range of possible scores (from 

1 to 3). Low variability in this domain could impact VBM associations in addition to task 

impurity. Fourth, although we used a large sample for the construction of our models (n = 

370), imaging analysis was performed only on a sub-sample (n = 53). Finally, the size of 

the bvFTD group was moderate (n = 29), but comparable or larger than that seen in similar 
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studies using VBM in this population (e.g., Baez et al., 2019; Sheelakumari et al., 2020; 

Wilson et al., 2020). Nonetheless, our results should be replicated with a larger, more diverse 

pathological sample that includes other dysexecutive syndromes.

In conclusion, the multidimensional model seems to be more sensitive than the bifactor 

model and the observed scores to detect neurocognitive dysfunction. This suggests that EFs 

are better conceptualized as separate but related components. Also, our results strengthen the 

construct validity of the IFS across aging, highlighting its suitability for further applications 

with latent variables in other studies. Its robustness, alongside its brevity, low cost, easy 

application and interpretation (Roebuck-Spencer et al., 2017), confers to this battery several 

advantages over other alternatives. Thus, our findings provide a new agenda for further 

theoretical and clinical research regarding the conceptualization of EFs, the utility of 

factor scores in neuropsychological assessment, and the development of new evidence-based 

screenings for EFs examination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abs.C abstraction capacity

bvFTD behavioral variant frontotemporal dementia

CF common factor

CFA confirmatory factorial analysis

M.Inh motor inhibition

Gonzalez-Gomez et al. Page 17

Cortex. Author manuscript; available in PMC 2024 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V.Inh verbal inhibition

WM working memory

VBM voxel-based morphometry
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Fig. 1 –. 
Standardized version of factorial models (partially scalar). A. Multidimensional model. 

B. Bifactor model. The legend displays the symbols representing the types of variables, 

parameters, and relationships. For identification of both models, factor means were fixed 

to zero in the young group (“Y”) and freely estimated for the old group (“O”). These 

estimated factor means are expressed as standard deviation units. For example, the factor 

mean for WM indicates that the old group’s performance was .55 SD lower than the young 

group (p < .001). Numbers in red denote significant age differences in the factor means (p 
< .05). In these models, factor variances/covariances, factor means, and residual variances 

were freely estimated. For simplicity of the figure, the model does not show residual 

variances and, in the case of bifactor model, neither observed intercepts. Abs.C: abstraction 
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capacity; BDS: backwards digit span; CF: common factor; CI: conflicting instructions; 

GNG: Go-No Go; IC1: verbal inhibitory control, 1st trial; IC2: verbal inhibitory control, 

2nd trial; IC3: verbal inhibitory control, 3rd trial, M.Inh: motor inhibition; MP: motor 

programming; SWM: spatial working memory; O: old, PI1: proverb interpretation, 1st trial; 

PI2: proverb interpretation, 2nd trial; PI3: proverb interpretation, 3rd trial; V.Inh: verbal 

inhibition; VWM: verbal working memory; WM: working memory; Y: young.
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Fig. 2 –. 
BvFTD patients and controls performance in predicted factor scores for each executive 

component tapped by the IFS. Estimation plots show Cohen’s d between groups calculated 

with 5000 bootstrap resamples. Statistical comparisons were performed through Mann-

Witney U tests. Abs.C: abstraction capacity; bvFTD: behavioral variant frontotemporal 

dementia; CF: common factor; M.Inh: motor inhibition; V.Inh: verbal inhibition; WM: 

working memory. *: p < .05; ***: p < .001; ns: non-significant.
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Fig. 3 –. 
VBM results. A. Brain volume correlates of multidimensional model’s factor scores. Higher 

scores in EFs components were mainly associated with larger grey matter volume of 

prefrontal regions, as well as posterior and medial-temporal areas in the case of Abs.C. 

B. Grey matter correlates of bifactor model’s factor scores. Higher scores in the CF were 

associated with prefrontal and insular regions. No significant correlations were found for 

individual EFs components. See details in Supplementary Table 3. Images are displayed 

in neurological convention. The statistical threshold was set at p < .05, AlphaSim cluster-

corrected. The numbers represent the slices coordinates in the sagittal plane. Abs.C: 

abstraction capacity; CF: common factor; M.Inh: motor inhibition; V.Inh: verbal inhibition; 

WM: working memory.
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